Properties

Label 2100.2.q.b.1201.1
Level $2100$
Weight $2$
Character 2100.1201
Analytic conductor $16.769$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1201.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1201
Dual form 2100.2.q.b.1801.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{3} +(-0.500000 + 2.59808i) q^{7} +(-0.500000 - 0.866025i) q^{9} +(-1.00000 + 1.73205i) q^{11} +3.00000 q^{13} +(4.00000 - 6.92820i) q^{17} +(0.500000 + 0.866025i) q^{19} +(-2.00000 - 1.73205i) q^{21} +(4.00000 + 6.92820i) q^{23} +1.00000 q^{27} +4.00000 q^{29} +(-1.50000 + 2.59808i) q^{31} +(-1.00000 - 1.73205i) q^{33} +(-0.500000 - 0.866025i) q^{37} +(-1.50000 + 2.59808i) q^{39} +6.00000 q^{41} -11.0000 q^{43} +(3.00000 + 5.19615i) q^{47} +(-6.50000 - 2.59808i) q^{49} +(4.00000 + 6.92820i) q^{51} +(-6.00000 + 10.3923i) q^{53} -1.00000 q^{57} +(-2.00000 + 3.46410i) q^{59} +(3.00000 + 5.19615i) q^{61} +(2.50000 - 0.866025i) q^{63} +(6.50000 - 11.2583i) q^{67} -8.00000 q^{69} -10.0000 q^{71} +(-5.50000 + 9.52628i) q^{73} +(-4.00000 - 3.46410i) q^{77} +(1.50000 + 2.59808i) q^{79} +(-0.500000 + 0.866025i) q^{81} -2.00000 q^{83} +(-2.00000 + 3.46410i) q^{87} +(-1.50000 + 7.79423i) q^{91} +(-1.50000 - 2.59808i) q^{93} -10.0000 q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - q^{7} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - q^{7} - q^{9} - 2q^{11} + 6q^{13} + 8q^{17} + q^{19} - 4q^{21} + 8q^{23} + 2q^{27} + 8q^{29} - 3q^{31} - 2q^{33} - q^{37} - 3q^{39} + 12q^{41} - 22q^{43} + 6q^{47} - 13q^{49} + 8q^{51} - 12q^{53} - 2q^{57} - 4q^{59} + 6q^{61} + 5q^{63} + 13q^{67} - 16q^{69} - 20q^{71} - 11q^{73} - 8q^{77} + 3q^{79} - q^{81} - 4q^{83} - 4q^{87} - 3q^{91} - 3q^{93} - 20q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −0.500000 + 2.59808i −0.188982 + 0.981981i
\(8\) 0 0
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 3.00000 0.832050 0.416025 0.909353i \(-0.363423\pi\)
0.416025 + 0.909353i \(0.363423\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.00000 6.92820i 0.970143 1.68034i 0.275029 0.961436i \(-0.411312\pi\)
0.695113 0.718900i \(-0.255354\pi\)
\(18\) 0 0
\(19\) 0.500000 + 0.866025i 0.114708 + 0.198680i 0.917663 0.397360i \(-0.130073\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) −2.00000 1.73205i −0.436436 0.377964i
\(22\) 0 0
\(23\) 4.00000 + 6.92820i 0.834058 + 1.44463i 0.894795 + 0.446476i \(0.147321\pi\)
−0.0607377 + 0.998154i \(0.519345\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i \(-0.920161\pi\)
0.699301 + 0.714827i \(0.253495\pi\)
\(32\) 0 0
\(33\) −1.00000 1.73205i −0.174078 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.500000 0.866025i −0.0821995 0.142374i 0.821995 0.569495i \(-0.192861\pi\)
−0.904194 + 0.427121i \(0.859528\pi\)
\(38\) 0 0
\(39\) −1.50000 + 2.59808i −0.240192 + 0.416025i
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −11.0000 −1.67748 −0.838742 0.544529i \(-0.816708\pi\)
−0.838742 + 0.544529i \(0.816708\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 0 0
\(51\) 4.00000 + 6.92820i 0.560112 + 0.970143i
