Properties

Label 2100.4.a.e.1.1
Level $2100$
Weight $4$
Character 2100.1
Self dual yes
Analytic conductor $123.904$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2100,4,Mod(1,2100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2100.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 2100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +7.00000 q^{7} +9.00000 q^{9} -26.0000 q^{11} -39.0000 q^{13} -101.000 q^{17} -48.0000 q^{19} -21.0000 q^{21} +57.0000 q^{23} -27.0000 q^{27} -291.000 q^{29} -79.0000 q^{31} +78.0000 q^{33} +322.000 q^{37} +117.000 q^{39} +455.000 q^{41} -307.000 q^{43} +508.000 q^{47} +49.0000 q^{49} +303.000 q^{51} -31.0000 q^{53} +144.000 q^{57} +211.000 q^{59} -797.000 q^{61} +63.0000 q^{63} -924.000 q^{67} -171.000 q^{69} +212.000 q^{71} +22.0000 q^{73} -182.000 q^{77} +874.000 q^{79} +81.0000 q^{81} -587.000 q^{83} +873.000 q^{87} -266.000 q^{89} -273.000 q^{91} +237.000 q^{93} +1822.00 q^{97} -234.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 7.00000 0.377964
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −26.0000 −0.712663 −0.356332 0.934360i \(-0.615973\pi\)
−0.356332 + 0.934360i \(0.615973\pi\)
\(12\) 0 0
\(13\) −39.0000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −101.000 −1.44095 −0.720473 0.693482i \(-0.756075\pi\)
−0.720473 + 0.693482i \(0.756075\pi\)
\(18\) 0 0
\(19\) −48.0000 −0.579577 −0.289788 0.957091i \(-0.593585\pi\)
−0.289788 + 0.957091i \(0.593585\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 0 0
\(23\) 57.0000 0.516753 0.258377 0.966044i \(-0.416812\pi\)
0.258377 + 0.966044i \(0.416812\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −291.000 −1.86336 −0.931678 0.363284i \(-0.881655\pi\)
−0.931678 + 0.363284i \(0.881655\pi\)
\(30\) 0 0
\(31\) −79.0000 −0.457704 −0.228852 0.973461i \(-0.573497\pi\)
−0.228852 + 0.973461i \(0.573497\pi\)
\(32\) 0 0
\(33\) 78.0000 0.411456
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 322.000 1.43072 0.715358 0.698758i \(-0.246264\pi\)
0.715358 + 0.698758i \(0.246264\pi\)
\(38\) 0 0
\(39\) 117.000 0.480384
\(40\) 0 0
\(41\) 455.000 1.73315 0.866574 0.499049i \(-0.166317\pi\)
0.866574 + 0.499049i \(0.166317\pi\)
\(42\) 0 0
\(43\) −307.000 −1.08877 −0.544384 0.838836i \(-0.683237\pi\)
−0.544384 + 0.838836i \(0.683237\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 508.000 1.57658 0.788292 0.615302i \(-0.210966\pi\)
0.788292 + 0.615302i \(0.210966\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) 303.000 0.831931
\(52\) 0 0
\(53\) −31.0000 −0.0803430 −0.0401715 0.999193i \(-0.512790\pi\)
−0.0401715 + 0.999193i \(0.512790\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 144.000 0.334619
\(58\) 0 0
\(59\) 211.000 0.465591 0.232795 0.972526i \(-0.425213\pi\)
0.232795 + 0.972526i \(0.425213\pi\)
\(60\) 0 0
\(61\) −797.000 −1.67288 −0.836438 0.548062i \(-0.815366\pi\)
−0.836438 + 0.548062i \(0.815366\pi\)
\(62\) 0 0
\(63\) 63.0000 0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −924.000 −1.68484 −0.842422 0.538818i \(-0.818871\pi\)
−0.842422 + 0.538818i \(0.818871\pi\)
\(68\) 0 0
\(69\) −171.000 −0.298348
\(70\) 0 0
\(71\) 212.000 0.354363 0.177181 0.984178i \(-0.443302\pi\)
0.177181 + 0.984178i \(0.443302\pi\)
\(72\) 0 0
\(73\) 22.0000 0.0352727 0.0176363 0.999844i \(-0.494386\pi\)
0.0176363 + 0.999844i \(0.494386\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −182.000 −0.269361
\(78\) 0 0
\(79\) 874.000 1.24472 0.622359 0.782732i \(-0.286175\pi\)
0.622359 + 0.782732i \(0.286175\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −587.000 −0.776285 −0.388142 0.921599i \(-0.626883\pi\)
−0.388142 + 0.921599i \(0.626883\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 873.000 1.07581
\(88\) 0 0
\(89\) −266.000 −0.316808 −0.158404 0.987374i \(-0.550635\pi\)
−0.158404 + 0.987374i \(0.550635\pi\)
\(90\) 0 0
\(91\) −273.000 −0.314485
\(92\) 0 0
\(93\) 237.000 0.264255
