Properties

Label 2106.2.e.e.1405.1
Level $2106$
Weight $2$
Character 2106.1405
Analytic conductor $16.816$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(703,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1405.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2106.1405
Dual form 2106.2.e.e.703.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{5} +(1.00000 + 1.73205i) q^{7} +1.00000 q^{8} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.00000 + 1.73205i) q^{5} +(1.00000 + 1.73205i) q^{7} +1.00000 q^{8} +2.00000 q^{10} +(-2.00000 - 3.46410i) q^{11} +(0.500000 - 0.866025i) q^{13} +(1.00000 - 1.73205i) q^{14} +(-0.500000 - 0.866025i) q^{16} -6.00000 q^{19} +(-1.00000 - 1.73205i) q^{20} +(-2.00000 + 3.46410i) q^{22} +(2.00000 - 3.46410i) q^{23} +(0.500000 + 0.866025i) q^{25} -1.00000 q^{26} -2.00000 q^{28} +(-4.00000 - 6.92820i) q^{29} +(1.00000 - 1.73205i) q^{31} +(-0.500000 + 0.866025i) q^{32} -4.00000 q^{35} +6.00000 q^{37} +(3.00000 + 5.19615i) q^{38} +(-1.00000 + 1.73205i) q^{40} +(3.00000 - 5.19615i) q^{41} +(4.00000 + 6.92820i) q^{43} +4.00000 q^{44} -4.00000 q^{46} +(4.00000 + 6.92820i) q^{47} +(1.50000 - 2.59808i) q^{49} +(0.500000 - 0.866025i) q^{50} +(0.500000 + 0.866025i) q^{52} -12.0000 q^{53} +8.00000 q^{55} +(1.00000 + 1.73205i) q^{56} +(-4.00000 + 6.92820i) q^{58} +(2.00000 - 3.46410i) q^{59} +(-5.00000 - 8.66025i) q^{61} -2.00000 q^{62} +1.00000 q^{64} +(1.00000 + 1.73205i) q^{65} +(1.00000 - 1.73205i) q^{67} +(2.00000 + 3.46410i) q^{70} +16.0000 q^{71} +14.0000 q^{73} +(-3.00000 - 5.19615i) q^{74} +(3.00000 - 5.19615i) q^{76} +(4.00000 - 6.92820i) q^{77} +(2.00000 + 3.46410i) q^{79} +2.00000 q^{80} -6.00000 q^{82} +(-6.00000 - 10.3923i) q^{83} +(4.00000 - 6.92820i) q^{86} +(-2.00000 - 3.46410i) q^{88} +6.00000 q^{89} +2.00000 q^{91} +(2.00000 + 3.46410i) q^{92} +(4.00000 - 6.92820i) q^{94} +(6.00000 - 10.3923i) q^{95} +(5.00000 + 8.66025i) q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - 2 q^{5} + 2 q^{7} + 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} - q^{4} - 2 q^{5} + 2 q^{7} + 2 q^{8} + 4 q^{10} - 4 q^{11} + q^{13} + 2 q^{14} - q^{16} - 12 q^{19} - 2 q^{20} - 4 q^{22} + 4 q^{23} + q^{25} - 2 q^{26} - 4 q^{28} - 8 q^{29} + 2 q^{31} - q^{32} - 8 q^{35} + 12 q^{37} + 6 q^{38} - 2 q^{40} + 6 q^{41} + 8 q^{43} + 8 q^{44} - 8 q^{46} + 8 q^{47} + 3 q^{49} + q^{50} + q^{52} - 24 q^{53} + 16 q^{55} + 2 q^{56} - 8 q^{58} + 4 q^{59} - 10 q^{61} - 4 q^{62} + 2 q^{64} + 2 q^{65} + 2 q^{67} + 4 q^{70} + 32 q^{71} + 28 q^{73} - 6 q^{74} + 6 q^{76} + 8 q^{77} + 4 q^{79} + 4 q^{80} - 12 q^{82} - 12 q^{83} + 8 q^{86} - 4 q^{88} + 12 q^{89} + 4 q^{91} + 4 q^{92} + 8 q^{94} + 12 q^{95} + 10 q^{97} - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i \(-0.980917\pi\)
0.550990 + 0.834512i \(0.314250\pi\)
\(6\) 0 0
\(7\) 1.00000 + 1.73205i 0.377964 + 0.654654i 0.990766 0.135583i \(-0.0432908\pi\)
−0.612801 + 0.790237i \(0.709957\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 1.00000 1.73205i 0.267261 0.462910i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −1.00000 1.73205i −0.223607 0.387298i
\(21\) 0 0
\(22\) −2.00000 + 3.46410i −0.426401 + 0.738549i
\(23\) 2.00000 3.46410i 0.417029 0.722315i −0.578610 0.815604i \(-0.696405\pi\)
0.995639 + 0.0932891i \(0.0297381\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) −4.00000 6.92820i −0.742781 1.28654i −0.951224 0.308500i \(-0.900173\pi\)
0.208443 0.978035i \(-0.433160\pi\)
\(30\) 0 0
\(31\) 1.00000 1.73205i 0.179605 0.311086i −0.762140 0.647412i \(-0.775851\pi\)
0.941745 + 0.336327i \(0.109185\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 6.00000 0.986394 0.493197 0.869918i \(-0.335828\pi\)
0.493197 + 0.869918i \(0.335828\pi\)
\(38\) 3.00000 + 5.19615i 0.486664 + 0.842927i
\(39\) 0 0
\(40\) −1.00000 + 1.73205i −0.158114 + 0.273861i
\(41\) 3.00000 5.19615i 0.468521 0.811503i −0.530831 0.847477i \(-0.678120\pi\)
0.999353 + 0.0359748i \(0.0114536\pi\)
\(42\) 0 0