\(52\) 0 0
\(53\) −6.00000 + 10.3923i −0.824163 + 1.42749i 0.0783936 + 0.996922i \(0.475021\pi\)
−0.902557 + 0.430570i \(0.858312\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) 3.00000 + 5.19615i 0.384111 + 0.665299i 0.991645 0.128994i \(-0.0411748\pi\)
−0.607535 + 0.794293i \(0.707841\pi\)
\(62\) 0 0
\(63\) 2.50000 0.866025i 0.314970 0.109109i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.50000 11.2583i 0.794101 1.37542i −0.129307 0.991605i \(-0.541275\pi\)
0.923408 0.383819i \(-0.125391\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) −5.50000 + 9.52628i −0.643726 + 1.11497i 0.340868 + 0.940111i \(0.389279\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.00000 3.46410i −0.455842 0.394771i
\(78\) 0 0
\(79\) 1.50000 + 2.59808i 0.168763 + 0.292306i 0.937985 0.346675i \(-0.112689\pi\)
−0.769222 + 0.638982i \(0.779356\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −2.00000 −0.219529 −0.109764 0.993958i \(-0.535010\pi\)
−0.109764 + 0.993958i \(0.535010\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −2.00000 + 3.46410i −0.214423 + 0.371391i
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) −1.50000 + 7.79423i −0.157243 + 0.817057i
\(92\) 0 0
\(93\) −1.50000 2.59808i −0.155543 0.269408i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −5.00000 + 8.66025i −0.497519 + 0.861727i −0.999996 0.00286291i \(-0.999089\pi\)
0.502477 + 0.864590i \(0.332422\pi\)
\(102\) 0 0
\(103\) 5.50000 + 9.52628i 0.541931 + 0.938652i 0.998793 + 0.0491146i \(0.0156400\pi\)
−0.456862 + 0.889538i \(0.651027\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 5.50000 9.52628i 0.526804 0.912452i −0.472708 0.881219i \(-0.656723\pi\)
0.999512 0.0312328i \(-0.00994332\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.50000 2.59808i −0.138675 0.240192i
\(118\) 0 0
\(119\) 16.0000 + 13.8564i 1.46672 + 1.27021i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) −3.00000 + 5.19615i −0.270501 + 0.468521i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) 0 0
\(129\) 5.50000 9.52628i 0.484248 0.838742i
\(130\) 0 0
\(131\) 1.00000 + 1.73205i 0.0873704 + 0.151330i 0.906399 0.422423i \(-0.138820\pi\)
−0.819028 + 0.573753i \(0.805487\pi\)
\(132\) 0 0
\(133\) −2.50000 + 0.866025i −0.216777 + 0.0750939i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.00000 3.46410i 0.170872 0.295958i −0.767853 0.640626i \(-0.778675\pi\)
0.938725 + 0.344668i \(0.112008\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −3.00000 + 5.19615i −0.250873 + 0.434524i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 5.50000 4.33013i 0.453632 0.357143i
\(148\) 0 0
\(149\) 6.00000 + 10.3923i 0.491539 + 0.851371i 0.999953 0.00974235i \(-0.00310113\pi\)
−0.508413 + 0.861113i \(0.669768\pi\)
\(150\) 0 0
\(151\) 4.00000 6.92820i 0.325515 0.563809i −0.656101 0.754673i \(-0.727796\pi\)
0.981617 + 0.190864i \(0.0611289\pi\)
\(152\) 0 0
\(153\) −8.00000 −0.646762
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.00000 1.73205i 0.0798087 0.138233i −0.823359 0.567521i \(-0.807902\pi\)
0.903167 + 0.429289i \(0.141236\pi\)