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1822.00 1.90718 0.953588 0.301114i \(-0.0973586\pi\)
0.953588 + 0.301114i \(0.0973586\pi\)
\(98\) 0 0
\(99\) −234.000 −0.237554
\(100\) 0 0
\(101\) −1872.00 −1.84427 −0.922133 0.386872i \(-0.873556\pi\)
−0.922133 + 0.386872i \(0.873556\pi\)
\(102\) 0 0
\(103\) 1595.00 1.52583 0.762913 0.646501i \(-0.223769\pi\)
0.762913 + 0.646501i \(0.223769\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1026.00 0.926983 0.463491 0.886101i \(-0.346596\pi\)
0.463491 + 0.886101i \(0.346596\pi\)
\(108\) 0 0
\(109\) −588.000 −0.516699 −0.258349 0.966052i \(-0.583179\pi\)
−0.258349 + 0.966052i \(0.583179\pi\)
\(110\) 0 0
\(111\) −966.000 −0.826024
\(112\) 0 0
\(113\) 22.0000 0.0183149 0.00915746 0.999958i \(-0.497085\pi\)
0.00915746 + 0.999958i \(0.497085\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −351.000 −0.277350
\(118\) 0 0
\(119\) −707.000 −0.544627
\(120\) 0 0
\(121\) −655.000 −0.492111
\(122\) 0 0
\(123\) −1365.00 −1.00063
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1750.00 −1.22274 −0.611368 0.791347i \(-0.709380\pi\)
−0.611368 + 0.791347i \(0.709380\pi\)
\(128\) 0 0
\(129\) 921.000 0.628601
\(130\) 0 0
\(131\) 1664.00 1.10980 0.554902 0.831916i \(-0.312756\pi\)
0.554902 + 0.831916i \(0.312756\pi\)
\(132\) 0 0
\(133\) −336.000 −0.219059
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1080.00 0.673508 0.336754 0.941593i \(-0.390671\pi\)
0.336754 + 0.941593i \(0.390671\pi\)
\(138\) 0 0
\(139\) −896.000 −0.546746 −0.273373 0.961908i \(-0.588139\pi\)
−0.273373 + 0.961908i \(0.588139\pi\)
\(140\) 0 0
\(141\) −1524.00 −0.910241
\(142\) 0 0
\(143\) 1014.00 0.592972
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −147.000 −0.0824786
\(148\) 0 0
\(149\) −591.000 −0.324944 −0.162472 0.986713i \(-0.551947\pi\)
−0.162472 + 0.986713i \(0.551947\pi\)
\(150\) 0 0
\(151\) −1606.00 −0.865526 −0.432763 0.901508i \(-0.642461\pi\)
−0.432763 + 0.901508i \(0.642461\pi\)
\(152\) 0 0
\(153\) −909.000 −0.480316
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 3554.00 1.80662 0.903312 0.428983i \(-0.141128\pi\)
0.903312 + 0.428983i \(0.141128\pi\)
\(158\) 0 0
\(159\) 93.0000 0.0463860
\(160\) 0 0
\(161\) 399.000 0.195314
\(162\) 0 0
\(163\) −2897.00 −1.39209 −0.696045 0.717999i \(-0.745058\pi\)
−0.696045 + 0.717999i \(0.745058\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −66.0000 −0.0305822 −0.0152911 0.999883i \(-0.504868\pi\)
−0.0152911 + 0.999883i \(0.504868\pi\)
\(168\) 0 0
\(169\) −676.000 −0.307692
\(170\) 0 0
\(171\) −432.000 −0.193192
\(172\) 0 0
\(173\) 1672.00 0.734797 0.367398 0.930064i \(-0.380249\pi\)
0.367398 + 0.930064i \(0.380249\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −633.000 −0.268809
\(178\) 0 0
\(179\) 4710.00 1.96671 0.983357 0.181682i \(-0.0581541\pi\)
0.983357 + 0.181682i \(0.0581541\pi\)
\(180\) 0 0
\(181\) 2842.00 1.16710 0.583548 0.812079i \(-0.301664\pi\)
0.583548 + 0.812079i \(0.301664\pi\)
\(182\) 0 0
\(183\) 2391.00 0.965835
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2626.00 1.02691
\(188\) 0 0
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −4197.00 −1.58997 −0.794985 0.606629i \(-0.792521\pi\)
−0.794985 + 0.606629i \(0.792521\pi\)
\(192\) 0 0
\(193\) 2662.00 0.992824 0.496412 0.868087i \(-0.334651\pi\)
0.496412 + 0.868087i \(0.334651\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3601.00 1.30234 0.651169 0.758933i \(-0.274279\pi\)
0.651169 + 0.758933i \(0.274279\pi\)
\(198\) 0 0
\(199\) −1840.00 −0.655448 −0.327724 0.944774i \(-0.606282\pi\)
−0.327724 + 0.944774i \(0.606282\pi\)
\(200\) 0 0
\(201\) 2772.00 0.972745
\(202\) 0 0
\(203\) −2037.00 −0.704283
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 513.000 0.172251
\(208\) 0 0
\(209\) 1248.00 0.413043
\(210\) 0 0
\(211\) −1733.00 −0.565425 −0.282712 0.959205i \(-0.591234\pi\)
−0.282712 + 0.959205i \(0.591234\pi\)
\(212\) 0 0
\(213\) −636.000 −0.204592
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −553.000 −0.172996
