Properties

Label 2106.2.b.c.649.5
Level $2106$
Weight $2$
Character 2106.649
Analytic conductor $16.816$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2106,2,Mod(649,2106)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2106, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2106.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 34x^{12} + 435x^{10} + 2617x^{8} + 7651x^{6} + 10260x^{4} + 5589x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.5
Root \(3.32820i\) of defining polynomial
Character \(\chi\) \(=\) 2106.649
Dual form 2106.2.b.c.649.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} +0.594758i q^{5} +1.67682i q^{7} +1.00000i q^{8} +0.594758 q^{10} +0.480744i q^{11} +(-1.28905 - 3.36725i) q^{13} +1.67682 q^{14} +1.00000 q^{16} -2.09349 q^{17} +0.480744i q^{19} -0.594758i q^{20} +0.480744 q^{22} +3.66679 q^{23} +4.64626 q^{25} +(-3.36725 + 1.28905i) q^{26} -1.67682i q^{28} -2.46678 q^{29} -1.14753i q^{31} -1.00000i q^{32} +2.09349i q^{34} -0.997301 q^{35} +3.65012i q^{37} +0.480744 q^{38} -0.594758 q^{40} +9.91005i q^{41} +6.91644 q^{43} -0.480744i q^{44} -3.66679i q^{46} +6.24102i q^{47} +4.18828 q^{49} -4.64626i q^{50} +(1.28905 + 3.36725i) q^{52} -5.08592 q^{53} -0.285927 q^{55} -1.67682 q^{56} +2.46678i q^{58} +9.38985i q^{59} +7.81270 q^{61} -1.14753 q^{62} -1.00000 q^{64} +(2.00270 - 0.766671i) q^{65} +14.3819i q^{67} +2.09349 q^{68} +0.997301i q^{70} -6.51028i q^{71} +5.91514i q^{73} +3.65012 q^{74} -0.480744i q^{76} -0.806121 q^{77} -2.05790 q^{79} +0.594758i q^{80} +9.91005 q^{82} +11.0601i q^{83} -1.24512i q^{85} -6.91644i q^{86} -0.480744 q^{88} +9.48720i q^{89} +(5.64626 - 2.16150i) q^{91} -3.66679 q^{92} +6.24102 q^{94} -0.285927 q^{95} -9.71535i q^{97} -4.18828i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} - 2 q^{13} - 8 q^{14} + 14 q^{16} + 8 q^{17} + 8 q^{23} - 14 q^{25} + 4 q^{26} + 16 q^{29} - 34 q^{35} + 4 q^{43} - 10 q^{49} + 2 q^{52} - 60 q^{53} + 8 q^{56} - 28 q^{61} + 34 q^{62} - 14 q^{64}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0.594758i 0.265984i 0.991117 + 0.132992i \(0.0424585\pi\)
−0.991117 + 0.132992i \(0.957542\pi\)
\(6\) 0 0
\(7\) 1.67682i 0.633778i 0.948463 + 0.316889i \(0.102638\pi\)
−0.948463 + 0.316889i \(0.897362\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.594758 0.188079
\(11\) 0.480744i 0.144950i 0.997370 + 0.0724750i \(0.0230897\pi\)
−0.997370 + 0.0724750i \(0.976910\pi\)
\(12\) 0 0
\(13\) −1.28905 3.36725i −0.357517 0.933907i
\(14\) 1.67682 0.448149
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −2.09349 −0.507746 −0.253873 0.967238i \(-0.581705\pi\)
−0.253873 + 0.967238i \(0.581705\pi\)
\(18\) 0 0
\(19\) 0.480744i 0.110290i 0.998478 + 0.0551452i \(0.0175622\pi\)
−0.998478 + 0.0551452i \(0.982438\pi\)
\(20\) 0.594758i 0.132992i
\(21\) 0 0
\(22\) 0.480744 0.102495
\(23\) 3.66679 0.764578 0.382289 0.924043i \(-0.375136\pi\)
0.382289 + 0.924043i \(0.375136\pi\)
\(24\) 0 0
\(25\) 4.64626 0.929253
\(26\) −3.36725 + 1.28905i −0.660372 + 0.252803i
\(27\) 0 0
\(28\) 1.67682i 0.316889i
\(29\) −2.46678 −0.458069 −0.229035 0.973418i \(-0.573557\pi\)
−0.229035 + 0.973418i \(0.573557\pi\)
\(30\) 0 0
\(31\) 1.14753i 0.206103i −0.994676 0.103051i \(-0.967139\pi\)
0.994676 0.103051i \(-0.0328606\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.09349i 0.359031i
\(35\) −0.997301 −0.168575
\(36\) 0 0
\(37\) 3.65012i 0.600076i 0.953927 + 0.300038i \(0.0969994\pi\)
−0.953927 + 0.300038i \(0.903001\pi\)
\(38\) 0.480744 0.0779870
\(39\) 0 0
\(40\) −0.594758 −0.0940395
\(41\) 9.91005i 1.54769i 0.633376 + 0.773845i \(0.281669\pi\)
−0.633376 + 0.773845i \(0.718331\pi\)
\(42\) 0 0
\(43\) 6.91644 1.05475 0.527374 0.849633i \(-0.323177\pi\)
0.527374 + 0.849633i \(0.323177\pi\)
\(44\) 0.480744i 0.0724750i
\(45\) 0 0
\(46\) 3.66679i 0.540638i
\(47\) 6.24102i 0.910346i 0.890403 + 0.455173i \(0.150423\pi\)
−0.890403 + 0.455173i \(0.849577\pi\)
\(48\) 0 0
\(49\) 4.18828 0.598326
\(50\) 4.64626i 0.657081i
\(51\) 0 0
\(52\) 1.28905 + 3.36725i 0.178759 + 0.466953i
\(53\) −5.08592 −0.698605 −0.349302 0.937010i \(-0.613581\pi\)
−0.349302 + 0.937010i \(0.613581\pi\)
\(54\) 0 0
\(55\) −0.285927 −0.0385544
\(56\) −1.67682 −0.224074
\(57\) 0 0
\(58\) 2.46678i 0.323904i
\(59\) 9.38985i 1.22245i 0.791455 + 0.611227i \(0.209324\pi\)
−0.791455 + 0.611227i \(0.790676\pi\)
\(60\) 0 0
\(61\) 7.81270 1.00031 0.500157 0.865935i \(-0.333276\pi\)
0.500157 + 0.865935i \(0.333276\pi\)
\(62\) −1.14753 −0.145737
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 2.00270 0.766671i 0.248404 0.0950939i
\(66\) 0 0
\(67\) 14.3819i 1.75703i 0.477714 + 0.878516i \(0.341466\pi\)
−0.477714 + 0.878516i \(0.658534\pi\)
\(68\) 2.09349 0.253873
\(69\) 0 0
\(70\) 0.997301i 0.119200i