\(158\) 0 0
\(159\) −6.00000 10.3923i −0.475831 0.824163i
\(160\) 0 0
\(161\) −20.0000 + 6.92820i −1.57622 + 0.546019i
\(162\) 0 0
\(163\) −2.00000 3.46410i −0.156652 0.271329i 0.777007 0.629492i \(-0.216737\pi\)
−0.933659 + 0.358162i \(0.883403\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) 0.500000 0.866025i 0.0382360 0.0662266i
\(172\) 0 0
\(173\) 8.00000 + 13.8564i 0.608229 + 1.05348i 0.991532 + 0.129861i \(0.0414530\pi\)
−0.383304 + 0.923622i \(0.625214\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.00000 3.46410i −0.150329 0.260378i
\(178\) 0 0
\(179\) −3.00000 + 5.19615i −0.224231 + 0.388379i −0.956088 0.293079i \(-0.905320\pi\)
0.731858 + 0.681457i \(0.238654\pi\)
\(180\) 0 0
\(181\) −15.0000 −1.11494 −0.557471 0.830197i \(-0.688228\pi\)
−0.557471 + 0.830197i \(0.688228\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.00000 + 13.8564i 0.585018 + 1.01328i
\(188\) 0 0
\(189\) −0.500000 + 2.59808i −0.0363696 + 0.188982i
\(190\) 0 0
\(191\) −3.00000 5.19615i −0.217072 0.375980i 0.736839 0.676068i \(-0.236317\pi\)
−0.953912 + 0.300088i \(0.902984\pi\)
\(192\) 0 0
\(193\) 5.50000 9.52628i 0.395899 0.685717i −0.597317 0.802005i \(-0.703766\pi\)
0.993215 + 0.116289i \(0.0370998\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −4.00000 + 6.92820i −0.283552 + 0.491127i −0.972257 0.233915i \(-0.924846\pi\)
0.688705 + 0.725042i \(0.258180\pi\)
\(200\) 0 0
\(201\) 6.50000 + 11.2583i 0.458475 + 0.794101i
\(202\) 0 0
\(203\) −2.00000 + 10.3923i −0.140372 + 0.729397i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.00000 6.92820i 0.278019 0.481543i
\(208\) 0 0
\(209\) −2.00000 −0.138343
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 5.00000 8.66025i 0.342594 0.593391i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −6.00000 5.19615i −0.407307 0.352738i
\(218\) 0 0
\(219\) −5.50000 9.52628i −0.371656 0.643726i
\(220\) 0 0
\(221\) 12.0000 20.7846i 0.807207 1.39812i
\(222\) 0 0
\(223\) −8.00000 −0.535720 −0.267860 0.963458i \(-0.586316\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) −0.500000 0.866025i −0.0330409 0.0572286i 0.849032 0.528341i \(-0.177186\pi\)
−0.882073 + 0.471113i \(0.843853\pi\)
\(230\) 0 0
\(231\) 5.00000 1.73205i 0.328976 0.113961i
\(232\) 0 0
\(233\) 7.00000 + 12.1244i 0.458585 + 0.794293i 0.998886 0.0471787i \(-0.0150230\pi\)
−0.540301 + 0.841472i \(0.681690\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3.00000 −0.194871
\(238\) 0 0
\(239\) 18.0000 1.16432 0.582162 0.813073i \(-0.302207\pi\)
0.582162 + 0.813073i \(0.302207\pi\)
\(240\) 0 0
\(241\) −7.00000 + 12.1244i −0.450910 + 0.780998i −0.998443 0.0557856i \(-0.982234\pi\)
0.547533 + 0.836784i \(0.315567\pi\)
\(242\) 0 0
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.50000 + 2.59808i 0.0954427 + 0.165312i
\(248\) 0 0
\(249\) 1.00000 1.73205i 0.0633724 0.109764i
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 9.00000 + 15.5885i 0.561405 + 0.972381i 0.997374 + 0.0724199i \(0.0230722\pi\)
−0.435970 + 0.899961i \(0.643595\pi\)
\(258\) 0 0
