Properties

Label 2100.4.k.n
Level $2100$
Weight $4$
Character orbit 2100.k
Analytic conductor $123.904$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1849,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1849");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{29})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 15x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \beta_1 q^{3} - 7 \beta_1 q^{7} - 9 q^{9} + (2 \beta_{3} + 9) q^{11} + ( - 3 \beta_{2} + 35 \beta_1) q^{13} + (\beta_{2} + 45 \beta_1) q^{17} + ( - \beta_{3} + 37) q^{19} - 21 q^{21} + (4 \beta_{2} - 63 \beta_1) q^{23}+ \cdots + ( - 18 \beta_{3} - 81) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 36 q^{9} + 36 q^{11} + 148 q^{19} - 84 q^{21} - 192 q^{29} - 16 q^{31} + 420 q^{39} - 672 q^{41} - 196 q^{49} + 540 q^{51} - 852 q^{59} - 1432 q^{61} - 756 q^{69} + 1332 q^{71} - 2216 q^{79} + 324 q^{81}+ \cdots - 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 15x^{2} + 49 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 8\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3\nu^{3} + 66\nu ) / 7 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{2} + 45 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 3\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 45 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -4\beta_{2} + 33\beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1849.1
3.19258i
2.19258i
3.19258i
2.19258i
0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.2 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.3 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
1849.4 0 3.00000i 0 0 0 7.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.k.n 4
5.b even 2 1 inner 2100.4.k.n 4
5.c odd 4 1 2100.4.a.p 2
5.c odd 4 1 2100.4.a.s yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.4.a.p 2 5.c odd 4 1
2100.4.a.s yes 2 5.c odd 4 1
2100.4.k.n 4 1.a even 1 1 trivial
2100.4.k.n 4 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{2} - 18T_{11} - 963 \) Copy content Toggle raw display
\( T_{13}^{4} + 7148T_{13}^{2} + 1263376 \) Copy content Toggle raw display
\( T_{17}^{4} + 4572T_{17}^{2} + 3111696 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 18 T - 963)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 7148 T^{2} + 1263376 \) Copy content Toggle raw display
$17$ \( T^{4} + 4572 T^{2} + 3111696 \) Copy content Toggle raw display
$19$ \( (T^{2} - 74 T + 1108)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 16290 T^{2} + 42849 \) Copy content Toggle raw display
$29$ \( (T^{2} + 96 T - 29277)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 8 T - 84548)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 56618 T^{2} + 570779881 \) Copy content Toggle raw display
$41$ \( (T^{2} + 336 T - 38592)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 26378 T^{2} + 153487321 \) Copy content Toggle raw display
$47$ \( T^{4} + 55404 T^{2} + 212576400 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 72569894544 \) Copy content Toggle raw display
$59$ \( (T^{2} + 426 T - 311940)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 716 T + 127120)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 363410 T^{2} + 951537409 \) Copy content Toggle raw display
$71$ \( (T^{2} - 666 T + 109845)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 964364 T^{2} + 378691600 \) Copy content Toggle raw display
$79$ \( (T^{2} + 1108 T + 212695)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 53640 T^{2} + 64448784 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2046 T + 795708)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 41314627600 \) Copy content Toggle raw display
show more
show less