\(71\) 6.51028i 0.772628i −0.922367 0.386314i \(-0.873748\pi\)
0.922367 0.386314i \(-0.126252\pi\)
\(72\) 0 0
\(73\) 5.91514i 0.692315i 0.938176 + 0.346157i \(0.112514\pi\)
−0.938176 + 0.346157i \(0.887486\pi\)
\(74\) 3.65012 0.424318
\(75\) 0 0
\(76\) 0.480744i 0.0551452i
\(77\) −0.806121 −0.0918660
\(78\) 0 0
\(79\) −2.05790 −0.231532 −0.115766 0.993277i \(-0.536932\pi\)
−0.115766 + 0.993277i \(0.536932\pi\)
\(80\) 0.594758i 0.0664960i
\(81\) 0 0
\(82\) 9.91005 1.09438
\(83\) 11.0601i 1.21401i 0.794700 + 0.607003i \(0.207628\pi\)
−0.794700 + 0.607003i \(0.792372\pi\)
\(84\) 0 0
\(85\) 1.24512i 0.135052i
\(86\) 6.91644i 0.745819i
\(87\) 0 0
\(88\) −0.480744 −0.0512475
\(89\) 9.48720i 1.00564i 0.864391 + 0.502821i \(0.167704\pi\)
−0.864391 + 0.502821i \(0.832296\pi\)
\(90\) 0 0
\(91\) 5.64626 2.16150i 0.591889 0.226586i
\(92\) −3.66679 −0.382289
\(93\) 0 0
\(94\) 6.24102 0.643712
\(95\) −0.285927 −0.0293355
\(96\) 0 0
\(97\) 9.71535i 0.986444i −0.869903 0.493222i \(-0.835819\pi\)
0.869903 0.493222i \(-0.164181\pi\)
\(98\) 4.18828i 0.423080i
\(99\) 0 0
\(100\) −4.64626 −0.464626
\(101\) −5.79495 −0.576619 −0.288310 0.957537i \(-0.593093\pi\)
−0.288310 + 0.957537i \(0.593093\pi\)
\(102\) 0 0
\(103\) 1.71407 0.168893 0.0844463 0.996428i \(-0.473088\pi\)
0.0844463 + 0.996428i \(0.473088\pi\)
\(104\) 3.36725 1.28905i 0.330186 0.126401i
\(105\) 0 0
\(106\) 5.08592i 0.493988i
\(107\) 14.1021 1.36330 0.681651 0.731678i \(-0.261262\pi\)
0.681651 + 0.731678i \(0.261262\pi\)
\(108\) 0 0
\(109\) 18.3474i 1.75736i 0.477413 + 0.878679i \(0.341575\pi\)
−0.477413 + 0.878679i \(0.658425\pi\)
\(110\) 0.285927i 0.0272620i
\(111\) 0 0
\(112\) 1.67682i 0.158444i
\(113\) −20.2779 −1.90759 −0.953793 0.300465i \(-0.902858\pi\)
−0.953793 + 0.300465i \(0.902858\pi\)
\(114\) 0 0
\(115\) 2.18085i 0.203365i
\(116\) 2.46678 0.229035
\(117\) 0 0
\(118\) 9.38985 0.864406
\(119\) 3.51040i 0.321798i
\(120\) 0 0
\(121\) 10.7689 0.978990
\(122\) 7.81270i 0.707328i
\(123\) 0 0
\(124\) 1.14753i 0.103051i
\(125\) 5.73719i 0.513150i
\(126\) 0 0
\(127\) 18.5473 1.64581 0.822904 0.568180i \(-0.192352\pi\)
0.822904 + 0.568180i \(0.192352\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −0.766671 2.00270i −0.0672415 0.175648i
\(131\) −4.64513 −0.405847 −0.202923 0.979195i \(-0.565044\pi\)
−0.202923 + 0.979195i \(0.565044\pi\)
\(132\) 0 0
\(133\) −0.806121 −0.0698996
\(134\) 14.3819 1.24241
\(135\) 0 0
\(136\) 2.09349i 0.179515i
\(137\) 13.0207i 1.11243i −0.831038 0.556216i \(-0.812253\pi\)
0.831038 0.556216i \(-0.187747\pi\)
\(138\) 0 0
\(139\) 10.1805 0.863502 0.431751 0.901993i \(-0.357896\pi\)
0.431751 + 0.901993i \(0.357896\pi\)
\(140\) 0.997301 0.0842874
\(141\) 0 0
\(142\) −6.51028 −0.546331
\(143\) 1.61879 0.619702i 0.135370 0.0518221i
\(144\) 0 0
\(145\) 1.46714i 0.121839i
\(146\) 5.91514 0.489541
\(147\) 0 0
\(148\) 3.65012i 0.300038i
\(149\) 5.25274i 0.430321i 0.976579 + 0.215161i \(0.0690275\pi\)
−0.976579 + 0.215161i \(0.930973\pi\)
\(150\) 0 0
\(151\) 11.9232i 0.970299i −0.874431 0.485150i \(-0.838765\pi\)
0.874431 0.485150i \(-0.161235\pi\)
\(152\) −0.480744 −0.0389935
\(153\) 0 0
\(154\) 0.806121i 0.0649591i
\(155\) 0.682503 0.0548200
\(156\) 0 0
\(157\) 12.3908 0.988893 0.494446 0.869208i \(-0.335371\pi\)
0.494446 + 0.869208i \(0.335371\pi\)
\(158\) 2.05790i 0.163718i
\(159\) 0 0
\(160\) 0.594758 0.0470198
\(161\) 6.14853i 0.484572i
\(162\) 0 0
\(163\) 21.3629i 1.67327i −0.547760 0.836635i \(-0.684519\pi\)
0.547760 0.836635i \(-0.315481\pi\)
\(164\) 9.91005i 0.773845i
\(165\) 0 0
\(166\) 11.0601 0.858431
\(167\) 14.7356i 1.14027i −0.821551 0.570136i \(-0.806891\pi\)
0.821551 0.570136i \(-0.193109\pi\)
\(168\) 0 0
\(169\) −9.67672 + 8.68108i −0.744363 + 0.667775i
\(170\) −1.24512 −0.0954964
\(171\) 0 0
\(172\) −6.91644 −0.527374
\(173\) 11.6487 0.885634 0.442817 0.896612i \(-0.353979\pi\)
0.442817 + 0.896612i \(0.353979\pi\)
\(174\) 0 0
\(175\) 7.79094i 0.588940i
\(176\) 0.480744i 0.0362375i
\(177\) 0 0
\(178\) 9.48720 0.711096
\(179\) −0.896158 −0.0669820 −0.0334910 0.999439i \(-0.510663\pi\)
−0.0334910 + 0.999439i \(0.510663\pi\)
\(180\) 0 0
\(181\) 1.42191 0.105689 0.0528447 0.998603i \(-0.483171\pi\)
0.0528447 + 0.998603i \(0.483171\pi\)
\(182\) −2.16150 5.64626i −0.160221 0.418529i
\(183\) 0 0
\(184\) 3.66679i 0.270319i
\(185\) −2.17094 −0.159611
\(186\) 0 0
\(187\) 1.00643i 0.0735977i
\(188\) 6.24102i 0.455173i
\(189\) 0 0
\(190\) 0.285927i 0.0207433i
\(191\) −14.8407 −1.07384 −0.536918 0.843634i \(-0.680412\pi\)
−0.536918 + 0.843634i \(0.680412\pi\)
\(192\) 0 0
\(193\) 14.1075i 1.01548i −0.861510 0.507741i \(-0.830481\pi\)
0.861510 0.507741i \(-0.169519\pi\)
\(194\) −9.71535 −0.697521
\(195\) 0 0
\(196\) −4.18828 −0.299163
\(197\) 0.442517i 0.0315280i −0.999876 0.0157640i \(-0.994982\pi\)