\(43\) 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i \(0.0421616\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 4.00000 + 6.92820i 0.583460 + 1.01058i 0.995066 + 0.0992202i \(0.0316348\pi\)
−0.411606 + 0.911362i \(0.635032\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −12.0000 −1.64833 −0.824163 0.566352i \(-0.808354\pi\)
−0.824163 + 0.566352i \(0.808354\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 1.00000 + 1.73205i 0.133631 + 0.231455i
\(57\) 0 0
\(58\) −4.00000 + 6.92820i −0.525226 + 0.909718i
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) −5.00000 8.66025i −0.640184 1.10883i −0.985391 0.170305i \(-0.945525\pi\)
0.345207 0.938527i \(-0.387809\pi\)
\(62\) −2.00000 −0.254000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 1.00000 + 1.73205i 0.124035 + 0.214834i
\(66\) 0 0
\(67\) 1.00000 1.73205i 0.122169 0.211604i −0.798454 0.602056i \(-0.794348\pi\)
0.920623 + 0.390453i \(0.127682\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 2.00000 + 3.46410i 0.239046 + 0.414039i
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) −3.00000 5.19615i −0.348743 0.604040i
\(75\) 0 0
\(76\) 3.00000 5.19615i 0.344124 0.596040i
\(77\) 4.00000 6.92820i 0.455842 0.789542i
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 2.00000 0.223607
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) −6.00000 10.3923i −0.658586 1.14070i −0.980982 0.194099i \(-0.937822\pi\)
0.322396 0.946605i \(-0.395512\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) 0 0
\(88\) −2.00000 3.46410i −0.213201 0.369274i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 2.00000 + 3.46410i 0.208514 + 0.361158i
\(93\) 0 0
\(94\) 4.00000 6.92820i 0.412568 0.714590i
\(95\) 6.00000 10.3923i 0.615587 1.06623i
\(96\) 0 0
\(97\) 5.00000 + 8.66025i 0.507673 + 0.879316i 0.999961 + 0.00888289i \(0.00282755\pi\)
−0.492287 + 0.870433i \(0.663839\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −8.00000 13.8564i −0.796030 1.37876i −0.922183 0.386753i \(-0.873597\pi\)
0.126153 0.992011i \(-0.459737\pi\)
\(102\) 0 0
\(103\) −2.00000 + 3.46410i −0.197066 + 0.341328i −0.947576 0.319531i \(-0.896475\pi\)
0.750510 + 0.660859i \(0.229808\pi\)
\(104\) 0.500000 0.866025i 0.0490290 0.0849208i
\(105\) 0 0
\(106\) 6.00000 + 10.3923i 0.582772 + 1.00939i
\(107\) 20.0000 1.93347 0.966736 0.255774i \(-0.0823304\pi\)
0.966736 + 0.255774i \(0.0823304\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) −4.00000 6.92820i −0.381385 0.660578i
\(111\) 0 0
\(112\) 1.00000 1.73205i 0.0944911 0.163663i
\(113\) 2.00000 3.46410i 0.188144 0.325875i −0.756487 0.654008i \(-0.773086\pi\)
0.944632 + 0.328133i \(0.106419\pi\)
\(114\) 0 0
\(115\) 4.00000 + 6.92820i 0.373002 + 0.646058i
\(116\) 8.00000 0.742781
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 0 0
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −5.00000 + 8.66025i −0.452679 + 0.784063i
\(123\) 0 0
\(124\) 1.00000 + 1.73205i 0.0898027 + 0.155543i
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.00000 1.73205i 0.0877058 0.151911i
\(131\) 2.00000 3.46410i 0.174741 0.302660i −0.765331 0.643637i \(-0.777425\pi\)
0.940072 + 0.340977i \(0.110758\pi\)
\(132\) 0 0
\(133\) −6.00000 10.3923i −0.520266 0.901127i
\(134\) −2.00000 −0.172774
\(135\) 0 0
\(136\) 0 0
\(137\) −9.00000 15.5885i −0.768922 1.33181i −0.938148 0.346235i \(-0.887460\pi\)
0.169226 0.985577i \(-0.445873\pi\)
\(138\) 0 0
\(139\) 10.0000 17.3205i 0.848189 1.46911i −0.0346338 0.999400i \(-0.511026\pi\)
0.882823 0.469706i \(-0.155640\pi\)
\(140\) 2.00000 3.46410i 0.169031 0.292770i
\(141\) 0 0
\(142\) −8.00000 13.8564i −0.671345 1.16280i
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) 16.0000 1.32873
\(146\) −7.00000 12.1244i −0.579324 1.00342i
\(147\) 0 0
\(148\) −3.00000 + 5.19615i −0.246598 + 0.427121i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 0 0
\(151\) −9.00000 15.5885i −0.732410 1.26857i −0.955851 0.293853i \(-0.905062\pi\)
