Properties

Label 2100.4.a.p
Level $2100$
Weight $4$
Character orbit 2100.a
Self dual yes
Analytic conductor $123.904$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.904011012\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{29}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 3\sqrt{29}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + 7 q^{7} + 9 q^{9} + (2 \beta + 9) q^{11} + ( - 3 \beta + 35) q^{13} + ( - \beta - 45) q^{17} + (\beta - 37) q^{19} - 21 q^{21} + (4 \beta - 63) q^{23} - 27 q^{27} + (11 \beta + 48) q^{29}+ \cdots + (18 \beta + 81) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 14 q^{7} + 18 q^{9} + 18 q^{11} + 70 q^{13} - 90 q^{17} - 74 q^{19} - 42 q^{21} - 126 q^{23} - 54 q^{27} + 96 q^{29} - 8 q^{31} - 54 q^{33} + 94 q^{37} - 210 q^{39} - 336 q^{41} + 40 q^{43}+ \cdots + 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.19258
3.19258
0 −3.00000 0 0 0 7.00000 0 9.00000 0
1.2 0 −3.00000 0 0 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.a.p 2
5.b even 2 1 2100.4.a.s yes 2
5.c odd 4 2 2100.4.k.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.4.a.p 2 1.a even 1 1 trivial
2100.4.a.s yes 2 5.b even 2 1
2100.4.k.n 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2100))\):

\( T_{11}^{2} - 18T_{11} - 963 \) Copy content Toggle raw display
\( T_{13}^{2} - 70T_{13} - 1124 \) Copy content Toggle raw display
\( T_{17}^{2} + 90T_{17} + 1764 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 18T - 963 \) Copy content Toggle raw display
$13$ \( T^{2} - 70T - 1124 \) Copy content Toggle raw display
$17$ \( T^{2} + 90T + 1764 \) Copy content Toggle raw display
$19$ \( T^{2} + 74T + 1108 \) Copy content Toggle raw display
$23$ \( T^{2} + 126T - 207 \) Copy content Toggle raw display
$29$ \( T^{2} - 96T - 29277 \) Copy content Toggle raw display
$31$ \( T^{2} + 8T - 84548 \) Copy content Toggle raw display
$37$ \( T^{2} - 94T - 23891 \) Copy content Toggle raw display
$41$ \( T^{2} + 336T - 38592 \) Copy content Toggle raw display
$43$ \( T^{2} - 40T - 12389 \) Copy content Toggle raw display
$47$ \( T^{2} + 162T - 14580 \) Copy content Toggle raw display
$53$ \( T^{2} + 1056 T + 269388 \) Copy content Toggle raw display
$59$ \( T^{2} - 426T - 311940 \) Copy content Toggle raw display
$61$ \( T^{2} + 716T + 127120 \) Copy content Toggle raw display
$67$ \( T^{2} - 652T + 30847 \) Copy content Toggle raw display
$71$ \( T^{2} - 666T + 109845 \) Copy content Toggle raw display
$73$ \( T^{2} + 962T - 19460 \) Copy content Toggle raw display
$79$ \( T^{2} - 1108 T + 212695 \) Copy content Toggle raw display
$83$ \( T^{2} + 264T + 8028 \) Copy content Toggle raw display
$89$ \( T^{2} - 2046 T + 795708 \) Copy content Toggle raw display
$97$ \( T^{2} - 904T + 203260 \) Copy content Toggle raw display
show more
show less