\(259\) 2.50000 0.866025i 0.155342 0.0538122i
\(260\) 0 0
\(261\) −2.00000 3.46410i −0.123797 0.214423i
\(262\) 0 0
\(263\) 6.00000 10.3923i 0.369976 0.640817i −0.619586 0.784929i \(-0.712699\pi\)
0.989561 + 0.144112i \(0.0460326\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.00000 1.73205i 0.0609711 0.105605i −0.833929 0.551872i \(-0.813914\pi\)
0.894900 + 0.446267i \(0.147247\pi\)
\(270\) 0 0
\(271\) 12.0000 + 20.7846i 0.728948 + 1.26258i 0.957328 + 0.289003i \(0.0933238\pi\)
−0.228380 + 0.973572i \(0.573343\pi\)
\(272\) 0 0
\(273\) −6.00000 5.19615i −0.363137 0.314485i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.50000 14.7224i 0.510716 0.884585i −0.489207 0.872167i \(-0.662714\pi\)
0.999923 0.0124177i \(-0.00395278\pi\)
\(278\) 0 0
\(279\) 3.00000 0.179605
\(280\) 0 0
\(281\) 20.0000 1.19310 0.596550 0.802576i \(-0.296538\pi\)
0.596550 + 0.802576i \(0.296538\pi\)
\(282\) 0 0
\(283\) 9.50000 16.4545i 0.564716 0.978117i −0.432360 0.901701i \(-0.642319\pi\)
0.997076 0.0764162i \(-0.0243478\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3.00000 + 15.5885i −0.177084 + 0.920158i
\(288\) 0 0
\(289\) −23.5000 40.7032i −1.38235 2.39431i
\(290\) 0 0
\(291\) 5.00000 8.66025i 0.293105 0.507673i
\(292\) 0 0
\(293\) 24.0000 1.40209 0.701047 0.713115i \(-0.252716\pi\)
0.701047 + 0.713115i \(0.252716\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.00000 + 1.73205i −0.0580259 + 0.100504i
\(298\) 0 0
\(299\) 12.0000 + 20.7846i 0.693978 + 1.20201i
\(300\) 0 0
\(301\) 5.50000 28.5788i 0.317015 1.64726i
\(302\) 0 0
\(303\) −5.00000 8.66025i −0.287242 0.497519i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 23.0000 1.31268 0.656340 0.754466i \(-0.272104\pi\)
0.656340 + 0.754466i \(0.272104\pi\)
\(308\) 0 0
\(309\) −11.0000 −0.625768
\(310\) 0 0
\(311\) 1.00000 1.73205i 0.0567048 0.0982156i −0.836280 0.548303i \(-0.815274\pi\)
0.892984 + 0.450088i \(0.148607\pi\)
\(312\) 0 0
\(313\) −8.50000 14.7224i −0.480448 0.832161i 0.519300 0.854592i \(-0.326193\pi\)
−0.999748 + 0.0224310i \(0.992859\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.0000 20.7846i −0.673987 1.16738i −0.976764 0.214318i \(-0.931247\pi\)
0.302777 0.953062i \(-0.402086\pi\)
\(318\) 0 0
\(319\) −4.00000 + 6.92820i −0.223957 + 0.387905i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000 0.445132
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.50000 + 9.52628i 0.304151 + 0.526804i
\(328\) 0 0
\(329\) −15.0000 + 5.19615i −0.826977 + 0.286473i
\(330\) 0 0
\(331\) −8.50000 14.7224i −0.467202 0.809218i 0.532096 0.846684i \(-0.321405\pi\)
−0.999298 + 0.0374662i \(0.988071\pi\)
\(332\) 0 0
\(333\) −0.500000 + 0.866025i −0.0273998 + 0.0474579i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −21.0000 −1.14394 −0.571971 0.820274i \(-0.693821\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(338\) 0 0
\(339\) −7.00000 + 12.1244i −0.380188 + 0.658505i
\(340\) 0 0
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 20.7846i 0.644194 1.11578i −0.340293 0.940319i \(-0.610526\pi\)