0.223441 0.974717i \(-0.428271\pi\)
\(152\) −6.00000 −0.486664
\(153\) 0 0
\(154\) −8.00000 −0.644658
\(155\) 2.00000 + 3.46410i 0.160644 + 0.278243i
\(156\) 0 0
\(157\) −1.00000 + 1.73205i −0.0798087 + 0.138233i −0.903167 0.429289i \(-0.858764\pi\)
0.823359 + 0.567521i \(0.192098\pi\)
\(158\) 2.00000 3.46410i 0.159111 0.275589i
\(159\) 0 0
\(160\) −1.00000 1.73205i −0.0790569 0.136931i
\(161\) 8.00000 0.630488
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 3.00000 + 5.19615i 0.234261 + 0.405751i
\(165\) 0 0
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0 0
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) 8.00000 + 13.8564i 0.608229 + 1.05348i 0.991532 + 0.129861i \(0.0414530\pi\)
−0.383304 + 0.923622i \(0.625214\pi\)
\(174\) 0 0
\(175\) −1.00000 + 1.73205i −0.0755929 + 0.130931i
\(176\) −2.00000 + 3.46410i −0.150756 + 0.261116i
\(177\) 0 0
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −18.0000 −1.33793 −0.668965 0.743294i \(-0.733262\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) −1.00000 1.73205i −0.0741249 0.128388i
\(183\) 0 0
\(184\) 2.00000 3.46410i 0.147442 0.255377i
\(185\) −6.00000 + 10.3923i −0.441129 + 0.764057i
\(186\) 0 0
\(187\) 0 0
\(188\) −8.00000 −0.583460
\(189\) 0 0
\(190\) −12.0000 −0.870572
\(191\) −2.00000 3.46410i −0.144715 0.250654i 0.784552 0.620063i \(-0.212893\pi\)
−0.929267 + 0.369410i \(0.879560\pi\)
\(192\) 0 0
\(193\) −1.00000 + 1.73205i −0.0719816 + 0.124676i −0.899770 0.436365i \(-0.856266\pi\)
0.827788 + 0.561041i \(0.189599\pi\)
\(194\) 5.00000 8.66025i 0.358979 0.621770i
\(195\) 0 0
\(196\) 1.50000 + 2.59808i 0.107143 + 0.185577i
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −8.00000 + 13.8564i −0.562878 + 0.974933i
\(203\) 8.00000 13.8564i 0.561490 0.972529i
\(204\) 0 0
\(205\) 6.00000 + 10.3923i 0.419058 + 0.725830i
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) 12.0000 + 20.7846i 0.830057 + 1.43770i
\(210\) 0 0
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) 6.00000 10.3923i 0.412082 0.713746i
\(213\) 0 0
\(214\) −10.0000 17.3205i −0.683586 1.18401i
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) −5.00000 8.66025i −0.338643 0.586546i
\(219\) 0 0
\(220\) −4.00000 + 6.92820i −0.269680 + 0.467099i
\(221\) 0 0
\(222\) 0 0
\(223\) −3.00000 5.19615i −0.200895 0.347960i 0.747922 0.663786i \(-0.231052\pi\)
−0.948817 + 0.315826i \(0.897718\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) 15.0000 25.9808i 0.991228 1.71686i 0.381157 0.924510i \(-0.375526\pi\)
0.610071 0.792347i \(-0.291141\pi\)
\(230\) 4.00000 6.92820i 0.263752 0.456832i
\(231\) 0 0
\(232\) −4.00000 6.92820i −0.262613 0.454859i
\(233\) −20.0000 −1.31024 −0.655122 0.755523i \(-0.727383\pi\)
−0.655122 + 0.755523i \(0.727383\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 2.00000 + 3.46410i 0.130189 + 0.225494i
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 + 20.7846i −0.776215 + 1.34444i 0.157893 + 0.987456i \(0.449530\pi\)
−0.934109 + 0.356988i \(0.883804\pi\)
\(240\) 0 0
\(241\) −3.00000 5.19615i −0.193247 0.334714i 0.753077 0.657932i \(-0.228569\pi\)
−0.946324 + 0.323218i \(0.895235\pi\)
\(242\) 5.00000 0.321412
\(243\) 0 0
\(244\) 10.0000 0.640184
\(245\) 3.00000 + 5.19615i 0.191663 + 0.331970i
\(246\) 0 0
\(247\) −3.00000 + 5.19615i −0.190885 + 0.330623i
\(248\) 1.00000 1.73205i 0.0635001 0.109985i
\(249\) 0 0
\(250\) 6.00000 + 10.3923i 0.379473 + 0.657267i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 4.00000 + 6.92820i 0.250982 + 0.434714i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.00000 10.3923i 0.374270 0.648254i −0.615948 0.787787i \(-0.711227\pi\)
0.990217 + 0.139533i \(0.0445601\pi\)
\(258\) 0 0
\(259\) 6.00000 + 10.3923i 0.372822 + 0.645746i
\(260\) −2.00000 −0.124035
\(261\) 0 0
\(262\) −4.00000 −0.247121
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 12.0000 20.7846i 0.737154 1.27679i
\(266\) −6.00000 + 10.3923i −0.367884 + 0.637193i
\(267\) 0 0
