Properties

Label 2100.4.a.q
Level $2100$
Weight $4$
Character orbit 2100.a
Self dual yes
Analytic conductor $123.904$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{109}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{109}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + 7 q^{7} + 9 q^{9} + ( - 2 \beta + 27) q^{11} + ( - 5 \beta + 37) q^{13} + (5 \beta + 49) q^{17} + ( - 9 \beta + 21) q^{19} - 21 q^{21} + ( - 16 \beta + 29) q^{23} - 27 q^{27} + ( - 5 \beta + 124) q^{29}+ \cdots + ( - 18 \beta + 243) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 14 q^{7} + 18 q^{9} + 54 q^{11} + 74 q^{13} + 98 q^{17} + 42 q^{19} - 42 q^{21} + 58 q^{23} - 54 q^{27} + 248 q^{29} + 216 q^{31} - 162 q^{33} + 242 q^{37} - 222 q^{39} - 192 q^{41} + 24 q^{43}+ \cdots + 486 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.72015
−4.72015
0 −3.00000 0 0 0 7.00000 0 9.00000 0
1.2 0 −3.00000 0 0 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.a.q 2
5.b even 2 1 2100.4.a.t yes 2
5.c odd 4 2 2100.4.k.o 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.4.a.q 2 1.a even 1 1 trivial
2100.4.a.t yes 2 5.b even 2 1
2100.4.k.o 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2100))\):

\( T_{11}^{2} - 54T_{11} + 293 \) Copy content Toggle raw display
\( T_{13}^{2} - 74T_{13} - 1356 \) Copy content Toggle raw display
\( T_{17}^{2} - 98T_{17} - 324 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 54T + 293 \) Copy content Toggle raw display
$13$ \( T^{2} - 74T - 1356 \) Copy content Toggle raw display
$17$ \( T^{2} - 98T - 324 \) Copy content Toggle raw display
$19$ \( T^{2} - 42T - 8388 \) Copy content Toggle raw display
$23$ \( T^{2} - 58T - 27063 \) Copy content Toggle raw display
$29$ \( T^{2} - 248T + 12651 \) Copy content Toggle raw display
$31$ \( T^{2} - 216T + 764 \) Copy content Toggle raw display
$37$ \( T^{2} - 242T - 20675 \) Copy content Toggle raw display
$41$ \( T^{2} + 192T + 2240 \) Copy content Toggle raw display
$43$ \( T^{2} - 24T - 149077 \) Copy content Toggle raw display
$47$ \( T^{2} - 582T + 71492 \) Copy content Toggle raw display
$53$ \( T^{2} + 112T - 32180 \) Copy content Toggle raw display
$59$ \( T^{2} + 746T + 59668 \) Copy content Toggle raw display
$61$ \( T^{2} - 52T - 20688 \) Copy content Toggle raw display
$67$ \( T^{2} - 684T + 115983 \) Copy content Toggle raw display
$71$ \( T^{2} + 1010 T + 244125 \) Copy content Toggle raw display
$73$ \( T^{2} + 758T + 125220 \) Copy content Toggle raw display
$79$ \( T^{2} + 1420 T + 479575 \) Copy content Toggle raw display
$83$ \( T^{2} - 616 T - 1039172 \) Copy content Toggle raw display
$89$ \( T^{2} - 390T + 24836 \) Copy content Toggle raw display
$97$ \( T^{2} - 824T - 305060 \) Copy content Toggle raw display
show more
show less