0.999876 0.0157640i \(-0.00501805\pi\)
\(198\) 0 0
\(199\) −13.2925 −0.942282 −0.471141 0.882058i \(-0.656158\pi\)
−0.471141 + 0.882058i \(0.656158\pi\)
\(200\) 4.64626i 0.328540i
\(201\) 0 0
\(202\) 5.79495i 0.407732i
\(203\) 4.13634i 0.290314i
\(204\) 0 0
\(205\) −5.89408 −0.411661
\(206\) 1.71407i 0.119425i
\(207\) 0 0
\(208\) −1.28905 3.36725i −0.0893793 0.233477i
\(209\) −0.231115 −0.0159866
\(210\) 0 0
\(211\) −9.64064 −0.663689 −0.331845 0.943334i \(-0.607671\pi\)
−0.331845 + 0.943334i \(0.607671\pi\)
\(212\) 5.08592 0.349302
\(213\) 0 0
\(214\) 14.1021i 0.964000i
\(215\) 4.11361i 0.280546i
\(216\) 0 0
\(217\) 1.92420 0.130623
\(218\) 18.3474 1.24264
\(219\) 0 0
\(220\) 0.285927 0.0192772
\(221\) 2.69861 + 7.04930i 0.181528 + 0.474187i
\(222\) 0 0
\(223\) 23.1333i 1.54912i 0.632501 + 0.774559i \(0.282028\pi\)
−0.632501 + 0.774559i \(0.717972\pi\)
\(224\) 1.67682 0.112037
\(225\) 0 0
\(226\) 20.2779i 1.34887i
\(227\) 13.3066i 0.883191i 0.897214 + 0.441595i \(0.145587\pi\)
−0.897214 + 0.441595i \(0.854413\pi\)
\(228\) 0 0
\(229\) 0.809405i 0.0534870i −0.999642 0.0267435i \(-0.991486\pi\)
0.999642 0.0267435i \(-0.00851373\pi\)
\(230\) 2.18085 0.143801
\(231\) 0 0
\(232\) 2.46678i 0.161952i
\(233\) −15.4712 −1.01355 −0.506776 0.862078i \(-0.669163\pi\)
−0.506776 + 0.862078i \(0.669163\pi\)
\(234\) 0 0
\(235\) −3.71190 −0.242138
\(236\) 9.38985i 0.611227i
\(237\) 0 0
\(238\) −3.51040 −0.227546
\(239\) 29.1575i 1.88604i −0.332733 0.943021i \(-0.607971\pi\)
0.332733 0.943021i \(-0.392029\pi\)
\(240\) 0 0
\(241\) 15.5947i 1.00454i 0.864710 + 0.502271i \(0.167502\pi\)
−0.864710 + 0.502271i \(0.832498\pi\)
\(242\) 10.7689i 0.692250i
\(243\) 0 0
\(244\) −7.81270 −0.500157
\(245\) 2.49101i 0.159145i
\(246\) 0 0
\(247\) 1.61879 0.619702i 0.103001 0.0394307i
\(248\) 1.14753 0.0728683
\(249\) 0 0
\(250\) 5.73719 0.362852
\(251\) −2.79495 −0.176416 −0.0882079 0.996102i \(-0.528114\pi\)
−0.0882079 + 0.996102i \(0.528114\pi\)
\(252\) 0 0
\(253\) 1.76279i 0.110825i
\(254\) 18.5473i 1.16376i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 20.9596 1.30742 0.653712 0.756743i \(-0.273211\pi\)
0.653712 + 0.756743i \(0.273211\pi\)
\(258\) 0 0
\(259\) −6.12059 −0.380315
\(260\) −2.00270 + 0.766671i −0.124202 + 0.0475469i
\(261\) 0 0
\(262\) 4.64513i 0.286977i
\(263\) 15.8484 0.977252 0.488626 0.872493i \(-0.337498\pi\)
0.488626 + 0.872493i \(0.337498\pi\)
\(264\) 0 0
\(265\) 3.02489i 0.185818i
\(266\) 0.806121i 0.0494265i
\(267\) 0 0
\(268\) 14.3819i 0.878516i
\(269\) 18.9028 1.15252 0.576261 0.817266i \(-0.304511\pi\)
0.576261 + 0.817266i \(0.304511\pi\)
\(270\) 0 0
\(271\) 9.63804i 0.585469i −0.956194 0.292735i \(-0.905435\pi\)
0.956194 0.292735i \(-0.0945653\pi\)
\(272\) −2.09349 −0.126936
\(273\) 0 0
\(274\) −13.0207 −0.786608
\(275\) 2.23366i 0.134695i
\(276\) 0 0
\(277\) 2.70020 0.162239 0.0811197 0.996704i \(-0.474150\pi\)
0.0811197 + 0.996704i \(0.474150\pi\)
\(278\) 10.1805i 0.610588i
\(279\) 0 0
\(280\) 0.997301i 0.0596002i
\(281\) 10.7944i 0.643938i 0.946750 + 0.321969i \(0.104345\pi\)
−0.946750 + 0.321969i \(0.895655\pi\)
\(282\) 0 0
\(283\) −29.2176 −1.73681 −0.868403 0.495859i \(-0.834853\pi\)
−0.868403 + 0.495859i \(0.834853\pi\)
\(284\) 6.51028i 0.386314i
\(285\) 0 0
\(286\) −0.619702 1.61879i −0.0366437 0.0957208i
\(287\) −16.6173 −0.980891
\(288\) 0 0
\(289\) −12.6173 −0.742194
\(290\) −1.46714 −0.0861532
\(291\) 0 0
\(292\) 5.91514i 0.346157i
\(293\) 23.6944i 1.38424i 0.721783 + 0.692120i \(0.243323\pi\)
−0.721783 + 0.692120i \(0.756677\pi\)
\(294\) 0 0
\(295\) −5.58469 −0.325153
\(296\) −3.65012 −0.212159
\(297\) 0 0
\(298\) 5.25274 0.304283
\(299\) −4.72666 12.3470i −0.273350 0.714044i
\(300\) 0 0
\(301\) 11.5976i 0.668475i
\(302\) −11.9232 −0.686105
\(303\) 0 0
\(304\) 0.480744i 0.0275726i
\(305\) 4.64667i 0.266067i
\(306\) 0 0
\(307\) 6.55237i 0.373963i −0.982363 0.186982i \(-0.940129\pi\)
0.982363 0.186982i \(-0.0598705\pi\)
\(308\) 0.806121 0.0459330
\(309\) 0 0
\(310\) 0.682503i 0.0387636i
\(311\) 25.4230 1.44160 0.720802 0.693141i \(-0.243774\pi\)
0.720802 + 0.693141i \(0.243774\pi\)
\(312\) 0 0
\(313\) 1.18146 0.0667799 0.0333899 0.999442i \(-0.489370\pi\)
0.0333899 + 0.999442i \(0.489370\pi\)
\(314\) 12.3908i 0.699253i
\(315\) 0 0
\(316\) 2.05790 0.115766
\(317\) 27.9448i 1.56954i 0.619789 + 0.784769i \(0.287218\pi\)
−0.619789 + 0.784769i \(0.712782\pi\)
\(318\) 0 0
\(319\) 1.18589i 0.0663971i
\(320\) 0.594758i 0.0332480i
\(321\) 0 0
\(322\) 6.14853 0.342644
\(323\) 1.00643i 0.0559995i
\(324\) 0 0
\(325\) −5.98925 15.6451i −0.332224 0.867835i
\(326\) −21.3629 −1.18318
\(327\) 0 0
\(328\) −9.91005 −0.547191
\(329\) −10.4651 −0.576957
\(330\) 0 0
\(331\) 24.6531i 1.35506i −0.735495 0.677530i \(-0.763051\pi\)