\(268\) 1.00000 + 1.73205i 0.0610847 + 0.105802i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 22.0000 1.33640 0.668202 0.743980i \(-0.267064\pi\)
0.668202 + 0.743980i \(0.267064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −9.00000 + 15.5885i −0.543710 + 0.941733i
\(275\) 2.00000 3.46410i 0.120605 0.208893i
\(276\) 0 0
\(277\) 3.00000 + 5.19615i 0.180253 + 0.312207i 0.941966 0.335707i \(-0.108975\pi\)
−0.761714 + 0.647913i \(0.775642\pi\)
\(278\) −20.0000 −1.19952
\(279\) 0 0
\(280\) −4.00000 −0.239046
\(281\) −5.00000 8.66025i −0.298275 0.516627i 0.677466 0.735554i \(-0.263078\pi\)
−0.975741 + 0.218926i \(0.929745\pi\)
\(282\) 0 0
\(283\) 10.0000 17.3205i 0.594438 1.02960i −0.399188 0.916869i \(-0.630708\pi\)
0.993626 0.112728i \(-0.0359589\pi\)
\(284\) −8.00000 + 13.8564i −0.474713 + 0.822226i
\(285\) 0 0
\(286\) 2.00000 + 3.46410i 0.118262 + 0.204837i
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) −8.00000 13.8564i −0.469776 0.813676i
\(291\) 0 0
\(292\) −7.00000 + 12.1244i −0.409644 + 0.709524i
\(293\) 1.00000 1.73205i 0.0584206 0.101187i −0.835336 0.549740i \(-0.814727\pi\)
0.893757 + 0.448552i \(0.148060\pi\)
\(294\) 0 0
\(295\) 4.00000 + 6.92820i 0.232889 + 0.403376i
\(296\) 6.00000 0.348743
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) −2.00000 3.46410i −0.115663 0.200334i
\(300\) 0 0
\(301\) −8.00000 + 13.8564i −0.461112 + 0.798670i
\(302\) −9.00000 + 15.5885i −0.517892 + 0.897015i
\(303\) 0 0
\(304\) 3.00000 + 5.19615i 0.172062 + 0.298020i
\(305\) 20.0000 1.14520
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 4.00000 + 6.92820i 0.227921 + 0.394771i
\(309\) 0 0
\(310\) 2.00000 3.46410i 0.113592 0.196748i
\(311\) −6.00000 + 10.3923i −0.340229 + 0.589294i −0.984475 0.175525i \(-0.943838\pi\)
0.644246 + 0.764818i \(0.277171\pi\)
\(312\) 0 0
\(313\) −13.0000 22.5167i −0.734803 1.27272i −0.954810 0.297218i \(-0.903941\pi\)
0.220006 0.975499i \(-0.429392\pi\)
\(314\) 2.00000 0.112867
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) 3.00000 + 5.19615i 0.168497 + 0.291845i 0.937892 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638774i \(0.779442\pi\)
\(318\) 0 0
\(319\) −16.0000 + 27.7128i −0.895828 + 1.55162i
\(320\) −1.00000 + 1.73205i −0.0559017 + 0.0968246i
\(321\) 0 0
\(322\) −4.00000 6.92820i −0.222911 0.386094i
\(323\) 0 0
\(324\) 0 0
\(325\) 1.00000 0.0554700
\(326\) 5.00000 + 8.66025i 0.276924 + 0.479647i
\(327\) 0 0
\(328\) 3.00000 5.19615i 0.165647 0.286910i
\(329\) −8.00000 + 13.8564i −0.441054 + 0.763928i
\(330\) 0 0
\(331\) 5.00000 + 8.66025i 0.274825 + 0.476011i 0.970091 0.242742i \(-0.0780468\pi\)
−0.695266 + 0.718752i \(0.744713\pi\)
\(332\) 12.0000 0.658586
\(333\) 0 0
\(334\) 0 0
\(335\) 2.00000 + 3.46410i 0.109272 + 0.189264i
\(336\) 0 0
\(337\) 17.0000 29.4449i 0.926049 1.60396i 0.136184 0.990684i \(-0.456516\pi\)
0.789865 0.613280i \(-0.210150\pi\)
\(338\) −0.500000 + 0.866025i −0.0271964 + 0.0471056i
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 4.00000 + 6.92820i 0.215666 + 0.373544i
\(345\) 0 0
\(346\) 8.00000 13.8564i 0.430083 0.744925i
\(347\) −12.0000 + 20.7846i −0.644194 + 1.11578i 0.340293 + 0.940319i \(0.389474\pi\)
−0.984487 + 0.175457i \(0.943860\pi\)
\(348\) 0 0
\(349\) −11.0000 19.0526i −0.588817 1.01986i −0.994388 0.105797i \(-0.966261\pi\)
0.405571 0.914063i \(-0.367073\pi\)
\(350\) 2.00000 0.106904
\(351\) 0 0
\(352\) 4.00000 0.213201
\(353\) 7.00000 + 12.1244i 0.372572 + 0.645314i 0.989960 0.141344i \(-0.0451425\pi\)
−0.617388 + 0.786659i \(0.711809\pi\)
\(354\) 0 0
\(355\) −16.0000 + 27.7128i −0.849192 + 1.47084i
\(356\) −3.00000 + 5.19615i −0.159000 + 0.275396i
\(357\) 0 0
\(358\) 6.00000 + 10.3923i 0.317110 + 0.549250i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 9.00000 + 15.5885i 0.473029 + 0.819311i
\(363\) 0 0
\(364\) −1.00000 + 1.73205i −0.0524142 + 0.0907841i
\(365\) −14.0000 + 24.2487i −0.732793 + 1.26924i
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) −4.00000 −0.208514