\(218\) 0 0
\(219\) −66.0000 −0.0203647
\(220\) 0 0
\(221\) 3939.00 1.19894
\(222\) 0 0
\(223\) 4727.00 1.41948 0.709738 0.704465i \(-0.248813\pi\)
0.709738 + 0.704465i \(0.248813\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2863.00 0.837110 0.418555 0.908191i \(-0.362537\pi\)
0.418555 + 0.908191i \(0.362537\pi\)
\(228\) 0 0
\(229\) 5578.00 1.60963 0.804814 0.593528i \(-0.202265\pi\)
0.804814 + 0.593528i \(0.202265\pi\)
\(230\) 0 0
\(231\) 546.000 0.155516
\(232\) 0 0
\(233\) 5016.00 1.41034 0.705170 0.709039i \(-0.250871\pi\)
0.705170 + 0.709039i \(0.250871\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2622.00 −0.718638
\(238\) 0 0
\(239\) 2992.00 0.809776 0.404888 0.914366i \(-0.367311\pi\)
0.404888 + 0.914366i \(0.367311\pi\)
\(240\) 0 0
\(241\) −1574.00 −0.420706 −0.210353 0.977625i \(-0.567461\pi\)
−0.210353 + 0.977625i \(0.567461\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1872.00 0.482237
\(248\) 0 0
\(249\) 1761.00 0.448188
\(250\) 0 0
\(251\) −5697.00 −1.43264 −0.716318 0.697774i \(-0.754174\pi\)
−0.716318 + 0.697774i \(0.754174\pi\)
\(252\) 0 0
\(253\) −1482.00 −0.368271
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2599.00 0.630822 0.315411 0.948955i \(-0.397858\pi\)
0.315411 + 0.948955i \(0.397858\pi\)
\(258\) 0 0
\(259\) 2254.00 0.540760
\(260\) 0 0
\(261\) −2619.00 −0.621119
\(262\) 0 0
\(263\) −1115.00 −0.261421 −0.130711 0.991421i \(-0.541726\pi\)
−0.130711 + 0.991421i \(0.541726\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 798.000 0.182909
\(268\) 0 0
\(269\) 4194.00 0.950605 0.475302 0.879822i \(-0.342339\pi\)
0.475302 + 0.879822i \(0.342339\pi\)
\(270\) 0 0
\(271\) −3972.00 −0.890339 −0.445169 0.895446i \(-0.646857\pi\)
−0.445169 + 0.895446i \(0.646857\pi\)
\(272\) 0 0
\(273\) 819.000 0.181568
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1842.00 −0.399549 −0.199774 0.979842i \(-0.564021\pi\)
−0.199774 + 0.979842i \(0.564021\pi\)
\(278\) 0 0
\(279\) −711.000 −0.152568
\(280\) 0 0
\(281\) −2680.00 −0.568952 −0.284476 0.958683i \(-0.591820\pi\)
−0.284476 + 0.958683i \(0.591820\pi\)
\(282\) 0 0
\(283\) 2680.00 0.562931 0.281465 0.959571i \(-0.409180\pi\)
0.281465 + 0.959571i \(0.409180\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3185.00 0.655068
\(288\) 0 0
\(289\) 5288.00 1.07633
\(290\) 0 0
\(291\) −5466.00 −1.10111
\(292\) 0 0
\(293\) −5656.00 −1.12774 −0.563869 0.825864i \(-0.690688\pi\)
−0.563869 + 0.825864i \(0.690688\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 702.000 0.137152
\(298\) 0 0
\(299\) −2223.00 −0.429965
\(300\) 0 0
\(301\) −2149.00 −0.411516
\(302\) 0 0
\(303\) 5616.00 1.06479
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6998.00 1.30097 0.650484 0.759520i \(-0.274566\pi\)
0.650484 + 0.759520i \(0.274566\pi\)
\(308\) 0 0
\(309\) −4785.00 −0.880936
\(310\) 0 0
\(311\) 5610.00 1.02287 0.511437 0.859321i \(-0.329113\pi\)
0.511437 + 0.859321i \(0.329113\pi\)
\(312\) 0 0
\(313\) 166.000 0.0299772 0.0149886 0.999888i \(-0.495229\pi\)
0.0149886 + 0.999888i \(0.495229\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5333.00 0.944893 0.472447 0.881359i \(-0.343371\pi\)
0.472447 + 0.881359i \(0.343371\pi\)
\(318\) 0 0
\(319\) 7566.00 1.32795
\(320\) 0 0
\(321\) −3078.00 −0.535194
\(322\) 0 0
\(323\) 4848.00 0.835139
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 1764.00 0.298316
\(328\) 0 0
\(329\) 3556.00 0.595892
\(330\) 0 0
\(331\) 6481.00 1.07622 0.538109 0.842875i \(-0.319139\pi\)
0.538109 + 0.842875i \(0.319139\pi\)
\(332\) 0 0
\(333\) 2898.00 0.476905
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9221.00 1.49050 0.745252 0.666783i \(-0.232329\pi\)
0.745252 + 0.666783i \(0.232329\pi\)
\(338\) 0 0
\(339\) −66.0000 −0.0105741
\(340\) 0 0
\(341\) 2054.00 0.326189
\(342\) 0 0
\(343\) 343.000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1910.00 0.295488 0.147744 0.989026i \(-0.452799\pi\)
