Properties

Label 2112.2.a.e
Level $2112$
Weight $2$
Character orbit 2112.a
Self dual yes
Analytic conductor $16.864$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2112 = 2^{6} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2112.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(16.8644049069\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - 2q^{5} + 4q^{7} + q^{9} + O(q^{10}) \) \( q - q^{3} - 2q^{5} + 4q^{7} + q^{9} - q^{11} + 6q^{13} + 2q^{15} + 2q^{17} + 4q^{19} - 4q^{21} - 4q^{23} - q^{25} - q^{27} - 6q^{29} + q^{33} - 8q^{35} - 6q^{37} - 6q^{39} - 6q^{41} + 4q^{43} - 2q^{45} + 12q^{47} + 9q^{49} - 2q^{51} - 2q^{53} + 2q^{55} - 4q^{57} + 12q^{59} + 14q^{61} + 4q^{63} - 12q^{65} + 4q^{67} + 4q^{69} + 12q^{71} - 6q^{73} + q^{75} - 4q^{77} + 4q^{79} + q^{81} + 4q^{83} - 4q^{85} + 6q^{87} + 10q^{89} + 24q^{91} - 8q^{95} - 14q^{97} - q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −2.00000 0 4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(11\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2112.2.a.e 1
3.b odd 2 1 6336.2.a.cj 1
4.b odd 2 1 2112.2.a.r 1
8.b even 2 1 528.2.a.j 1
8.d odd 2 1 66.2.a.b 1
12.b even 2 1 6336.2.a.bw 1
24.f even 2 1 198.2.a.a 1
24.h odd 2 1 1584.2.a.f 1
40.e odd 2 1 1650.2.a.k 1
40.k even 4 2 1650.2.c.e 2
56.e even 2 1 3234.2.a.t 1
72.l even 6 2 1782.2.e.v 2
72.p odd 6 2 1782.2.e.e 2
88.b odd 2 1 5808.2.a.bc 1
88.g even 2 1 726.2.a.c 1
88.k even 10 4 726.2.e.o 4
88.l odd 10 4 726.2.e.g 4
120.m even 2 1 4950.2.a.bu 1
120.q odd 4 2 4950.2.c.p 2
168.e odd 2 1 9702.2.a.x 1
264.p odd 2 1 2178.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.a.b 1 8.d odd 2 1
198.2.a.a 1 24.f even 2 1
528.2.a.j 1 8.b even 2 1
726.2.a.c 1 88.g even 2 1
726.2.e.g 4 88.l odd 10 4
726.2.e.o 4 88.k even 10 4
1584.2.a.f 1 24.h odd 2 1
1650.2.a.k 1 40.e odd 2 1
1650.2.c.e 2 40.k even 4 2
1782.2.e.e 2 72.p odd 6 2
1782.2.e.v 2 72.l even 6 2
2112.2.a.e 1 1.a even 1 1 trivial
2112.2.a.r 1 4.b odd 2 1
2178.2.a.g 1 264.p odd 2 1
3234.2.a.t 1 56.e even 2 1
4950.2.a.bu 1 120.m even 2 1
4950.2.c.p 2 120.q odd 4 2
5808.2.a.bc 1 88.b odd 2 1
6336.2.a.bw 1 12.b even 2 1
6336.2.a.cj 1 3.b odd 2 1
9702.2.a.x 1 168.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2112))\):

\( T_{5} + 2 \)
\( T_{7} - 4 \)
\( T_{13} - 6 \)
\( T_{17} - 2 \)
\( T_{19} - 4 \)
\( T_{23} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T \)
$5$ \( 1 + 2 T + 5 T^{2} \)
$7$ \( 1 - 4 T + 7 T^{2} \)
$11$ \( 1 + T \)
$13$ \( 1 - 6 T + 13 T^{2} \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 - 4 T + 19 T^{2} \)
$23$ \( 1 + 4 T + 23 T^{2} \)
$29$ \( 1 + 6 T + 29 T^{2} \)
$31$ \( 1 + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 - 4 T + 43 T^{2} \)
$47$ \( 1 - 12 T + 47 T^{2} \)
$53$ \( 1 + 2 T + 53 T^{2} \)
$59$ \( 1 - 12 T + 59 T^{2} \)
$61$ \( 1 - 14 T + 61 T^{2} \)
$67$ \( 1 - 4 T + 67 T^{2} \)
$71$ \( 1 - 12 T + 71 T^{2} \)
$73$ \( 1 + 6 T + 73 T^{2} \)
$79$ \( 1 - 4 T + 79 T^{2} \)
$83$ \( 1 - 4 T + 83 T^{2} \)
$89$ \( 1 - 10 T + 89 T^{2} \)
$97$ \( 1 + 14 T + 97 T^{2} \)
show more
show less