0.735495 0.677530i \(-0.236949\pi\)
\(332\) 11.0601i 0.607003i
\(333\) 0 0
\(334\) −14.7356 −0.806294
\(335\) −8.55376 −0.467342
\(336\) 0 0
\(337\) −15.2788 −0.832290 −0.416145 0.909298i \(-0.636619\pi\)
−0.416145 + 0.909298i \(0.636619\pi\)
\(338\) 8.68108 + 9.67672i 0.472188 + 0.526344i
\(339\) 0 0
\(340\) 1.24512i 0.0675261i
\(341\) 0.551669 0.0298745
\(342\) 0 0
\(343\) 18.7607i 1.01298i
\(344\) 6.91644i 0.372909i
\(345\) 0 0
\(346\) 11.6487i 0.626238i
\(347\) −1.21538 −0.0652448 −0.0326224 0.999468i \(-0.510386\pi\)
−0.0326224 + 0.999468i \(0.510386\pi\)
\(348\) 0 0
\(349\) 3.81160i 0.204030i 0.994783 + 0.102015i \(0.0325290\pi\)
−0.994783 + 0.102015i \(0.967471\pi\)
\(350\) 7.79094 0.416443
\(351\) 0 0
\(352\) 0.480744 0.0256238
\(353\) 20.0171i 1.06540i −0.846303 0.532702i \(-0.821177\pi\)
0.846303 0.532702i \(-0.178823\pi\)
\(354\) 0 0
\(355\) 3.87204 0.205507
\(356\) 9.48720i 0.502821i
\(357\) 0 0
\(358\) 0.896158i 0.0473634i
\(359\) 9.96717i 0.526047i −0.964789 0.263024i \(-0.915280\pi\)
0.964789 0.263024i \(-0.0847197\pi\)
\(360\) 0 0
\(361\) 18.7689 0.987836
\(362\) 1.42191i 0.0747338i
\(363\) 0 0
\(364\) −5.64626 + 2.16150i −0.295945 + 0.113293i
\(365\) −3.51808 −0.184145
\(366\) 0 0
\(367\) 14.3267 0.747846 0.373923 0.927460i \(-0.378012\pi\)
0.373923 + 0.927460i \(0.378012\pi\)
\(368\) 3.66679 0.191144
\(369\) 0 0
\(370\) 2.17094i 0.112862i
\(371\) 8.52816i 0.442760i
\(372\) 0 0
\(373\) −27.9755 −1.44851 −0.724257 0.689530i \(-0.757817\pi\)
−0.724257 + 0.689530i \(0.757817\pi\)
\(374\) −1.00643 −0.0520415
\(375\) 0 0
\(376\) −6.24102 −0.321856
\(377\) 3.17979 + 8.30625i 0.163768 + 0.427794i
\(378\) 0 0
\(379\) 4.05068i 0.208069i −0.994574 0.104035i \(-0.966825\pi\)
0.994574 0.104035i \(-0.0331753\pi\)
\(380\) 0.285927 0.0146677
\(381\) 0 0
\(382\) 14.8407i 0.759317i
\(383\) 31.2962i 1.59916i −0.600558 0.799581i \(-0.705055\pi\)
0.600558 0.799581i \(-0.294945\pi\)
\(384\) 0 0
\(385\) 0.479447i 0.0244349i
\(386\) −14.1075 −0.718054
\(387\) 0 0
\(388\) 9.71535i 0.493222i
\(389\) −15.3393 −0.777733 −0.388866 0.921294i \(-0.627133\pi\)
−0.388866 + 0.921294i \(0.627133\pi\)
\(390\) 0 0
\(391\) −7.67638 −0.388211
\(392\) 4.18828i 0.211540i
\(393\) 0 0
\(394\) −0.442517 −0.0222937
\(395\) 1.22395i 0.0615837i
\(396\) 0 0
\(397\) 24.1832i 1.21372i −0.794808 0.606860i \(-0.792429\pi\)
0.794808 0.606860i \(-0.207571\pi\)
\(398\) 13.2925i 0.666294i
\(399\) 0 0
\(400\) 4.64626 0.232313
\(401\) 28.7378i 1.43510i 0.696509 + 0.717548i \(0.254736\pi\)
−0.696509 + 0.717548i \(0.745264\pi\)
\(402\) 0 0
\(403\) −3.86402 + 1.47922i −0.192481 + 0.0736852i
\(404\) 5.79495 0.288310
\(405\) 0 0
\(406\) −4.13634 −0.205283
\(407\) −1.75478 −0.0869810
\(408\) 0 0
\(409\) 29.9183i 1.47936i −0.672956 0.739682i \(-0.734976\pi\)
0.672956 0.739682i \(-0.265024\pi\)
\(410\) 5.89408i 0.291088i
\(411\) 0 0
\(412\) −1.71407 −0.0844463
\(413\) −15.7451 −0.774764
\(414\) 0 0
\(415\) −6.57809 −0.322906
\(416\) −3.36725 + 1.28905i −0.165093 + 0.0632007i
\(417\) 0 0
\(418\) 0.231115i 0.0113042i
\(419\) 24.5716 1.20040 0.600200 0.799850i \(-0.295088\pi\)
0.600200 + 0.799850i \(0.295088\pi\)
\(420\) 0 0
\(421\) 28.4905i 1.38854i −0.719714 0.694271i \(-0.755727\pi\)
0.719714 0.694271i \(-0.244273\pi\)
\(422\) 9.64064i 0.469299i
\(423\) 0 0
\(424\) 5.08592i 0.246994i
\(425\) −9.72691 −0.471824
\(426\) 0 0
\(427\) 13.1005i 0.633976i
\(428\) −14.1021 −0.681651
\(429\) 0 0
\(430\) 4.11361 0.198376
\(431\) 7.13767i 0.343809i 0.985114 + 0.171905i \(0.0549921\pi\)
−0.985114 + 0.171905i \(0.945008\pi\)
\(432\) 0 0
\(433\) −7.85282 −0.377382 −0.188691 0.982036i \(-0.560424\pi\)
−0.188691 + 0.982036i \(0.560424\pi\)
\(434\) 1.92420i 0.0923646i
\(435\) 0 0
\(436\) 18.3474i 0.878679i
\(437\) 1.76279i 0.0843255i
\(438\) 0 0
\(439\) −4.14853 −0.197999 −0.0989994 0.995087i \(-0.531564\pi\)
−0.0989994 + 0.995087i \(0.531564\pi\)
\(440\) 0.285927i 0.0136310i
\(441\) 0 0
\(442\) 7.04930 2.69861i 0.335301 0.128360i
\(443\) 17.8470 0.847936 0.423968 0.905677i \(-0.360637\pi\)
0.423968 + 0.905677i \(0.360637\pi\)
\(444\) 0 0
\(445\) −5.64259 −0.267484
\(446\) 23.1333 1.09539
\(447\) 0 0
\(448\) 1.67682i 0.0792222i
\(449\) 19.7308i 0.931152i 0.885008 + 0.465576i \(0.154153\pi\)
−0.885008 + 0.465576i \(0.845847\pi\)
\(450\) 0 0
\(451\) −4.76420 −0.224337
\(452\) 20.2779 0.953793
\(453\) 0 0
\(454\) 13.3066 0.624510
\(455\) 1.28557 + 3.35816i 0.0602684 + 0.157433i
\(456\) 0 0
\(457\) 36.3456i 1.70018i 0.526641 + 0.850088i \(0.323451\pi\)
−0.526641 + 0.850088i \(0.676549\pi\)
\(458\) −0.809405 −0.0378210
\(459\) 0 0
\(460\) 2.18085i 0.101683i
\(461\) 22.9358i 1.06823i 0.845413 + 0.534114i \(0.179355\pi\)
−0.845413 + 0.534114i \(0.820645\pi\)
\(462\) 0 0
\(463\) 29.5769i 1.37455i −0.726395 0.687277i \(-0.758806\pi\)