\(369\) 0 0
\(370\) 12.0000 0.623850
\(371\) −12.0000 20.7846i −0.623009 1.07908i
\(372\) 0 0
\(373\) 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i \(-0.749977\pi\)
0.965945 + 0.258748i \(0.0833099\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 4.00000 + 6.92820i 0.206284 + 0.357295i
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) 6.00000 + 10.3923i 0.307794 + 0.533114i
\(381\) 0 0
\(382\) −2.00000 + 3.46410i −0.102329 + 0.177239i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 0 0
\(385\) 8.00000 + 13.8564i 0.407718 + 0.706188i
\(386\) 2.00000 0.101797
\(387\) 0 0
\(388\) −10.0000 −0.507673
\(389\) −6.00000 10.3923i −0.304212 0.526911i 0.672874 0.739758i \(-0.265060\pi\)
−0.977086 + 0.212847i \(0.931726\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.50000 2.59808i 0.0757614 0.131223i
\(393\) 0 0
\(394\) −9.00000 15.5885i −0.453413 0.785335i
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −10.0000 −0.501886 −0.250943 0.968002i \(-0.580741\pi\)
−0.250943 + 0.968002i \(0.580741\pi\)
\(398\) −4.00000 6.92820i −0.200502 0.347279i
\(399\) 0 0
\(400\) 0.500000 0.866025i 0.0250000 0.0433013i
\(401\) −3.00000 + 5.19615i −0.149813 + 0.259483i −0.931158 0.364615i \(-0.881200\pi\)
0.781345 + 0.624099i \(0.214534\pi\)
\(402\) 0 0
\(403\) −1.00000 1.73205i −0.0498135 0.0862796i
\(404\) 16.0000 0.796030
\(405\) 0 0
\(406\) −16.0000 −0.794067
\(407\) −12.0000 20.7846i −0.594818 1.03025i
\(408\) 0 0
\(409\) 13.0000 22.5167i 0.642809 1.11338i −0.341994 0.939702i \(-0.611102\pi\)
0.984803 0.173675i \(-0.0555643\pi\)
\(410\) 6.00000 10.3923i 0.296319 0.513239i
\(411\) 0 0
\(412\) −2.00000 3.46410i −0.0985329 0.170664i
\(413\) 8.00000 0.393654
\(414\) 0 0
\(415\) 24.0000 1.17811
\(416\) 0.500000 + 0.866025i 0.0245145 + 0.0424604i
\(417\) 0 0
\(418\) 12.0000 20.7846i 0.586939 1.01661i
\(419\) 18.0000 31.1769i 0.879358 1.52309i 0.0273103 0.999627i \(-0.491306\pi\)
0.852047 0.523465i \(-0.175361\pi\)
\(420\) 0 0
\(421\) −5.00000 8.66025i −0.243685 0.422075i 0.718076 0.695965i \(-0.245023\pi\)
−0.961761 + 0.273890i \(0.911690\pi\)
\(422\) 8.00000 0.389434
\(423\) 0 0
\(424\) −12.0000 −0.582772
\(425\) 0 0
\(426\) 0 0
\(427\) 10.0000 17.3205i 0.483934 0.838198i
\(428\) −10.0000 + 17.3205i −0.483368 + 0.837218i
\(429\) 0 0
\(430\) 8.00000 + 13.8564i 0.385794 + 0.668215i
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) −2.00000 3.46410i −0.0960031 0.166282i
\(435\) 0 0
\(436\) −5.00000 + 8.66025i −0.239457 + 0.414751i
\(437\) −12.0000 + 20.7846i −0.574038 + 0.994263i
\(438\) 0 0
\(439\) 2.00000 + 3.46410i 0.0954548 + 0.165333i 0.909798 0.415051i \(-0.136236\pi\)
−0.814344 + 0.580383i \(0.802903\pi\)
\(440\) 8.00000 0.381385
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0000 + 31.1769i 0.855206 + 1.48126i 0.876454 + 0.481486i \(0.159903\pi\)
−0.0212481 + 0.999774i \(0.506764\pi\)
\(444\) 0 0
\(445\) −6.00000 + 10.3923i −0.284427 + 0.492642i
\(446\) −3.00000 + 5.19615i −0.142054 + 0.246045i
\(447\) 0 0
\(448\) 1.00000 + 1.73205i 0.0472456 + 0.0818317i
\(449\) −26.0000 −1.22702 −0.613508 0.789689i \(-0.710242\pi\)
−0.613508 + 0.789689i \(0.710242\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 2.00000 + 3.46410i 0.0940721 + 0.162938i
\(453\) 0 0
\(454\) 6.00000 10.3923i 0.281594 0.487735i
\(455\) −2.00000 + 3.46410i −0.0937614 + 0.162400i
\(456\) 0 0
\(457\) 1.00000 + 1.73205i 0.0467780 + 0.0810219i 0.888466 0.458942i \(-0.151771\pi\)
−0.841688 + 0.539964i \(0.818438\pi\)
\(458\) −30.0000 −1.40181
\(459\) 0 0
\(460\) −8.00000 −0.373002
\(461\) 15.0000 + 25.9808i 0.698620 + 1.21004i 0.968945 + 0.247276i \(0.0795353\pi\)
−0.270326 + 0.962769i \(0.587131\pi\)
\(462\) 0 0
\(463\) −11.0000 + 19.0526i −0.511213 + 0.885448i 0.488702 + 0.872451i \(0.337470\pi\)
−0.999916 + 0.0129968i \(0.995863\pi\)
\(464\) −4.00000 + 6.92820i −0.185695 + 0.321634i
\(465\) 0 0
\(466\) 10.0000 + 17.3205i 0.463241 + 0.802357i