0.147744 + 0.989026i \(0.452799\pi\)
\(348\) 0 0
\(349\) 3409.00 0.522864 0.261432 0.965222i \(-0.415805\pi\)
0.261432 + 0.965222i \(0.415805\pi\)
\(350\) 0 0
\(351\) 1053.00 0.160128
\(352\) 0 0
\(353\) 2130.00 0.321157 0.160579 0.987023i \(-0.448664\pi\)
0.160579 + 0.987023i \(0.448664\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2121.00 0.314440
\(358\) 0 0
\(359\) 647.000 0.0951180 0.0475590 0.998868i \(-0.484856\pi\)
0.0475590 + 0.998868i \(0.484856\pi\)
\(360\) 0 0
\(361\) −4555.00 −0.664091
\(362\) 0 0
\(363\) 1965.00 0.284121
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −11503.0 −1.63611 −0.818054 0.575141i \(-0.804947\pi\)
−0.818054 + 0.575141i \(0.804947\pi\)
\(368\) 0 0
\(369\) 4095.00 0.577716
\(370\) 0 0
\(371\) −217.000 −0.0303668
\(372\) 0 0
\(373\) −3692.00 −0.512505 −0.256253 0.966610i \(-0.582488\pi\)
−0.256253 + 0.966610i \(0.582488\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 11349.0 1.55041
\(378\) 0 0
\(379\) 8103.00 1.09821 0.549107 0.835752i \(-0.314968\pi\)
0.549107 + 0.835752i \(0.314968\pi\)
\(380\) 0 0
\(381\) 5250.00 0.705947
\(382\) 0 0
\(383\) −2664.00 −0.355415 −0.177708 0.984083i \(-0.556868\pi\)
−0.177708 + 0.984083i \(0.556868\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2763.00 −0.362923
\(388\) 0 0
\(389\) −2050.00 −0.267196 −0.133598 0.991036i \(-0.542653\pi\)
−0.133598 + 0.991036i \(0.542653\pi\)
\(390\) 0 0
\(391\) −5757.00 −0.744614
\(392\) 0 0
\(393\) −4992.00 −0.640746
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1213.00 −0.153347 −0.0766735 0.997056i \(-0.524430\pi\)
−0.0766735 + 0.997056i \(0.524430\pi\)
\(398\) 0 0
\(399\) 1008.00 0.126474
\(400\) 0 0
\(401\) 10876.0 1.35442 0.677209 0.735791i \(-0.263189\pi\)
0.677209 + 0.735791i \(0.263189\pi\)
\(402\) 0 0
\(403\) 3081.00 0.380833
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8372.00 −1.01962
\(408\) 0 0
\(409\) −12534.0 −1.51532 −0.757661 0.652649i \(-0.773658\pi\)
−0.757661 + 0.652649i \(0.773658\pi\)
\(410\) 0 0
\(411\) −3240.00 −0.388850
\(412\) 0 0
\(413\) 1477.00 0.175977
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2688.00 0.315664
\(418\) 0 0
\(419\) 4569.00 0.532721 0.266361 0.963873i \(-0.414179\pi\)
0.266361 + 0.963873i \(0.414179\pi\)
\(420\) 0 0
\(421\) −9262.00 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 0 0
\(423\) 4572.00 0.525528
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5579.00 −0.632287
\(428\) 0 0
\(429\) −3042.00 −0.342352
\(430\) 0 0
\(431\) −9429.00 −1.05378 −0.526890 0.849934i \(-0.676642\pi\)
−0.526890 + 0.849934i \(0.676642\pi\)
\(432\) 0 0
\(433\) 418.000 0.0463921 0.0231961 0.999731i \(-0.492616\pi\)
0.0231961 + 0.999731i \(0.492616\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2736.00 −0.299498
\(438\) 0 0
\(439\) −419.000 −0.0455530 −0.0227765 0.999741i \(-0.507251\pi\)
−0.0227765 + 0.999741i \(0.507251\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) 0 0
\(443\) −9628.00 −1.03260 −0.516298 0.856409i \(-0.672690\pi\)
−0.516298 + 0.856409i \(0.672690\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1773.00 0.187606
\(448\) 0 0
\(449\) 14052.0 1.47696 0.738480 0.674276i \(-0.235544\pi\)
0.738480 + 0.674276i \(0.235544\pi\)
\(450\) 0 0
\(451\) −11830.0 −1.23515
\(452\) 0 0
\(453\) 4818.00 0.499712
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12089.0 1.23742 0.618708 0.785621i \(-0.287656\pi\)
0.618708 + 0.785621i \(0.287656\pi\)
\(458\) 0 0
\(459\) 2727.00 0.277310
\(460\) 0 0
\(461\) −2744.00 −0.277225 −0.138613 0.990347i \(-0.544264\pi\)
−0.138613 + 0.990347i \(0.544264\pi\)
\(462\) 0 0
\(463\) 592.000 0.0594224 0.0297112 0.999559i \(-0.490541\pi\)
0.0297112 + 0.999559i \(0.490541\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 3361.00 0.333038 0.166519 0.986038i \(-0.446747\pi\)
0.166519 + 0.986038i \(0.446747\pi\)
\(468\) 0 0
\(469\) −6468.00 −0.636811
\(470\) 0 0
\(471\) −10662.0 −1.04306
\(472\) 0 0
\(473\) 7982.00 0.775925
