Properties

Label 2106.2.e
Level $2106$
Weight $2$
Character orbit 2106.e
Rep. character $\chi_{2106}(703,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $96$
Newform subspaces $36$
Sturm bound $756$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 36 \)
Sturm bound: \(756\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2106, [\chi])\).

Total New Old
Modular forms 804 96 708
Cusp forms 708 96 612
Eisenstein series 96 0 96

Trace form

\( 96 q - 48 q^{4} - 48 q^{16} - 24 q^{19} + 12 q^{22} - 24 q^{25} + 24 q^{31} + 12 q^{34} - 48 q^{37} + 12 q^{43} - 48 q^{46} - 24 q^{49} + 72 q^{55} - 60 q^{58} + 24 q^{61} + 96 q^{64} + 36 q^{67} - 36 q^{70}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2106, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2106.2.e.a 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.a \(-1\) \(0\) \(-3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+\cdots\)
2106.2.e.b 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 26.2.a.a \(-1\) \(0\) \(-3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3\zeta_{6}q^{5}+\cdots\)
2106.2.e.c 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.c \(-1\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+\cdots\)
2106.2.e.d 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.b \(-1\) \(0\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+\cdots\)
2106.2.e.e 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 234.2.a.a \(-1\) \(0\) \(-2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+\cdots\)
2106.2.e.f 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.d \(-1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}+\cdots\)
2106.2.e.g 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 2106.2.a.a \(-1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}+\cdots\)
2106.2.e.h 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 26.2.a.b \(-1\) \(0\) \(1\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+(-1+\cdots)q^{7}+\cdots\)
2106.2.e.i 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.e \(-1\) \(0\) \(1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+(5+\cdots)q^{7}+\cdots\)
2106.2.e.j 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 78.2.a.a \(-1\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+\cdots\)
2106.2.e.k 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.g \(-1\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+\cdots\)
2106.2.e.l 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 2106.2.a.c \(-1\) \(0\) \(2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+\cdots\)
2106.2.e.m 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.f \(-1\) \(0\) \(2\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+\cdots\)
2106.2.e.n 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.h \(-1\) \(0\) \(4\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+4\zeta_{6}q^{5}+\cdots\)
2106.2.e.o 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.h \(1\) \(0\) \(-4\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-4\zeta_{6}q^{5}+(-1+\cdots)q^{7}+\cdots\)
2106.2.e.p 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.g \(1\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+(-4+\cdots)q^{7}+\cdots\)
2106.2.e.q 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 78.2.a.a \(1\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+(-4+\cdots)q^{7}+\cdots\)
2106.2.e.r 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 2106.2.a.c \(1\) \(0\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+(-1+\cdots)q^{7}+\cdots\)
2106.2.e.s 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.f \(1\) \(0\) \(-2\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-2\zeta_{6}q^{5}+(5+\cdots)q^{7}+\cdots\)
2106.2.e.t 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 26.2.a.b \(1\) \(0\) \(-1\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(-1+\cdots)q^{7}+\cdots\)
2106.2.e.u 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.e \(1\) \(0\) \(-1\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(5-5\zeta_{6})q^{7}+\cdots\)
2106.2.e.v 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 2106.2.a.a \(1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}+\cdots\)
2106.2.e.w 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.d \(1\) \(0\) \(0\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+(1-\zeta_{6})q^{7}+\cdots\)
2106.2.e.x 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.c \(1\) \(0\) \(2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+(-4+\cdots)q^{7}+\cdots\)
2106.2.e.y 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.b \(1\) \(0\) \(2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+(-1+\cdots)q^{7}+\cdots\)
2106.2.e.z 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 234.2.a.a \(1\) \(0\) \(2\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+2\zeta_{6}q^{5}+(2+\cdots)q^{7}+\cdots\)
2106.2.e.ba 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 26.2.a.a \(1\) \(0\) \(3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+3\zeta_{6}q^{5}+(1+\cdots)q^{7}+\cdots\)
2106.2.e.bb 2106.e 9.c $2$ $16.816$ \(\Q(\sqrt{-3}) \) None 702.2.a.a \(1\) \(0\) \(3\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+3\zeta_{6}q^{5}+(1+\cdots)q^{7}+\cdots\)
2106.2.e.bc 2106.e 9.c $4$ $16.816$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 2106.2.a.g \(-2\) \(0\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-1+\beta _{1})q^{4}+(-2+2\beta _{1}+\cdots)q^{5}+\cdots\)
2106.2.e.bd 2106.e 9.c $4$ $16.816$ \(\Q(\zeta_{12})\) None 2106.2.a.k \(-2\) \(0\) \(2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_1-1)q^{2}-\beta_1 q^{4}+(-\beta_{2}+\beta_1)q^{5}+\cdots\)
2106.2.e.be 2106.e 9.c $4$ $16.816$ \(\Q(\zeta_{12})\) None 2106.2.a.j \(-2\) \(0\) \(2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_1-1)q^{2}-\beta_1 q^{4}+(-\beta_{2}+\beta_1)q^{5}+\cdots\)
2106.2.e.bf 2106.e 9.c $4$ $16.816$ \(\Q(\zeta_{12})\) None 2106.2.a.k \(2\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_1+1)q^{2}-\beta_1 q^{4}+(\beta_{2}-\beta_1)q^{5}+\cdots\)
2106.2.e.bg 2106.e 9.c $4$ $16.816$ \(\Q(\zeta_{12})\) None 2106.2.a.j \(2\) \(0\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_1+1)q^{2}-\beta_1 q^{4}+(\beta_{2}-\beta_1)q^{5}+\cdots\)
2106.2.e.bh 2106.e 9.c $4$ $16.816$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 2106.2.a.g \(2\) \(0\) \(4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{2}+(-1+\beta _{1})q^{4}+(2-2\beta _{1}+\cdots)q^{5}+\cdots\)
2106.2.e.bi 2106.e 9.c $8$ $16.816$ 8.0.49787136.1 None 2106.2.a.s \(-4\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{2}q^{2}+(-1+\beta _{2})q^{4}+\beta _{5}q^{5}-\beta _{3}q^{7}+\cdots\)
2106.2.e.bj 2106.e 9.c $8$ $16.816$ 8.0.49787136.1 None 2106.2.a.s \(4\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}+(-1+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2106, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2106, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(351, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(702, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1053, [\chi])\)\(^{\oplus 2}\)