Properties

Label 2100.4.k.q
Level $2100$
Weight $4$
Character orbit 2100.k
Analytic conductor $123.904$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 411x^{4} + 42405x^{2} + 36100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \beta_1 q^{3} + 7 \beta_1 q^{7} - 9 q^{9} + ( - \beta_{3} + \beta_{2} + 2) q^{11} + (\beta_{4} - 16 \beta_1) q^{13} + (\beta_{4} + 10 \beta_1) q^{17} + (3 \beta_{2} - 35) q^{19} + 21 q^{21} + ( - 2 \beta_{5} - 4 \beta_{4} - 11 \beta_1) q^{23}+ \cdots + (9 \beta_{3} - 9 \beta_{2} - 18) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{9} + 16 q^{11} - 204 q^{19} + 126 q^{21} - 246 q^{29} + 286 q^{31} - 282 q^{39} + 134 q^{41} - 294 q^{49} + 186 q^{51} - 82 q^{59} + 1234 q^{61} - 210 q^{69} + 1508 q^{71} - 860 q^{79} + 486 q^{81}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 411x^{4} + 42405x^{2} + 36100 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 221\nu^{3} + 3265\nu ) / 2850 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -8\nu^{4} - 1618\nu^{2} + 2665 ) / 105 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 17\nu^{4} + 3517\nu^{2} + 5165 ) / 105 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 61\nu^{5} + 10631\nu^{3} - 433535\nu ) / 19950 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 101\nu^{5} + 16621\nu^{3} - 815935\nu ) / 19950 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} - 2\beta_{4} + 3\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 8\beta_{3} + 17\beta_{2} - 825 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -37\beta_{5} + 67\beta_{4} - 50\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -1618\beta_{3} - 3517\beta_{2} + 168855 ) / 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 45797\beta_{5} - 82312\beta_{4} + 73605\beta_1 ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1849.1
14.3570i
0.926522i
14.2835i
14.3570i
0.926522i
14.2835i
0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.2 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.3 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.4 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.5 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.6 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1849.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.k.q 6
5.b even 2 1 inner 2100.4.k.q 6
5.c odd 4 1 2100.4.a.w 3
5.c odd 4 1 2100.4.a.ba yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.4.a.w 3 5.c odd 4 1
2100.4.a.ba yes 3 5.c odd 4 1
2100.4.k.q 6 1.a even 1 1 trivial
2100.4.k.q 6 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{3} - 8T_{11}^{2} - 2835T_{11} + 51894 \) Copy content Toggle raw display
\( T_{13}^{6} + 3789T_{13}^{4} + 4650684T_{13}^{2} + 1834922896 \) Copy content Toggle raw display
\( T_{17}^{6} + 3373T_{17}^{4} + 952236T_{17}^{2} + 65610000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{3} \) Copy content Toggle raw display
$11$ \( (T^{3} - 8 T^{2} + \cdots + 51894)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 1834922896 \) Copy content Toggle raw display
$17$ \( T^{6} + 3373 T^{4} + \cdots + 65610000 \) Copy content Toggle raw display
$19$ \( (T^{3} + 102 T^{2} + \cdots - 471136)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 155627883009 \) Copy content Toggle raw display
$29$ \( (T^{3} + 123 T^{2} + \cdots - 2352159)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 143 T^{2} + \cdots + 81980)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 26843113309156 \) Copy content Toggle raw display
$41$ \( (T^{3} - 67 T^{2} + \cdots + 5080320)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 1499196989889 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 1842382734336 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 1247304781584 \) Copy content Toggle raw display
$59$ \( (T^{3} + 41 T^{2} + \cdots - 6921180)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 617 T^{2} + \cdots + 84831440)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 19080157831056 \) Copy content Toggle raw display
$71$ \( (T^{3} - 754 T^{2} + \cdots + 664039404)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{3} + 430 T^{2} + \cdots - 11601594)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 32\!\cdots\!96 \) Copy content Toggle raw display
$89$ \( (T^{3} - 212 T^{2} + \cdots - 28448280)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 48\!\cdots\!00 \) Copy content Toggle raw display
show more
show less