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 8.00000 + 13.8564i 0.369012 + 0.639148i
\(471\) 0 0
\(472\) 2.00000 3.46410i 0.0920575 0.159448i
\(473\) 16.0000 27.7128i 0.735681 1.27424i
\(474\) 0 0
\(475\) −3.00000 5.19615i −0.137649 0.238416i
\(476\) 0 0
\(477\) 0 0
\(478\) 24.0000 1.09773
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) 3.00000 5.19615i 0.136788 0.236924i
\(482\) −3.00000 + 5.19615i −0.136646 + 0.236678i
\(483\) 0 0
\(484\) −2.50000 4.33013i −0.113636 0.196824i
\(485\) −20.0000 −0.908153
\(486\) 0 0
\(487\) 38.0000 1.72194 0.860972 0.508652i \(-0.169856\pi\)
0.860972 + 0.508652i \(0.169856\pi\)
\(488\) −5.00000 8.66025i −0.226339 0.392031i
\(489\) 0 0
\(490\) 3.00000 5.19615i 0.135526 0.234738i
\(491\) −8.00000 + 13.8564i −0.361035 + 0.625331i −0.988131 0.153611i \(-0.950910\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 16.0000 + 27.7128i 0.717698 + 1.24309i
\(498\) 0 0
\(499\) −11.0000 + 19.0526i −0.492428 + 0.852910i −0.999962 0.00872186i \(-0.997224\pi\)
0.507534 + 0.861632i \(0.330557\pi\)
\(500\) 6.00000 10.3923i 0.268328 0.464758i
\(501\) 0 0
\(502\) 0 0
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) 0 0
\(505\) 32.0000 1.42398
\(506\) 8.00000 + 13.8564i 0.355643 + 0.615992i
\(507\) 0 0
\(508\) 4.00000 6.92820i 0.177471 0.307389i
\(509\) −5.00000 + 8.66025i −0.221621 + 0.383859i −0.955300 0.295637i \(-0.904468\pi\)
0.733679 + 0.679496i \(0.237801\pi\)
\(510\) 0 0
\(511\) 14.0000 + 24.2487i 0.619324 + 1.07270i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) −4.00000 6.92820i −0.176261 0.305293i
\(516\) 0 0
\(517\) 16.0000 27.7128i 0.703679 1.21881i
\(518\) 6.00000 10.3923i 0.263625 0.456612i
\(519\) 0 0
\(520\) 1.00000 + 1.73205i 0.0438529 + 0.0759555i
\(521\) 36.0000 1.57719 0.788594 0.614914i \(-0.210809\pi\)
0.788594 + 0.614914i \(0.210809\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) 2.00000 + 3.46410i 0.0873704 + 0.151330i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.50000 + 6.06218i 0.152174 + 0.263573i
\(530\) −24.0000 −1.04249
\(531\) 0 0
\(532\) 12.0000 0.520266
\(533\) −3.00000 5.19615i −0.129944 0.225070i
\(534\) 0 0
\(535\) −20.0000 + 34.6410i −0.864675 + 1.49766i
\(536\) 1.00000 1.73205i 0.0431934 0.0748132i
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) −11.0000 19.0526i −0.472490 0.818377i
\(543\) 0 0
\(544\) 0 0
\(545\) −10.0000 + 17.3205i −0.428353 + 0.741929i
\(546\) 0 0
\(547\) 10.0000 + 17.3205i 0.427569 + 0.740571i 0.996657 0.0817056i \(-0.0260367\pi\)
−0.569087 + 0.822277i \(0.692703\pi\)
\(548\) 18.0000 0.768922
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 24.0000 + 41.5692i 1.02243 + 1.77091i
\(552\) 0 0
\(553\) −4.00000 + 6.92820i −0.170097 + 0.294617i
\(554\) 3.00000 5.19615i 0.127458 0.220763i
\(555\) 0 0
\(556\) 10.0000 + 17.3205i 0.424094 + 0.734553i
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 2.00000 + 3.46410i 0.0845154 + 0.146385i
\(561\) 0 0
\(562\) −5.00000 + 8.66025i −0.210912 + 0.365311i
\(563\) −10.0000 + 17.3205i −0.421450 + 0.729972i −0.996082 0.0884397i \(-0.971812\pi\)
0.574632 + 0.818412i \(0.305145\pi\)
\(564\) 0 0
\(565\) 4.00000 + 6.92820i 0.168281 + 0.291472i
\(566\) −20.0000 −0.840663
\(567\) 0 0
\(568\) 16.0000 0.671345
\(569\) −2.00000 3.46410i −0.0838444 0.145223i 0.821054 0.570851i \(-0.193387\pi\)
−0.904898 + 0.425628i \(0.860053\pi\)
\(570\) 0 0
\(571\) −18.0000 + 31.1769i −0.753277 + 1.30471i 0.192950 + 0.981209i \(0.438194\pi\)
−0.946227 + 0.323505i \(0.895139\pi\)
\(572\) 2.00000 3.46410i 0.0836242 0.144841i
\(573\) 0 0
\(574\) −6.00000 10.3923i −0.250435 0.433766i
\(575\) 4.00000 0.166812
\(576\) 0 0
\(577\) −30.0000 −1.24892 −0.624458 0.781058i \(-0.714680\pi\)
−0.624458 + 0.781058i \(0.714680\pi\)
\(578\) 8.50000 + 14.7224i 0.353553 + 0.612372i
\(579\) 0 0
\(580\) −8.00000 + 13.8564i −0.332182 + 0.575356i
\(581\) 12.0000 20.7846i 0.497844 0.862291i
\(582\) 0 0
\(583\) 24.0000 + 41.5692i 0.993978 + 1.72162i