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −279.000 −0.0267810
\(478\) 0 0
\(479\) 8604.00 0.820724 0.410362 0.911923i \(-0.365402\pi\)
0.410362 + 0.911923i \(0.365402\pi\)
\(480\) 0 0
\(481\) −12558.0 −1.19043
\(482\) 0 0
\(483\) −1197.00 −0.112765
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9826.00 0.914289 0.457144 0.889393i \(-0.348872\pi\)
0.457144 + 0.889393i \(0.348872\pi\)
\(488\) 0 0
\(489\) 8691.00 0.803723
\(490\) 0 0
\(491\) 4758.00 0.437323 0.218661 0.975801i \(-0.429831\pi\)
0.218661 + 0.975801i \(0.429831\pi\)
\(492\) 0 0
\(493\) 29391.0 2.68500
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1484.00 0.133937
\(498\) 0 0
\(499\) −20631.0 −1.85084 −0.925421 0.378940i \(-0.876289\pi\)
−0.925421 + 0.378940i \(0.876289\pi\)
\(500\) 0 0
\(501\) 198.000 0.0176567
\(502\) 0 0
\(503\) −7566.00 −0.670678 −0.335339 0.942097i \(-0.608851\pi\)
−0.335339 + 0.942097i \(0.608851\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2028.00 0.177646
\(508\) 0 0
\(509\) 12028.0 1.04741 0.523705 0.851900i \(-0.324549\pi\)
0.523705 + 0.851900i \(0.324549\pi\)
\(510\) 0 0
\(511\) 154.000 0.0133318
\(512\) 0 0
\(513\) 1296.00 0.111540
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −13208.0 −1.12357
\(518\) 0 0
\(519\) −5016.00 −0.424235
\(520\) 0 0
\(521\) 21317.0 1.79254 0.896271 0.443506i \(-0.146266\pi\)
0.896271 + 0.443506i \(0.146266\pi\)
\(522\) 0 0
\(523\) 15416.0 1.28890 0.644450 0.764647i \(-0.277086\pi\)
0.644450 + 0.764647i \(0.277086\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7979.00 0.659527
\(528\) 0 0
\(529\) −8918.00 −0.732966
\(530\) 0 0
\(531\) 1899.00 0.155197
\(532\) 0 0
\(533\) −17745.0 −1.44207
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −14130.0 −1.13548
\(538\) 0 0
\(539\) −1274.00 −0.101809
\(540\) 0 0
\(541\) 17520.0 1.39232 0.696159 0.717888i \(-0.254891\pi\)
0.696159 + 0.717888i \(0.254891\pi\)
\(542\) 0 0
\(543\) −8526.00 −0.673823
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 17379.0 1.35845 0.679225 0.733930i \(-0.262316\pi\)
0.679225 + 0.733930i \(0.262316\pi\)
\(548\) 0 0
\(549\) −7173.00 −0.557625
\(550\) 0 0
\(551\) 13968.0 1.07996
\(552\) 0 0
\(553\) 6118.00 0.470459
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15830.0 1.20420 0.602099 0.798421i \(-0.294331\pi\)
0.602099 + 0.798421i \(0.294331\pi\)
\(558\) 0 0
\(559\) 11973.0 0.905910
\(560\) 0 0
\(561\) −7878.00 −0.592887
\(562\) 0 0
\(563\) −7343.00 −0.549681 −0.274841 0.961490i \(-0.588625\pi\)
−0.274841 + 0.961490i \(0.588625\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 567.000 0.0419961
\(568\) 0 0
\(569\) −10806.0 −0.796153 −0.398077 0.917352i \(-0.630322\pi\)
−0.398077 + 0.917352i \(0.630322\pi\)
\(570\) 0 0
\(571\) −1593.00 −0.116751 −0.0583756 0.998295i \(-0.518592\pi\)
−0.0583756 + 0.998295i \(0.518592\pi\)
\(572\) 0 0
\(573\) 12591.0 0.917970
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 9314.00 0.672005 0.336003 0.941861i \(-0.390925\pi\)
0.336003 + 0.941861i \(0.390925\pi\)
\(578\) 0 0
\(579\) −7986.00 −0.573207
\(580\) 0 0
\(581\) −4109.00 −0.293408
\(582\) 0 0
\(583\) 806.000 0.0572575
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3083.00 −0.216779 −0.108389 0.994109i \(-0.534569\pi\)
−0.108389 + 0.994109i \(0.534569\pi\)
\(588\) 0 0
\(589\) 3792.00 0.265274
\(590\) 0 0
\(591\) −10803.0 −0.751905
\(592\) 0 0
\(593\) −18882.0 −1.30757 −0.653787 0.756679i \(-0.726821\pi\)
−0.653787 + 0.756679i \(0.726821\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5520.00 0.378423
\(598\) 0 0
\(599\) 1707.00 0.116438 0.0582188 0.998304i \(-0.481458\pi\)
0.0582188 + 0.998304i \(0.481458\pi\)
\(600\) 0 0
\(601\) 1440.00 0.0977352 0.0488676 0.998805i \(-0.484439\pi\)
0.0488676 + 0.998805i \(0.484439\pi\)
\(602\) 0 0
\(603\) −8316.00 −0.561615
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −8284.00 −0.553933 −0.276966 0.960880i \(-0.589329\pi\)
−0.276966 + 0.960880i \(0.589329\pi\)