0.984487 0.175457i \(-0.0561403\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 3.00000 0.160128
\(352\) 0 0
\(353\) −3.00000 + 5.19615i −0.159674 + 0.276563i −0.934751 0.355303i \(-0.884378\pi\)
0.775077 + 0.631867i \(0.217711\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −20.0000 + 6.92820i −1.05851 + 0.366679i
\(358\) 0 0
\(359\) 10.0000 + 17.3205i 0.527780 + 0.914141i 0.999476 + 0.0323801i \(0.0103087\pi\)
−0.471696 + 0.881761i \(0.656358\pi\)
\(360\) 0 0
\(361\) 9.00000 15.5885i 0.473684 0.820445i
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 2.50000 4.33013i 0.130499 0.226031i −0.793370 0.608740i \(-0.791675\pi\)
0.923869 + 0.382709i \(0.125009\pi\)
\(368\) 0 0
\(369\) −3.00000 5.19615i −0.156174 0.270501i
\(370\) 0 0
\(371\) −24.0000 20.7846i −1.24602 1.07908i
\(372\) 0 0
\(373\) −2.50000 4.33013i −0.129445 0.224205i 0.794017 0.607896i \(-0.207986\pi\)
−0.923462 + 0.383691i \(0.874653\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) 13.0000 0.667765 0.333883 0.942615i \(-0.391641\pi\)
0.333883 + 0.942615i \(0.391641\pi\)
\(380\) 0 0
\(381\) 1.50000 2.59808i 0.0768473 0.133103i
\(382\) 0 0
\(383\) −14.0000 24.2487i −0.715367 1.23905i −0.962818 0.270151i \(-0.912926\pi\)
0.247451 0.968900i \(-0.420407\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.50000 + 9.52628i 0.279581 + 0.484248i
\(388\) 0 0
\(389\) −5.00000 + 8.66025i −0.253510 + 0.439092i −0.964490 0.264120i \(-0.914918\pi\)
0.710980 + 0.703213i \(0.248252\pi\)
\(390\) 0 0
\(391\) 64.0000 3.23662
\(392\) 0 0
\(393\) −2.00000 −0.100887
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.50000 + 2.59808i 0.0752828 + 0.130394i 0.901209 0.433384i \(-0.142681\pi\)
−0.825926 + 0.563778i \(0.809347\pi\)
\(398\) 0 0
\(399\) 0.500000 2.59808i 0.0250313 0.130066i
\(400\) 0 0
\(401\) 6.00000 + 10.3923i 0.299626 + 0.518967i 0.976050 0.217545i \(-0.0698049\pi\)
−0.676425 + 0.736512i \(0.736472\pi\)
\(402\) 0 0
\(403\) −4.50000 + 7.79423i −0.224161 + 0.388258i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.00000 0.0991363
\(408\) 0 0
\(409\) 9.50000 16.4545i 0.469745 0.813622i −0.529657 0.848212i \(-0.677679\pi\)
0.999402 + 0.0345902i \(0.0110126\pi\)
\(410\) 0 0
\(411\) 2.00000 + 3.46410i 0.0986527 + 0.170872i
\(412\) 0 0
\(413\) −8.00000 6.92820i −0.393654 0.340915i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.50000 4.33013i 0.122426 0.212047i
\(418\) 0 0
\(419\) 18.0000 0.879358 0.439679 0.898155i \(-0.355092\pi\)
0.439679 + 0.898155i \(0.355092\pi\)
\(420\) 0 0
\(421\) −27.0000 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15.0000 + 5.19615i −0.725901 + 0.251459i
\(428\) 0 0
\(429\) −3.00000 5.19615i −0.144841 0.250873i
\(430\) 0 0
\(431\) 15.0000 25.9808i 0.722525 1.25145i −0.237460 0.971397i \(-0.576315\pi\)
0.959985 0.280052i \(-0.0903517\pi\)
\(432\) 0 0
\(433\) 25.0000 1.20142 0.600712 0.799466i \(-0.294884\pi\)
0.600712 + 0.799466i \(0.294884\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.00000 + 6.92820i −0.191346 + 0.331421i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 1.00000 + 6.92820i 0.0476190 + 0.329914i