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) 14.0000 + 24.2487i 0.577842 + 1.00085i 0.995726 + 0.0923513i \(0.0294383\pi\)
−0.417885 + 0.908500i \(0.637228\pi\)
\(588\) 0 0
\(589\) −6.00000 + 10.3923i −0.247226 + 0.428207i
\(590\) 4.00000 6.92820i 0.164677 0.285230i
\(591\) 0 0
\(592\) −3.00000 5.19615i −0.123299 0.213561i
\(593\) 38.0000 1.56047 0.780236 0.625485i \(-0.215099\pi\)
0.780236 + 0.625485i \(0.215099\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 5.19615i −0.122885 0.212843i
\(597\) 0 0
\(598\) −2.00000 + 3.46410i −0.0817861 + 0.141658i
\(599\) −20.0000 + 34.6410i −0.817178 + 1.41539i 0.0905757 + 0.995890i \(0.471129\pi\)
−0.907754 + 0.419504i \(0.862204\pi\)
\(600\) 0 0
\(601\) −5.00000 8.66025i −0.203954 0.353259i 0.745845 0.666120i \(-0.232046\pi\)
−0.949799 + 0.312861i \(0.898713\pi\)
\(602\) 16.0000 0.652111
\(603\) 0 0
\(604\) 18.0000 0.732410
\(605\) −5.00000 8.66025i −0.203279 0.352089i
\(606\) 0 0
\(607\) −12.0000 + 20.7846i −0.487065 + 0.843621i −0.999889 0.0148722i \(-0.995266\pi\)
0.512824 + 0.858494i \(0.328599\pi\)
\(608\) 3.00000 5.19615i 0.121666 0.210732i
\(609\) 0 0
\(610\) −10.0000 17.3205i −0.404888 0.701287i
\(611\) 8.00000 0.323645
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) −1.00000 1.73205i −0.0403567 0.0698999i
\(615\) 0 0
\(616\) 4.00000 6.92820i 0.161165 0.279145i
\(617\) 7.00000 12.1244i 0.281809 0.488108i −0.690021 0.723789i \(-0.742399\pi\)
0.971830 + 0.235681i \(0.0757321\pi\)
\(618\) 0 0
\(619\) −17.0000 29.4449i −0.683288 1.18349i −0.973972 0.226670i \(-0.927216\pi\)
0.290684 0.956819i \(-0.406117\pi\)
\(620\) −4.00000 −0.160644
\(621\) 0 0
\(622\) 12.0000 0.481156
\(623\) 6.00000 + 10.3923i 0.240385 + 0.416359i
\(624\) 0 0
\(625\) 9.50000 16.4545i 0.380000 0.658179i
\(626\) −13.0000 + 22.5167i −0.519584 + 0.899947i
\(627\) 0 0
\(628\) −1.00000 1.73205i −0.0399043 0.0691164i
\(629\) 0 0
\(630\) 0 0
\(631\) −14.0000 −0.557331 −0.278666 0.960388i \(-0.589892\pi\)
−0.278666 + 0.960388i \(0.589892\pi\)
\(632\) 2.00000 + 3.46410i 0.0795557 + 0.137795i
\(633\) 0 0
\(634\) 3.00000 5.19615i 0.119145 0.206366i
\(635\) 8.00000 13.8564i 0.317470 0.549875i
\(636\) 0 0
\(637\) −1.50000 2.59808i −0.0594322 0.102940i
\(638\) 32.0000 1.26689
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) −20.0000 34.6410i −0.789953 1.36824i −0.925995 0.377535i \(-0.876772\pi\)
0.136043 0.990703i \(-0.456562\pi\)
\(642\) 0 0
\(643\) 5.00000 8.66025i 0.197181 0.341527i −0.750432 0.660947i \(-0.770155\pi\)
0.947613 + 0.319420i \(0.103488\pi\)
\(644\) −4.00000 + 6.92820i −0.157622 + 0.273009i
\(645\) 0 0
\(646\) 0 0
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) 0 0
\(649\) −16.0000 −0.628055
\(650\) −0.500000 0.866025i −0.0196116 0.0339683i
\(651\) 0 0
\(652\) 5.00000 8.66025i 0.195815 0.339162i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 4.00000 + 6.92820i 0.156293 + 0.270707i
\(656\) −6.00000 −0.234261
\(657\) 0 0
\(658\) 16.0000 0.623745
\(659\) −24.0000 41.5692i −0.934907 1.61931i −0.774799 0.632207i \(-0.782149\pi\)
−0.160108 0.987099i \(-0.551184\pi\)
\(660\) 0 0
\(661\) −7.00000 + 12.1244i −0.272268 + 0.471583i −0.969442 0.245319i \(-0.921107\pi\)
0.697174 + 0.716902i \(0.254441\pi\)
\(662\) 5.00000 8.66025i 0.194331 0.336590i
\(663\) 0 0
\(664\) −6.00000 10.3923i −0.232845 0.403300i
\(665\) 24.0000 0.930680
\(666\) 0 0
\(667\) −32.0000 −1.23904
\(668\) 0 0
\(669\) 0 0
\(670\) 2.00000 3.46410i 0.0772667 0.133830i
\(671\) −20.0000 + 34.6410i −0.772091 + 1.33730i
\(672\) 0 0
\(673\) −11.0000 19.0526i −0.424019 0.734422i 0.572309 0.820038i \(-0.306048\pi\)
−0.996328 + 0.0856156i \(0.972714\pi\)
\(674\) −34.0000 −1.30963
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −6.00000 10.3923i −0.230599 0.399409i 0.727386 0.686229i \(-0.240735\pi\)
−0.957984 + 0.286820i \(0.907402\pi\)
\(678\) 0 0
\(679\) −10.0000 + 17.3205i −0.383765 + 0.664700i
\(680\) 0 0
\(681\) 0 0
\(682\) 4.00000 + 6.92820i 0.153168 + 0.265295i