\(608\) 0 0
\(609\) 6111.00 0.406618
\(610\) 0 0
\(611\) −19812.0 −1.31180
\(612\) 0 0
\(613\) −24042.0 −1.58409 −0.792045 0.610463i \(-0.790984\pi\)
−0.792045 + 0.610463i \(0.790984\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 862.000 0.0562444 0.0281222 0.999604i \(-0.491047\pi\)
0.0281222 + 0.999604i \(0.491047\pi\)
\(618\) 0 0
\(619\) 9890.00 0.642185 0.321093 0.947048i \(-0.395950\pi\)
0.321093 + 0.947048i \(0.395950\pi\)
\(620\) 0 0
\(621\) −1539.00 −0.0994492
\(622\) 0 0
\(623\) −1862.00 −0.119742
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3744.00 −0.238470
\(628\) 0 0
\(629\) −32522.0 −2.06159
\(630\) 0 0
\(631\) −21646.0 −1.36563 −0.682816 0.730590i \(-0.739245\pi\)
−0.682816 + 0.730590i \(0.739245\pi\)
\(632\) 0 0
\(633\) 5199.00 0.326448
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1911.00 −0.118864
\(638\) 0 0
\(639\) 1908.00 0.118121
\(640\) 0 0
\(641\) 19658.0 1.21130 0.605651 0.795731i \(-0.292913\pi\)
0.605651 + 0.795731i \(0.292913\pi\)
\(642\) 0 0
\(643\) −23818.0 −1.46079 −0.730397 0.683023i \(-0.760665\pi\)
−0.730397 + 0.683023i \(0.760665\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28490.0 1.73116 0.865578 0.500775i \(-0.166951\pi\)
0.865578 + 0.500775i \(0.166951\pi\)
\(648\) 0 0
\(649\) −5486.00 −0.331809
\(650\) 0 0
\(651\) 1659.00 0.0998792
\(652\) 0 0
\(653\) 11002.0 0.659329 0.329664 0.944098i \(-0.393064\pi\)
0.329664 + 0.944098i \(0.393064\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 198.000 0.0117576
\(658\) 0 0
\(659\) 11506.0 0.680137 0.340068 0.940401i \(-0.389550\pi\)
0.340068 + 0.940401i \(0.389550\pi\)
\(660\) 0 0
\(661\) 8398.00 0.494167 0.247083 0.968994i \(-0.420528\pi\)
0.247083 + 0.968994i \(0.420528\pi\)
\(662\) 0 0
\(663\) −11817.0 −0.692209
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16587.0 −0.962895
\(668\) 0 0
\(669\) −14181.0 −0.819535
\(670\) 0 0
\(671\) 20722.0 1.19220
\(672\) 0 0
\(673\) 1901.00 0.108883 0.0544414 0.998517i \(-0.482662\pi\)
0.0544414 + 0.998517i \(0.482662\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 19896.0 1.12949 0.564745 0.825265i \(-0.308974\pi\)
0.564745 + 0.825265i \(0.308974\pi\)
\(678\) 0 0
\(679\) 12754.0 0.720845
\(680\) 0 0
\(681\) −8589.00 −0.483306
\(682\) 0 0
\(683\) −15662.0 −0.877437 −0.438719 0.898624i \(-0.644568\pi\)
−0.438719 + 0.898624i \(0.644568\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −16734.0 −0.929319
\(688\) 0 0
\(689\) 1209.00 0.0668494
\(690\) 0 0
\(691\) 1162.00 0.0639719 0.0319859 0.999488i \(-0.489817\pi\)
0.0319859 + 0.999488i \(0.489817\pi\)
\(692\) 0 0
\(693\) −1638.00 −0.0897871
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −45955.0 −2.49737
\(698\) 0 0
\(699\) −15048.0 −0.814260
\(700\) 0 0
\(701\) 13501.0 0.727426 0.363713 0.931511i \(-0.381509\pi\)
0.363713 + 0.931511i \(0.381509\pi\)
\(702\) 0 0
\(703\) −15456.0 −0.829209
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −13104.0 −0.697067
\(708\) 0 0
\(709\) −20672.0 −1.09500 −0.547499 0.836806i \(-0.684420\pi\)
−0.547499 + 0.836806i \(0.684420\pi\)
\(710\) 0 0
\(711\) 7866.00 0.414906
\(712\) 0 0
\(713\) −4503.00 −0.236520
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −8976.00 −0.467524
\(718\) 0 0
\(719\) −7098.00 −0.368165 −0.184083 0.982911i \(-0.558931\pi\)
−0.184083 + 0.982911i \(0.558931\pi\)
\(720\) 0 0
\(721\) 11165.0 0.576708
\(722\) 0 0
\(723\) 4722.00 0.242895
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −4053.00 −0.206764 −0.103382 0.994642i \(-0.532966\pi\)
−0.103382 + 0.994642i \(0.532966\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 31007.0 1.56886
\(732\) 0 0
\(733\) 10331.0 0.520579 0.260289 0.965531i \(-0.416182\pi\)
0.260289 + 0.965531i \(0.416182\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24024.0 1.20073
\(738\) 0 0
\(739\) −8969.00 −0.446455 −0.223227 0.974766i \(-0.571659\pi\)
−0.223227 + 0.974766i \(0.571659\pi\)
\(740\) 0 0
\(741\) −5616.00 −0.278420