\(442\) 0 0
\(443\) −2.00000 3.46410i −0.0950229 0.164584i 0.814595 0.580030i \(-0.196959\pi\)
−0.909618 + 0.415445i \(0.863626\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −12.0000 −0.567581
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) −6.00000 + 10.3923i −0.282529 + 0.489355i
\(452\) 0 0
\(453\) 4.00000 + 6.92820i 0.187936 + 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.50000 + 11.2583i 0.304057 + 0.526642i 0.977051 0.213006i \(-0.0683253\pi\)
−0.672994 + 0.739648i \(0.734992\pi\)
\(458\) 0 0
\(459\) 4.00000 6.92820i 0.186704 0.323381i
\(460\) 0 0
\(461\) 4.00000 0.186299 0.0931493 0.995652i \(-0.470307\pi\)
0.0931493 + 0.995652i \(0.470307\pi\)
\(462\) 0 0
\(463\) 11.0000 0.511213 0.255607 0.966781i \(-0.417725\pi\)
0.255607 + 0.966781i \(0.417725\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.0000 + 29.4449i 0.786666 + 1.36255i 0.927999 + 0.372584i \(0.121528\pi\)
−0.141332 + 0.989962i \(0.545139\pi\)
\(468\) 0 0
\(469\) 26.0000 + 22.5167i 1.20057 + 1.03972i
\(470\) 0 0
\(471\) 1.00000 + 1.73205i 0.0460776 + 0.0798087i
\(472\) 0 0
\(473\) 11.0000 19.0526i 0.505781 0.876038i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 12.0000 0.549442
\(478\) 0 0
\(479\) 14.0000 24.2487i 0.639676 1.10795i −0.345827 0.938298i \(-0.612402\pi\)
0.985504 0.169654i \(-0.0542649\pi\)
\(480\) 0 0
\(481\) −1.50000 2.59808i −0.0683941 0.118462i
\(482\) 0 0
\(483\) 4.00000 20.7846i 0.182006 0.945732i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −9.50000 + 16.4545i −0.430486 + 0.745624i −0.996915 0.0784867i \(-0.974991\pi\)
0.566429 + 0.824110i \(0.308325\pi\)
\(488\) 0 0
\(489\) 4.00000 0.180886
\(490\) 0 0
\(491\) −36.0000 −1.62466 −0.812329 0.583200i \(-0.801800\pi\)
−0.812329 + 0.583200i \(0.801800\pi\)
\(492\) 0 0
\(493\) 16.0000 27.7128i 0.720604 1.24812i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.00000 25.9808i 0.224281 1.16540i
\(498\) 0 0
\(499\) 14.5000 + 25.1147i 0.649109 + 1.12429i 0.983336 + 0.181797i \(0.0581915\pi\)
−0.334227 + 0.942493i \(0.608475\pi\)
\(500\) 0 0
\(501\) −1.00000 + 1.73205i −0.0446767 + 0.0773823i
\(502\) 0 0
\(503\) 30.0000 1.33763 0.668817 0.743427i \(-0.266801\pi\)
0.668817 + 0.743427i \(0.266801\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.00000 3.46410i 0.0888231 0.153846i
\(508\) 0 0
\(509\) −9.00000 15.5885i −0.398918 0.690946i 0.594675 0.803966i \(-0.297281\pi\)
−0.993593 + 0.113020i \(0.963948\pi\)
\(510\) 0 0
\(511\) −22.0000 19.0526i −0.973223 0.842836i
\(512\) 0 0
\(513\) 0.500000 + 0.866025i 0.0220755 + 0.0382360i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −12.0000 −0.527759
\(518\) 0 0
\(519\) −16.0000 −0.702322
\(520\) 0 0
\(521\) 18.0000 31.1769i 0.788594 1.36589i −0.138234 0.990400i \(-0.544143\pi\)
0.926828 0.375486i \(-0.122524\pi\)
\(522\) 0 0
\(523\) −15.5000 26.8468i −0.677768 1.17393i −0.975652 0.219326i \(-0.929614\pi\)
0.297884 0.954602i \(-0.403719\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12.0000 + 20.7846i 0.522728 + 0.905392i
\(528\) 0 0
\(529\) −20.5000 + 35.5070i −0.891304 + 1.54378i