0.726395 0.687277i \(-0.241194\pi\)
\(464\) −2.46678 −0.114517
\(465\) 0 0
\(466\) 15.4712i 0.716689i
\(467\) −12.5970 −0.582920 −0.291460 0.956583i \(-0.594141\pi\)
−0.291460 + 0.956583i \(0.594141\pi\)
\(468\) 0 0
\(469\) −24.1159 −1.11357
\(470\) 3.71190i 0.171217i
\(471\) 0 0
\(472\) −9.38985 −0.432203
\(473\) 3.32504i 0.152886i
\(474\) 0 0
\(475\) 2.23366i 0.102488i
\(476\) 3.51040i 0.160899i
\(477\) 0 0
\(478\) −29.1575 −1.33363
\(479\) 12.7483i 0.582486i −0.956649 0.291243i \(-0.905931\pi\)
0.956649 0.291243i \(-0.0940689\pi\)
\(480\) 0 0
\(481\) 12.2909 4.70518i 0.560415 0.214538i
\(482\) 15.5947 0.710319
\(483\) 0 0
\(484\) −10.7689 −0.489495
\(485\) 5.77828 0.262378
\(486\) 0 0
\(487\) 20.8054i 0.942782i 0.881924 + 0.471391i \(0.156248\pi\)
−0.881924 + 0.471391i \(0.843752\pi\)
\(488\) 7.81270i 0.353664i
\(489\) 0 0
\(490\) 2.49101 0.112533
\(491\) −14.7472 −0.665534 −0.332767 0.943009i \(-0.607982\pi\)
−0.332767 + 0.943009i \(0.607982\pi\)
\(492\) 0 0
\(493\) 5.16418 0.232583
\(494\) −0.619702 1.61879i −0.0278817 0.0728326i
\(495\) 0 0
\(496\) 1.14753i 0.0515256i
\(497\) 10.9166 0.489675
\(498\) 0 0
\(499\) 29.7482i 1.33171i 0.746081 + 0.665856i \(0.231933\pi\)
−0.746081 + 0.665856i \(0.768067\pi\)
\(500\) 5.73719i 0.256575i
\(501\) 0 0
\(502\) 2.79495i 0.124745i
\(503\) −26.1270 −1.16495 −0.582473 0.812850i \(-0.697915\pi\)
−0.582473 + 0.812850i \(0.697915\pi\)
\(504\) 0 0
\(505\) 3.44660i 0.153372i
\(506\) 1.76279 0.0783654
\(507\) 0 0
\(508\) −18.5473 −0.822904
\(509\) 17.8759i 0.792335i 0.918178 + 0.396168i \(0.129660\pi\)
−0.918178 + 0.396168i \(0.870340\pi\)
\(510\) 0 0
\(511\) −9.91862 −0.438774
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 20.9596i 0.924488i
\(515\) 1.01946i 0.0449227i
\(516\) 0 0
\(517\) −3.00034 −0.131955
\(518\) 6.12059i 0.268923i
\(519\) 0 0
\(520\) 0.766671 + 2.00270i 0.0336208 + 0.0878241i
\(521\) −13.7904 −0.604168 −0.302084 0.953281i \(-0.597682\pi\)
−0.302084 + 0.953281i \(0.597682\pi\)
\(522\) 0 0
\(523\) −0.523640 −0.0228972 −0.0114486 0.999934i \(-0.503644\pi\)
−0.0114486 + 0.999934i \(0.503644\pi\)
\(524\) 4.64513 0.202923
\(525\) 0 0
\(526\) 15.8484i 0.691022i
\(527\) 2.40234i 0.104648i
\(528\) 0 0
\(529\) −9.55468 −0.415421
\(530\) −3.02489 −0.131393
\(531\) 0 0
\(532\) 0.806121 0.0349498
\(533\) 33.3696 12.7745i 1.44540 0.553326i
\(534\) 0 0
\(535\) 8.38734i 0.362616i
\(536\) −14.3819 −0.621204
\(537\) 0 0
\(538\) 18.9028i 0.814957i
\(539\) 2.01349i 0.0867273i
\(540\) 0 0
\(541\) 11.3636i 0.488558i −0.969705 0.244279i \(-0.921449\pi\)
0.969705 0.244279i \(-0.0785513\pi\)
\(542\) −9.63804 −0.413989
\(543\) 0 0
\(544\) 2.09349i 0.0897577i
\(545\) −10.9122 −0.467429
\(546\) 0 0
\(547\) −8.28479 −0.354232 −0.177116 0.984190i \(-0.556677\pi\)
−0.177116 + 0.984190i \(0.556677\pi\)
\(548\) 13.0207i 0.556216i
\(549\) 0 0
\(550\) 2.23366 0.0952438
\(551\) 1.18589i 0.0505206i
\(552\) 0 0
\(553\) 3.45072i 0.146740i
\(554\) 2.70020i 0.114721i
\(555\) 0 0
\(556\) −10.1805 −0.431751
\(557\) 26.7334i 1.13273i −0.824154 0.566365i \(-0.808349\pi\)
0.824154 0.566365i \(-0.191651\pi\)
\(558\) 0 0
\(559\) −8.91562 23.2894i −0.377090 0.985035i
\(560\) −0.997301 −0.0421437
\(561\) 0 0
\(562\) 10.7944 0.455333
\(563\) 4.72143 0.198984 0.0994922 0.995038i \(-0.468278\pi\)
0.0994922 + 0.995038i \(0.468278\pi\)
\(564\) 0 0
\(565\) 12.0605i 0.507387i
\(566\) 29.2176i 1.22811i
\(567\) 0 0
\(568\) 6.51028 0.273165
\(569\) −42.1091 −1.76531 −0.882653 0.470025i \(-0.844245\pi\)
−0.882653 + 0.470025i \(0.844245\pi\)
\(570\) 0 0
\(571\) −11.7844 −0.493161 −0.246581 0.969122i \(-0.579307\pi\)
−0.246581 + 0.969122i \(0.579307\pi\)
\(572\) −1.61879 + 0.619702i −0.0676848 + 0.0259110i
\(573\) 0 0
\(574\) 16.6173i 0.693595i
\(575\) 17.0369 0.710486
\(576\) 0 0
\(577\) 21.5466i 0.896997i 0.893784 + 0.448498i \(0.148041\pi\)
−0.893784 + 0.448498i \(0.851959\pi\)
\(578\) 12.6173i 0.524810i
\(579\) 0 0
\(580\) 1.46714i 0.0609195i
\(581\) −18.5458 −0.769409
\(582\) 0 0
\(583\) 2.44503i 0.101263i
\(584\) −5.91514 −0.244770
\(585\) 0 0
\(586\) 23.6944 0.978805
\(587\) 8.80990i 0.363624i −0.983333 0.181812i \(-0.941804\pi\)
0.983333 0.181812i \(-0.0581962\pi\)
\(588\) 0 0
\(589\) 0.551669 0.0227311
\(590\) 5.58469i 0.229918i
\(591\) 0 0
\(592\) 3.65012i 0.150019i
\(593\) 26.7483i 1.09842i 0.835685 + 0.549210i \(0.185071\pi\)
−0.835685 + 0.549210i \(0.814929\pi\)
\(594\) 0 0
\(595\) 2.08784 0.0855931
\(596\) 5.25274i 0.215161i
\(597\) 0 0
\(598\) −12.3470 + 4.72666i −0.504905 + 0.193287i
\(599\) −47.8449 −1.95489 −0.977445 0.211192i \(-0.932266\pi\)
−0.977445 + 0.211192i \(0.932266\pi\)
\(600\) 0 0
\(601\) −21.0386 −0.858181 −0.429091 0.903261i \(-0.641166\pi\)
−0.429091 + 0.903261i \(0.641166\pi\)
\(602\) 11.5976 0.472683