\(742\) 0 0
\(743\) −11613.0 −0.573405 −0.286702 0.958020i \(-0.592559\pi\)
−0.286702 + 0.958020i \(0.592559\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5283.00 −0.258762
\(748\) 0 0
\(749\) 7182.00 0.350367
\(750\) 0 0
\(751\) −32476.0 −1.57798 −0.788992 0.614403i \(-0.789397\pi\)
−0.788992 + 0.614403i \(0.789397\pi\)
\(752\) 0 0
\(753\) 17091.0 0.827132
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −29914.0 −1.43625 −0.718126 0.695913i \(-0.755000\pi\)
−0.718126 + 0.695913i \(0.755000\pi\)
\(758\) 0 0
\(759\) 4446.00 0.212621
\(760\) 0 0
\(761\) −3090.00 −0.147191 −0.0735955 0.997288i \(-0.523447\pi\)
−0.0735955 + 0.997288i \(0.523447\pi\)
\(762\) 0 0
\(763\) −4116.00 −0.195294
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8229.00 −0.387395
\(768\) 0 0
\(769\) −7760.00 −0.363892 −0.181946 0.983309i \(-0.558240\pi\)
−0.181946 + 0.983309i \(0.558240\pi\)
\(770\) 0 0
\(771\) −7797.00 −0.364205
\(772\) 0 0
\(773\) 34020.0 1.58294 0.791471 0.611207i \(-0.209316\pi\)
0.791471 + 0.611207i \(0.209316\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −6762.00 −0.312208
\(778\) 0 0
\(779\) −21840.0 −1.00449
\(780\) 0 0
\(781\) −5512.00 −0.252541
\(782\) 0 0
\(783\) 7857.00 0.358603
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −15154.0 −0.686381 −0.343190 0.939266i \(-0.611508\pi\)
−0.343190 + 0.939266i \(0.611508\pi\)
\(788\) 0 0
\(789\) 3345.00 0.150932
\(790\) 0 0
\(791\) 154.000 0.00692239
\(792\) 0 0
\(793\) 31083.0 1.39192
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −13386.0 −0.594927 −0.297463 0.954733i \(-0.596141\pi\)
−0.297463 + 0.954733i \(0.596141\pi\)
\(798\) 0 0
\(799\) −51308.0 −2.27177
\(800\) 0 0
\(801\) −2394.00 −0.105603
\(802\) 0 0
\(803\) −572.000 −0.0251375
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −12582.0 −0.548832
\(808\) 0 0
\(809\) 36468.0 1.58485 0.792427 0.609967i \(-0.208817\pi\)
0.792427 + 0.609967i \(0.208817\pi\)
\(810\) 0 0
\(811\) −38422.0 −1.66360 −0.831800 0.555076i \(-0.812689\pi\)
−0.831800 + 0.555076i \(0.812689\pi\)
\(812\) 0 0
\(813\) 11916.0 0.514037
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 14736.0 0.631025
\(818\) 0 0
\(819\) −2457.00 −0.104828
\(820\) 0 0
\(821\) 19194.0 0.815926 0.407963 0.912998i \(-0.366239\pi\)
0.407963 + 0.912998i \(0.366239\pi\)
\(822\) 0 0
\(823\) −7426.00 −0.314525 −0.157263 0.987557i \(-0.550267\pi\)
−0.157263 + 0.987557i \(0.550267\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −33170.0 −1.39472 −0.697360 0.716721i \(-0.745642\pi\)
−0.697360 + 0.716721i \(0.745642\pi\)
\(828\) 0 0
\(829\) 16397.0 0.686962 0.343481 0.939160i \(-0.388394\pi\)
0.343481 + 0.939160i \(0.388394\pi\)
\(830\) 0 0
\(831\) 5526.00 0.230680
\(832\) 0 0
\(833\) −4949.00 −0.205850
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2133.00 0.0880851
\(838\) 0 0
\(839\) 14996.0 0.617067 0.308534 0.951213i \(-0.400162\pi\)
0.308534 + 0.951213i \(0.400162\pi\)
\(840\) 0 0
\(841\) 60292.0 2.47210
\(842\) 0 0
\(843\) 8040.00 0.328484
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −4585.00 −0.186001
\(848\) 0 0
\(849\) −8040.00 −0.325008
\(850\) 0 0
\(851\) 18354.0 0.739327
\(852\) 0 0
\(853\) −21053.0 −0.845066 −0.422533 0.906348i \(-0.638859\pi\)
−0.422533 + 0.906348i \(0.638859\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6390.00 −0.254700 −0.127350 0.991858i \(-0.540647\pi\)
−0.127350 + 0.991858i \(0.540647\pi\)
\(858\) 0 0
\(859\) 22176.0 0.880833 0.440416 0.897794i \(-0.354831\pi\)
0.440416 + 0.897794i \(0.354831\pi\)
\(860\) 0 0
\(861\) −9555.00 −0.378204
\(862\) 0 0
\(863\) −42472.0 −1.67528 −0.837638 0.546225i \(-0.816064\pi\)
−0.837638 + 0.546225i \(0.816064\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −15864.0 −0.621418
\(868\) 0 0
\(869\) −22724.0 −0.887064
\(870\) 0 0
\(871\) 36036.0 1.40188
\(872\) 0 0
\(873\) 16398.0 0.635725
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3472.00 0.133684 0.0668421 0.997764i \(-0.478708\pi\)