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) 0 0
\(685\) 36.0000 1.37549
\(686\) −10.0000 17.3205i −0.381802 0.661300i
\(687\) 0 0
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) −6.00000 + 10.3923i −0.228582 + 0.395915i
\(690\) 0 0
\(691\) 13.0000 + 22.5167i 0.494543 + 0.856574i 0.999980 0.00628943i \(-0.00200200\pi\)
−0.505437 + 0.862864i \(0.668669\pi\)
\(692\) −16.0000 −0.608229
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 20.0000 + 34.6410i 0.758643 + 1.31401i
\(696\) 0 0
\(697\) 0 0
\(698\) −11.0000 + 19.0526i −0.416356 + 0.721150i
\(699\) 0 0
\(700\) −1.00000 1.73205i −0.0377964 0.0654654i
\(701\) 12.0000 0.453234 0.226617 0.973984i \(-0.427233\pi\)
0.226617 + 0.973984i \(0.427233\pi\)
\(702\) 0 0
\(703\) −36.0000 −1.35777
\(704\) −2.00000 3.46410i −0.0753778 0.130558i
\(705\) 0 0
\(706\) 7.00000 12.1244i 0.263448 0.456306i
\(707\) 16.0000 27.7128i 0.601742 1.04225i
\(708\) 0 0
\(709\) 11.0000 + 19.0526i 0.413114 + 0.715534i 0.995228 0.0975728i \(-0.0311079\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 32.0000 1.20094
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) −4.00000 6.92820i −0.149801 0.259463i
\(714\) 0 0
\(715\) 4.00000 6.92820i 0.149592 0.259100i
\(716\) 6.00000 10.3923i 0.224231 0.388379i
\(717\) 0 0
\(718\) 0 0
\(719\) −28.0000 −1.04422 −0.522112 0.852877i \(-0.674856\pi\)
−0.522112 + 0.852877i \(0.674856\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −8.50000 14.7224i −0.316337 0.547912i
\(723\) 0 0
\(724\) 9.00000 15.5885i 0.334482 0.579340i
\(725\) 4.00000 6.92820i 0.148556 0.257307i
\(726\) 0 0
\(727\) 4.00000 + 6.92820i 0.148352 + 0.256953i 0.930618 0.365991i \(-0.119270\pi\)
−0.782267 + 0.622944i \(0.785937\pi\)
\(728\) 2.00000 0.0741249
\(729\) 0 0
\(730\) 28.0000 1.03633
\(731\) 0 0
\(732\) 0 0
\(733\) 11.0000 19.0526i 0.406294 0.703722i −0.588177 0.808732i \(-0.700154\pi\)
0.994471 + 0.105010i \(0.0334875\pi\)
\(734\) −4.00000 + 6.92820i −0.147643 + 0.255725i
\(735\) 0 0
\(736\) 2.00000 + 3.46410i 0.0737210 + 0.127688i
\(737\) −8.00000 −0.294684
\(738\) 0 0
\(739\) −54.0000 −1.98642 −0.993211 0.116326i \(-0.962888\pi\)
−0.993211 + 0.116326i \(0.962888\pi\)
\(740\) −6.00000 10.3923i −0.220564 0.382029i
\(741\) 0 0
\(742\) −12.0000 + 20.7846i −0.440534 + 0.763027i
\(743\) −20.0000 + 34.6410i −0.733729 + 1.27086i 0.221550 + 0.975149i \(0.428888\pi\)
−0.955279 + 0.295707i \(0.904445\pi\)
\(744\) 0 0
\(745\) −6.00000 10.3923i −0.219823 0.380745i
\(746\) −10.0000 −0.366126
\(747\) 0 0
\(748\) 0 0
\(749\) 20.0000 + 34.6410i 0.730784 + 1.26576i
\(750\) 0 0
\(751\) 6.00000 10.3923i 0.218943 0.379221i −0.735542 0.677479i \(-0.763072\pi\)
0.954485 + 0.298259i \(0.0964058\pi\)
\(752\) 4.00000 6.92820i 0.145865 0.252646i
\(753\) 0 0
\(754\) 4.00000 + 6.92820i 0.145671 + 0.252310i
\(755\) 36.0000 1.31017
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) −5.00000 8.66025i −0.181608 0.314555i
\(759\) 0 0
\(760\) 6.00000 10.3923i 0.217643 0.376969i
\(761\) 15.0000 25.9808i 0.543750 0.941802i −0.454935 0.890525i \(-0.650337\pi\)
0.998684 0.0512772i \(-0.0163292\pi\)
\(762\) 0 0
\(763\) 10.0000 + 17.3205i 0.362024 + 0.627044i
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) 0 0
\(767\) −2.00000 3.46410i −0.0722158 0.125081i
\(768\) 0 0
\(769\) 15.0000 25.9808i 0.540914 0.936890i −0.457938 0.888984i \(-0.651412\pi\)
0.998852 0.0479061i \(-0.0152548\pi\)
\(770\) 8.00000 13.8564i 0.288300 0.499350i
\(771\) 0 0
\(772\) −1.00000 1.73205i −0.0359908 0.0623379i
\(773\) 14.0000 0.503545 0.251773 0.967786i \(-0.418987\pi\)
0.251773 + 0.967786i \(0.418987\pi\)
\(774\) 0 0
\(775\) 2.00000 0.0718421
\(776\) 5.00000 + 8.66025i 0.179490 + 0.310885i
\(777\) 0 0
\(778\) −6.00000 + 10.3923i −0.215110 + 0.372582i
\(779\) −18.0000 + 31.1769i −0.644917 + 1.11703i
\(780\) 0 0
\(781\) −32.0000 55.4256i −1.14505 1.98328i
\(782\) 0 0
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) −2.00000 3.46410i −0.0713831 0.123639i
\(786\) 0 0