\(603\) 0 0
\(604\) 11.9232i 0.485150i
\(605\) 6.40488i 0.260396i
\(606\) 0 0
\(607\) 23.5367 0.955323 0.477662 0.878544i \(-0.341485\pi\)
0.477662 + 0.878544i \(0.341485\pi\)
\(608\) 0.480744 0.0194968
\(609\) 0 0
\(610\) 4.64667 0.188138
\(611\) 21.0151 8.04497i 0.850179 0.325465i
\(612\) 0 0
\(613\) 40.7009i 1.64390i 0.569563 + 0.821948i \(0.307112\pi\)
−0.569563 + 0.821948i \(0.692888\pi\)
\(614\) −6.55237 −0.264432
\(615\) 0 0
\(616\) 0.806121i 0.0324795i
\(617\) 39.3665i 1.58483i −0.609980 0.792417i \(-0.708822\pi\)
0.609980 0.792417i \(-0.291178\pi\)
\(618\) 0 0
\(619\) 24.4414i 0.982384i −0.871051 0.491192i \(-0.836561\pi\)
0.871051 0.491192i \(-0.163439\pi\)
\(620\) −0.682503 −0.0274100
\(621\) 0 0
\(622\) 25.4230i 1.01937i
\(623\) −15.9083 −0.637353
\(624\) 0 0
\(625\) 19.8191 0.792763
\(626\) 1.18146i 0.0472205i
\(627\) 0 0
\(628\) −12.3908 −0.494446
\(629\) 7.64149i 0.304686i
\(630\) 0 0
\(631\) 5.70930i 0.227284i −0.993522 0.113642i \(-0.963748\pi\)
0.993522 0.113642i \(-0.0362516\pi\)
\(632\) 2.05790i 0.0818588i
\(633\) 0 0
\(634\) 27.9448 1.10983
\(635\) 11.0312i 0.437759i
\(636\) 0 0
\(637\) −5.39889 14.1030i −0.213912 0.558780i
\(638\) −1.18589 −0.0469498
\(639\) 0 0
\(640\) −0.594758 −0.0235099
\(641\) 39.4821 1.55945 0.779725 0.626122i \(-0.215359\pi\)
0.779725 + 0.626122i \(0.215359\pi\)
\(642\) 0 0
\(643\) 29.4988i 1.16332i −0.813432 0.581660i \(-0.802403\pi\)
0.813432 0.581660i \(-0.197597\pi\)
\(644\) 6.14853i 0.242286i
\(645\) 0 0
\(646\) −1.00643 −0.0395976
\(647\) 47.5940 1.87111 0.935556 0.353178i \(-0.114899\pi\)
0.935556 + 0.353178i \(0.114899\pi\)
\(648\) 0 0
\(649\) −4.51412 −0.177195
\(650\) −15.6451 + 5.98925i −0.613652 + 0.234918i
\(651\) 0 0
\(652\) 21.3629i 0.836635i
\(653\) 12.4748 0.488175 0.244088 0.969753i \(-0.421512\pi\)
0.244088 + 0.969753i \(0.421512\pi\)
\(654\) 0 0
\(655\) 2.76273i 0.107949i
\(656\) 9.91005i 0.386922i
\(657\) 0 0
\(658\) 10.4651i 0.407970i
\(659\) 3.74611 0.145928 0.0729639 0.997335i \(-0.476754\pi\)
0.0729639 + 0.997335i \(0.476754\pi\)
\(660\) 0 0
\(661\) 33.0703i 1.28629i 0.765746 + 0.643143i \(0.222370\pi\)
−0.765746 + 0.643143i \(0.777630\pi\)
\(662\) −24.6531 −0.958172
\(663\) 0 0
\(664\) −11.0601 −0.429216
\(665\) 0.479447i 0.0185922i
\(666\) 0 0
\(667\) −9.04515 −0.350230
\(668\) 14.7356i 0.570136i
\(669\) 0 0
\(670\) 8.55376i 0.330461i
\(671\) 3.75591i 0.144995i
\(672\) 0 0
\(673\) −14.1436 −0.545194 −0.272597 0.962128i \(-0.587883\pi\)
−0.272597 + 0.962128i \(0.587883\pi\)
\(674\) 15.2788i 0.588518i
\(675\) 0 0
\(676\) 9.67672 8.68108i 0.372181 0.333888i
\(677\) −34.2127 −1.31490 −0.657451 0.753498i \(-0.728365\pi\)
−0.657451 + 0.753498i \(0.728365\pi\)
\(678\) 0 0
\(679\) 16.2909 0.625186
\(680\) 1.24512 0.0477482
\(681\) 0 0
\(682\) 0.551669i 0.0211245i
\(683\) 16.3144i 0.624255i −0.950040 0.312127i \(-0.898958\pi\)
0.950040 0.312127i \(-0.101042\pi\)
\(684\) 0 0
\(685\) 7.74416 0.295889
\(686\) 18.7607 0.716287
\(687\) 0 0
\(688\) 6.91644 0.263687
\(689\) 6.55599 + 17.1255i 0.249763 + 0.652431i
\(690\) 0 0
\(691\) 25.3475i 0.964265i 0.876098 + 0.482132i \(0.160138\pi\)
−0.876098 + 0.482132i \(0.839862\pi\)
\(692\) −11.6487 −0.442817
\(693\) 0 0
\(694\) 1.21538i 0.0461350i
\(695\) 6.05496i 0.229678i
\(696\) 0 0
\(697\) 20.7466i 0.785833i
\(698\) 3.81160 0.144271
\(699\) 0 0
\(700\) 7.79094i 0.294470i
\(701\) 35.4651 1.33950 0.669750 0.742587i \(-0.266401\pi\)
0.669750 + 0.742587i \(0.266401\pi\)
\(702\) 0 0
\(703\) −1.75478 −0.0661826
\(704\) 0.480744i 0.0181187i
\(705\) 0 0
\(706\) −20.0171 −0.753354
\(707\) 9.71708i 0.365449i
\(708\) 0 0
\(709\) 21.6722i 0.813918i −0.913446 0.406959i \(-0.866589\pi\)
0.913446 0.406959i \(-0.133411\pi\)
\(710\) 3.87204i 0.145315i
\(711\) 0 0
\(712\) −9.48720 −0.355548
\(713\) 4.20775i 0.157581i
\(714\) 0 0
\(715\) 0.368573 + 0.962786i 0.0137838 + 0.0360062i
\(716\) 0.896158 0.0334910
\(717\) 0 0
\(718\) −9.96717 −0.371972
\(719\) 15.4819 0.577378 0.288689 0.957423i \(-0.406781\pi\)
0.288689 + 0.957423i \(0.406781\pi\)
\(720\) 0 0
\(721\) 2.87419i 0.107040i
\(722\) 18.7689i 0.698506i
\(723\) 0 0
\(724\) −1.42191 −0.0528447
\(725\) −11.4613 −0.425662
\(726\) 0 0
\(727\) −5.46560 −0.202708 −0.101354 0.994850i \(-0.532317\pi\)
−0.101354 + 0.994850i \(0.532317\pi\)
\(728\) 2.16150 + 5.64626i 0.0801104 + 0.209264i
\(729\) 0 0
\(730\) 3.51808i 0.130210i
\(731\) −14.4795 −0.535544
\(732\) 0 0
\(733\) 19.1340i 0.706730i 0.935486 + 0.353365i \(0.114963\pi\)
−0.935486 + 0.353365i \(0.885037\pi\)
\(734\) 14.3267i 0.528807i
\(735\) 0 0
\(736\) 3.66679i 0.135160i
\(737\) −6.91403 −0.254681
\(738\) 0 0
\(739\) 3.40317i 0.125188i 0.998039 + 0.0625938i \(0.0199373\pi\)
−0.998039 + 0.0625938i \(0.980063\pi\)
\(740\) 2.17094 0.0798053
\(741\) 0 0