0.0668421 + 0.997764i \(0.478708\pi\)
\(878\) 0 0
\(879\) 16968.0 0.651099
\(880\) 0 0
\(881\) 32639.0 1.24817 0.624084 0.781357i \(-0.285472\pi\)
0.624084 + 0.781357i \(0.285472\pi\)
\(882\) 0 0
\(883\) −45513.0 −1.73458 −0.867290 0.497803i \(-0.834140\pi\)
−0.867290 + 0.497803i \(0.834140\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −27626.0 −1.04576 −0.522881 0.852406i \(-0.675143\pi\)
−0.522881 + 0.852406i \(0.675143\pi\)
\(888\) 0 0
\(889\) −12250.0 −0.462151
\(890\) 0 0
\(891\) −2106.00 −0.0791848
\(892\) 0 0
\(893\) −24384.0 −0.913751
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 6669.00 0.248240
\(898\) 0 0
\(899\) 22989.0 0.852865
\(900\) 0 0
\(901\) 3131.00 0.115770
\(902\) 0 0
\(903\) 6447.00 0.237589
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −11561.0 −0.423238 −0.211619 0.977352i \(-0.567874\pi\)
−0.211619 + 0.977352i \(0.567874\pi\)
\(908\) 0 0
\(909\) −16848.0 −0.614756
\(910\) 0 0
\(911\) 25773.0 0.937319 0.468659 0.883379i \(-0.344737\pi\)
0.468659 + 0.883379i \(0.344737\pi\)
\(912\) 0 0
\(913\) 15262.0 0.553229
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 11648.0 0.419467
\(918\) 0 0
\(919\) −13240.0 −0.475242 −0.237621 0.971358i \(-0.576368\pi\)
−0.237621 + 0.971358i \(0.576368\pi\)
\(920\) 0 0
\(921\) −20994.0 −0.751114
\(922\) 0 0
\(923\) −8268.00 −0.294848
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 14355.0 0.508608
\(928\) 0 0
\(929\) −30653.0 −1.08255 −0.541277 0.840844i \(-0.682059\pi\)
−0.541277 + 0.840844i \(0.682059\pi\)
\(930\) 0 0
\(931\) −2352.00 −0.0827967
\(932\) 0 0
\(933\) −16830.0 −0.590557
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 19030.0 0.663482 0.331741 0.943370i \(-0.392364\pi\)
0.331741 + 0.943370i \(0.392364\pi\)
\(938\) 0 0
\(939\) −498.000 −0.0173074
\(940\) 0 0
\(941\) −5320.00 −0.184301 −0.0921504 0.995745i \(-0.529374\pi\)
−0.0921504 + 0.995745i \(0.529374\pi\)
\(942\) 0 0
\(943\) 25935.0 0.895610
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14524.0 0.498381 0.249190 0.968455i \(-0.419836\pi\)
0.249190 + 0.968455i \(0.419836\pi\)
\(948\) 0 0
\(949\) −858.000 −0.0293486
\(950\) 0 0
\(951\) −15999.0 −0.545534
\(952\) 0 0
\(953\) −8688.00 −0.295312 −0.147656 0.989039i \(-0.547173\pi\)
−0.147656 + 0.989039i \(0.547173\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −22698.0 −0.766690
\(958\) 0 0
\(959\) 7560.00 0.254562
\(960\) 0 0
\(961\) −23550.0 −0.790507
\(962\) 0 0
\(963\) 9234.00 0.308994
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −19672.0 −0.654197 −0.327099 0.944990i \(-0.606071\pi\)
−0.327099 + 0.944990i \(0.606071\pi\)
\(968\) 0 0
\(969\) −14544.0 −0.482168
\(970\) 0 0
\(971\) 45996.0 1.52017 0.760083 0.649826i \(-0.225158\pi\)
0.760083 + 0.649826i \(0.225158\pi\)
\(972\) 0 0
\(973\) −6272.00 −0.206651
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −32454.0 −1.06274 −0.531369 0.847140i \(-0.678322\pi\)
−0.531369 + 0.847140i \(0.678322\pi\)
\(978\) 0 0
\(979\) 6916.00 0.225778
\(980\) 0 0
\(981\) −5292.00 −0.172233
\(982\) 0 0
\(983\) 34048.0 1.10474 0.552372 0.833598i \(-0.313723\pi\)
0.552372 + 0.833598i \(0.313723\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −10668.0 −0.344039
\(988\) 0 0
\(989\) −17499.0 −0.562625
\(990\) 0 0
\(991\) −14804.0 −0.474535 −0.237268 0.971444i \(-0.576252\pi\)
−0.237268 + 0.971444i \(0.576252\pi\)
\(992\) 0 0
\(993\) −19443.0 −0.621354
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −35546.0 −1.12914 −0.564570 0.825385i \(-0.690958\pi\)
−0.564570 + 0.825385i \(0.690958\pi\)
\(998\) 0 0
\(999\) −8694.00 −0.275341
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.4.a.e.1.1 1
5.2 odd 4 2100.4.k.d.1849.2 2
5.3 odd 4 2100.4.k.d.1849.1 2
5.4 even 2 2100.4.a.j.1.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2100.4.a.e.1.1 1 1.1 even 1 trivial
2100.4.a.j.1.1 yes 1 5.4 even 2
2100.4.k.d.1849.1 2 5.3 odd 4
2100.4.k.d.1849.2 2 5.2 odd 4