Properties

Label 2100.4.a.d
Level $2100$
Weight $4$
Character orbit 2100.a
Self dual yes
Analytic conductor $123.904$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2100,4,Mod(1,2100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2100.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2100.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-3,0,0,0,7,0,9,0,-44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(123.904011012\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 420)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{3} + 7 q^{7} + 9 q^{9} - 44 q^{11} + 42 q^{13} + 94 q^{17} - 36 q^{19} - 21 q^{21} - 24 q^{23} - 27 q^{27} + 54 q^{29} - 112 q^{31} + 132 q^{33} + 322 q^{37} - 126 q^{39} - 22 q^{41} - 292 q^{43}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −3.00000 0 0 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.4.a.d 1
5.b even 2 1 420.4.a.d 1
5.c odd 4 2 2100.4.k.a 2
15.d odd 2 1 1260.4.a.c 1
20.d odd 2 1 1680.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.4.a.d 1 5.b even 2 1
1260.4.a.c 1 15.d odd 2 1
1680.4.a.k 1 20.d odd 2 1
2100.4.a.d 1 1.a even 1 1 trivial
2100.4.k.a 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(2100))\):

\( T_{11} + 44 \) Copy content Toggle raw display
\( T_{13} - 42 \) Copy content Toggle raw display
\( T_{17} - 94 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T + 44 \) Copy content Toggle raw display
$13$ \( T - 42 \) Copy content Toggle raw display
$17$ \( T - 94 \) Copy content Toggle raw display
$19$ \( T + 36 \) Copy content Toggle raw display
$23$ \( T + 24 \) Copy content Toggle raw display
$29$ \( T - 54 \) Copy content Toggle raw display
$31$ \( T + 112 \) Copy content Toggle raw display
$37$ \( T - 322 \) Copy content Toggle raw display
$41$ \( T + 22 \) Copy content Toggle raw display
$43$ \( T + 292 \) Copy content Toggle raw display
$47$ \( T + 272 \) Copy content Toggle raw display
$53$ \( T - 578 \) Copy content Toggle raw display
$59$ \( T + 44 \) Copy content Toggle raw display
$61$ \( T + 26 \) Copy content Toggle raw display
$67$ \( T + 12 \) Copy content Toggle raw display
$71$ \( T + 280 \) Copy content Toggle raw display
$73$ \( T + 410 \) Copy content Toggle raw display
$79$ \( T + 320 \) Copy content Toggle raw display
$83$ \( T - 1252 \) Copy content Toggle raw display
$89$ \( T + 38 \) Copy content Toggle raw display
$97$ \( T + 1250 \) Copy content Toggle raw display
show more
show less