\(742\) −8.52816 −0.313079
\(743\) 22.9155i 0.840689i −0.907365 0.420345i \(-0.861909\pi\)
0.907365 0.420345i \(-0.138091\pi\)
\(744\) 0 0
\(745\) −3.12411 −0.114459
\(746\) 27.9755i 1.02425i
\(747\) 0 0
\(748\) 1.00643i 0.0367989i
\(749\) 23.6467i 0.864030i
\(750\) 0 0
\(751\) −15.3739 −0.561001 −0.280500 0.959854i \(-0.590500\pi\)
−0.280500 + 0.959854i \(0.590500\pi\)
\(752\) 6.24102i 0.227587i
\(753\) 0 0
\(754\) 8.30625 3.17979i 0.302496 0.115801i
\(755\) 7.09144 0.258084
\(756\) 0 0
\(757\) 41.9292 1.52394 0.761971 0.647611i \(-0.224232\pi\)
0.761971 + 0.647611i \(0.224232\pi\)
\(758\) −4.05068 −0.147127
\(759\) 0 0
\(760\) 0.285927i 0.0103717i
\(761\) 2.54040i 0.0920895i −0.998939 0.0460447i \(-0.985338\pi\)
0.998939 0.0460447i \(-0.0146617\pi\)
\(762\) 0 0
\(763\) −30.7652 −1.11377
\(764\) 14.8407 0.536918
\(765\) 0 0
\(766\) −31.2962 −1.13078
\(767\) 31.6180 12.1040i 1.14166 0.437049i
\(768\) 0 0
\(769\) 9.98966i 0.360236i 0.983645 + 0.180118i \(0.0576480\pi\)
−0.983645 + 0.180118i \(0.942352\pi\)
\(770\) −0.479447 −0.0172781
\(771\) 0 0
\(772\) 14.1075i 0.507741i
\(773\) 5.76343i 0.207296i −0.994614 0.103648i \(-0.966948\pi\)
0.994614 0.103648i \(-0.0330516\pi\)
\(774\) 0 0
\(775\) 5.33173i 0.191521i
\(776\) 9.71535 0.348761
\(777\) 0 0
\(778\) 15.3393i 0.549940i
\(779\) −4.76420 −0.170695
\(780\) 0 0
\(781\) 3.12978 0.111992
\(782\) 7.67638i 0.274507i
\(783\) 0 0
\(784\) 4.18828 0.149581
\(785\) 7.36953i 0.263030i
\(786\) 0 0
\(787\) 9.47613i 0.337787i −0.985634 0.168894i \(-0.945981\pi\)
0.985634 0.168894i \(-0.0540195\pi\)
\(788\) 0.442517i 0.0157640i
\(789\) 0 0
\(790\) −1.22395 −0.0435463
\(791\) 34.0024i 1.20899i
\(792\) 0 0
\(793\) −10.0709 26.3073i −0.357629 0.934199i
\(794\) −24.1832 −0.858230
\(795\) 0 0
\(796\) 13.2925 0.471141
\(797\) −3.09742 −0.109716 −0.0548582 0.998494i \(-0.517471\pi\)
−0.0548582 + 0.998494i \(0.517471\pi\)
\(798\) 0 0
\(799\) 13.0655i 0.462225i
\(800\) 4.64626i 0.164270i
\(801\) 0 0
\(802\) 28.7378 1.01477
\(803\) −2.84367 −0.100351
\(804\) 0 0
\(805\) −3.65689 −0.128888
\(806\) 1.47922 + 3.86402i 0.0521033 + 0.136104i
\(807\) 0 0
\(808\) 5.79495i 0.203866i
\(809\) 18.7613 0.659612 0.329806 0.944049i \(-0.393017\pi\)
0.329806 + 0.944049i \(0.393017\pi\)
\(810\) 0 0
\(811\) 35.6282i 1.25108i 0.780193 + 0.625538i \(0.215121\pi\)
−0.780193 + 0.625538i \(0.784879\pi\)
\(812\) 4.13634i 0.145157i
\(813\) 0 0
\(814\) 1.75478i 0.0615049i
\(815\) 12.7058 0.445063
\(816\) 0 0
\(817\) 3.32504i 0.116328i
\(818\) −29.9183 −1.04607
\(819\) 0 0
\(820\) 5.89408 0.205830
\(821\) 15.4701i 0.539911i 0.962873 + 0.269956i \(0.0870090\pi\)
−0.962873 + 0.269956i \(0.912991\pi\)
\(822\) 0 0
\(823\) −8.08000 −0.281651 −0.140825 0.990034i \(-0.544976\pi\)
−0.140825 + 0.990034i \(0.544976\pi\)
\(824\) 1.71407i 0.0597126i
\(825\) 0 0
\(826\) 15.7451i 0.547841i
\(827\) 27.7387i 0.964569i −0.876015 0.482284i \(-0.839807\pi\)
0.876015 0.482284i \(-0.160193\pi\)
\(828\) 0 0
\(829\) −38.2112 −1.32713 −0.663566 0.748118i \(-0.730958\pi\)
−0.663566 + 0.748118i \(0.730958\pi\)
\(830\) 6.57809i 0.228329i
\(831\) 0 0
\(832\) 1.28905 + 3.36725i 0.0446897 + 0.116738i
\(833\) −8.76812 −0.303798
\(834\) 0 0
\(835\) 8.76409 0.303294
\(836\) 0.231115 0.00799329
\(837\) 0 0
\(838\) 24.5716i 0.848811i
\(839\) 37.5319i 1.29574i −0.761749 0.647872i \(-0.775659\pi\)
0.761749 0.647872i \(-0.224341\pi\)
\(840\) 0 0
\(841\) −22.9150 −0.790173
\(842\) −28.4905 −0.981847
\(843\) 0 0
\(844\) 9.64064 0.331845
\(845\) −5.16314 5.75531i −0.177618 0.197989i
\(846\) 0 0
\(847\) 18.0575i 0.620462i
\(848\) −5.08592 −0.174651
\(849\) 0 0
\(850\) 9.72691i 0.333630i
\(851\) 13.3842i 0.458805i
\(852\) 0 0
\(853\) 49.9129i 1.70899i −0.519463 0.854493i \(-0.673868\pi\)
0.519463 0.854493i \(-0.326132\pi\)
\(854\) 13.1005 0.448289
\(855\) 0 0
\(856\) 14.1021i 0.482000i
\(857\) 8.72992 0.298208 0.149104 0.988821i \(-0.452361\pi\)
0.149104 + 0.988821i \(0.452361\pi\)
\(858\) 0 0
\(859\) 31.5176 1.07537 0.537683 0.843147i \(-0.319300\pi\)
0.537683 + 0.843147i \(0.319300\pi\)
\(860\) 4.11361i 0.140273i
\(861\) 0 0
\(862\) 7.13767 0.243110
\(863\) 34.0790i 1.16006i −0.814594 0.580031i \(-0.803040\pi\)
0.814594 0.580031i \(-0.196960\pi\)
\(864\) 0 0
\(865\) 6.92816i 0.235564i
\(866\) 7.85282i 0.266850i
\(867\) 0 0
\(868\) −1.92420 −0.0653116
\(869\) 0.989324i 0.0335605i
\(870\) 0 0
\(871\) 48.4275 18.5390i 1.64090 0.628169i
\(872\) −18.3474 −0.621320
\(873\) 0 0
\(874\) 1.76279 0.0596272
\(875\) −9.62023 −0.325223
\(876\) 0 0
\(877\) 8.99660i 0.303794i 0.988396 + 0.151897i \(0.0485381\pi\)
−0.988396 + 0.151897i \(0.951462\pi\)
\(878\) 4.14853i 0.140006i
\(879\) 0 0
\(880\) −0.285927 −0.00963859
\(881\) −40.3722 −1.36017 −0.680086 0.733132i \(-0.738058\pi\)
−0.680086 + 0.733132i \(0.738058\pi\)
\(882\) 0 0
\(883\) 32.2736 1.08609 0.543046 0.839703i \(-0.317271\pi\)
0.543046 + 0.839703i \(0.317271\pi\)
\(884\) −2.69861 7.04930i −0.0907640 0.237094i
\(885\) 0 0
\(886\) 17.8470i 0.599581i
\(887\) 53.6494 1.80137 0.900685 0.434472i \(-0.143065\pi\)
0.900685 + 0.434472i \(0.143065\pi\)
\(888\) 0 0
\(889\) 31.1005i 1.04308i
\(890\) 5.64259i 0.189140i
\(891\) 0 0
\(892\) 23.1333i 0.774559i
\(893\) −3.00034 −0.100402
\(894\) 0 0
\(895\) 0.532998i 0.0178161i
\(896\) −1.67682 −0.0560186
\(897\) 0 0
\(898\) 19.7308 0.658424
\(899\) 2.83070i 0.0944092i
\(900\) 0 0
\(901\) 10.6473 0.354714
\(902\) 4.76420i 0.158630i
\(903\) 0 0
\(904\) 20.2779i 0.674433i
\(905\) 0.845691i 0.0281117i
\(906\) 0 0
\(907\) 44.2036 1.46776 0.733878 0.679281i \(-0.237708\pi\)
0.733878 + 0.679281i \(0.237708\pi\)
\(908\) 13.3066i 0.441595i
\(909\) 0 0
\(910\) 3.35816 1.28557i 0.111322 0.0426162i
\(911\) 54.9633 1.82102 0.910508 0.413492i \(-0.135691\pi\)
0.910508 + 0.413492i \(0.135691\pi\)
\(912\) 0 0
\(913\) −5.31709 −0.175970
\(914\) 36.3456 1.20221
\(915\) 0 0
\(916\) 0.809405i 0.0267435i
\(917\) 7.78903i 0.257217i
\(918\) 0 0
\(919\) −21.0595 −0.694690 −0.347345 0.937737i \(-0.612917\pi\)
−0.347345 + 0.937737i \(0.612917\pi\)
\(920\) −2.18085 −0.0719005
\(921\) 0 0
\(922\) 22.9358 0.755351
\(923\) −21.9217 + 8.39206i −0.721563 + 0.276228i
\(924\) 0 0
\(925\) 16.9594i 0.557622i
\(926\) −29.5769 −0.971957
\(927\) 0 0
\(928\) 2.46678i 0.0809760i
\(929\) 20.5891i 0.675506i −0.941235 0.337753i \(-0.890333\pi\)
0.941235 0.337753i \(-0.109667\pi\)
\(930\) 0 0
\(931\) 2.01349i 0.0659896i
\(932\) 15.4712 0.506776
\(933\) 0 0
\(934\) 12.5970i 0.412187i
\(935\) 0.598585 0.0195758
\(936\) 0 0
\(937\) −23.8463 −0.779023 −0.389512 0.921022i \(-0.627356\pi\)
−0.389512 + 0.921022i \(0.627356\pi\)
\(938\) 24.1159i 0.787411i
\(939\) 0 0
\(940\) 3.71190 0.121069
\(941\) 3.65686i 0.119210i −0.998222 0.0596051i \(-0.981016\pi\)
0.998222 0.0596051i \(-0.0189841\pi\)
\(942\) 0 0
\(943\) 36.3380i 1.18333i
\(944\) 9.38985i 0.305614i
\(945\) 0 0
\(946\) 3.32504 0.108106
\(947\) 20.4278i 0.663813i −0.943312 0.331907i \(-0.892308\pi\)
0.943312 0.331907i \(-0.107692\pi\)
\(948\) 0 0
\(949\) 19.9177 7.62489i 0.646557 0.247514i
\(950\) 2.23366 0.0724697
\(951\) 0 0
\(952\) 3.51040 0.113773
\(953\) −40.9906 −1.32782 −0.663908 0.747814i \(-0.731104\pi\)
−0.663908 + 0.747814i \(0.731104\pi\)
\(954\) 0 0
\(955\) 8.82664i 0.285623i
\(956\) 29.1575i 0.943021i
\(957\) 0 0
\(958\) −12.7483 −0.411880
\(959\) 21.8333 0.705035
\(960\) 0 0
\(961\) 29.6832 0.957522
\(962\) −4.70518 12.2909i −0.151701 0.396273i
\(963\) 0 0
\(964\) 15.5947i 0.502271i
\(965\) 8.39056 0.270102
\(966\) 0 0
\(967\) 3.74995i 0.120590i 0.998181 + 0.0602951i \(0.0192042\pi\)
−0.998181 + 0.0602951i \(0.980796\pi\)
\(968\) 10.7689i 0.346125i
\(969\) 0 0
\(970\) 5.77828i 0.185530i
\(971\) −48.6853 −1.56239 −0.781193 0.624289i \(-0.785389\pi\)
−0.781193 + 0.624289i \(0.785389\pi\)
\(972\) 0 0
\(973\) 17.0709i 0.547269i
\(974\) 20.8054 0.666648
\(975\) 0 0
\(976\) 7.81270 0.250078
\(977\) 22.1641i 0.709091i −0.935039 0.354546i \(-0.884636\pi\)
0.935039 0.354546i \(-0.115364\pi\)
\(978\) 0 0
\(979\) −4.56092 −0.145768
\(980\) 2.49101i 0.0795725i
\(981\) 0 0
\(982\) 14.7472i 0.470604i
\(983\) 56.1331i 1.79037i −0.445698 0.895183i \(-0.647044\pi\)
0.445698 0.895183i \(-0.352956\pi\)
\(984\) 0 0
\(985\) 0.263191 0.00838595
\(986\) 5.16418i 0.164461i
\(987\) 0 0
\(988\) −1.61879 + 0.619702i −0.0515004 + 0.0197153i
\(989\) 25.3611 0.806436
\(990\) 0 0
\(991\) 36.3755 1.15551 0.577753 0.816212i \(-0.303930\pi\)
0.577753 + 0.816212i \(0.303930\pi\)
\(992\) −1.14753 −0.0364341
\(993\) 0 0
\(994\) 10.9166i 0.346252i
\(995\) 7.90584i 0.250632i
\(996\) 0 0
\(997\) 57.3475 1.81621 0.908107 0.418737i \(-0.137527\pi\)
0.908107 + 0.418737i \(0.137527\pi\)
\(998\) 29.7482 0.941662
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.b.c.649.5 14
3.2 odd 2 2106.2.b.d.649.10 14
9.2 odd 6 702.2.t.a.415.12 28
9.4 even 3 234.2.t.a.25.14 yes 28
9.5 odd 6 702.2.t.a.181.3 28
9.7 even 3 234.2.t.a.103.7 yes 28
13.12 even 2 inner 2106.2.b.c.649.10 14
39.38 odd 2 2106.2.b.d.649.5 14
117.25 even 6 234.2.t.a.103.14 yes 28
117.38 odd 6 702.2.t.a.415.3 28
117.77 odd 6 702.2.t.a.181.12 28
117.103 even 6 234.2.t.a.25.7 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.7 28 117.103 even 6
234.2.t.a.25.14 yes 28 9.4 even 3
234.2.t.a.103.7 yes 28 9.7 even 3
234.2.t.a.103.14 yes 28 117.25 even 6
702.2.t.a.181.3 28 9.5 odd 6
702.2.t.a.181.12 28 117.77 odd 6
702.2.t.a.415.3 28 117.38 odd 6
702.2.t.a.415.12 28 9.2 odd 6
2106.2.b.c.649.5 14 1.1 even 1 trivial
2106.2.b.c.649.10 14 13.12 even 2 inner
2106.2.b.d.649.5 14 39.38 odd 2
2106.2.b.d.649.10 14 3.2 odd 2