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 18.0000 0.779667
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −3.00000 5.19615i −0.129460 0.224231i
\(538\) 0 0
\(539\) 11.0000 8.66025i 0.473804 0.373024i
\(540\) 0 0
\(541\) 7.50000 + 12.9904i 0.322450 + 0.558500i 0.980993 0.194043i \(-0.0621602\pi\)
−0.658543 + 0.752543i \(0.728827\pi\)
\(542\) 0 0
\(543\) 7.50000 12.9904i 0.321856 0.557471i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) 3.00000 5.19615i 0.128037 0.221766i
\(550\) 0 0
\(551\) 2.00000 + 3.46410i 0.0852029 + 0.147576i
\(552\) 0 0
\(553\) −7.50000 + 2.59808i −0.318932 + 0.110481i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.0000 19.0526i 0.466085 0.807283i −0.533165 0.846011i \(-0.678997\pi\)
0.999250 + 0.0387286i \(0.0123308\pi\)
\(558\) 0 0
\(559\) −33.0000 −1.39575
\(560\) 0 0
\(561\) −16.0000 −0.675521
\(562\) 0 0
\(563\) −23.0000 + 39.8372i −0.969334 + 1.67894i −0.271846 + 0.962341i \(0.587634\pi\)
−0.697489 + 0.716596i \(0.745699\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.00000 1.73205i −0.0839921 0.0727393i
\(568\) 0 0
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) 10.5000 18.1865i 0.439411 0.761083i −0.558233 0.829684i \(-0.688520\pi\)
0.997644 + 0.0686016i \(0.0218537\pi\)
\(572\) 0 0
\(573\) 6.00000 0.250654
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −20.5000 + 35.5070i −0.853426 + 1.47818i 0.0246713 + 0.999696i \(0.492146\pi\)
−0.878097 + 0.478482i \(0.841187\pi\)
\(578\) 0 0
\(579\) 5.50000 + 9.52628i 0.228572 + 0.395899i
\(580\) 0 0
\(581\) 1.00000 5.19615i 0.0414870 0.215573i
\(582\) 0 0
\(583\) −12.0000 20.7846i −0.496989 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.0000 −1.32078 −0.660391 0.750922i \(-0.729609\pi\)
−0.660391 + 0.750922i \(0.729609\pi\)
\(588\) 0 0
\(589\) −3.00000 −0.123613
\(590\) 0 0
\(591\) 4.00000 6.92820i 0.164538 0.284988i
\(592\) 0 0
\(593\) −3.00000 5.19615i −0.123195 0.213380i 0.797831 0.602881i \(-0.205981\pi\)
−0.921026 + 0.389501i \(0.872647\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.00000 6.92820i −0.163709 0.283552i
\(598\) 0 0
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) −1.00000 −0.0407909 −0.0203954 0.999792i \(-0.506493\pi\)
−0.0203954 + 0.999792i \(0.506493\pi\)
\(602\) 0 0
\(603\) −13.0000 −0.529401
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.50000 2.59808i −0.0608831 0.105453i 0.833977 0.551799i \(-0.186058\pi\)
−0.894860 + 0.446346i \(0.852725\pi\)
\(608\) 0 0
\(609\) −8.00000 6.92820i −0.324176 0.280745i
\(610\) 0 0
\(611\) 9.00000 + 15.5885i 0.364101 + 0.630641i
\(612\) 0 0
\(613\) −15.0000 + 25.9808i −0.605844 + 1.04935i 0.386073 + 0.922468i \(0.373831\pi\)
−0.991917 + 0.126885i \(0.959502\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.0000 −1.04672 −0.523360 0.852111i \(-0.675322\pi\)
−0.523360 + 0.852111i \(0.675322\pi\)
\(618\) 0 0
\(619\) 5.50000 9.52628i 0.221064 0.382893i −0.734068 0.679076i \(-0.762380\pi\)
0.955131 + 0.296183i \(0.0957138\pi\)
\(620\) 0 0
\(621\) 4.00000 + 6.92820i 0.160514 + 0.278019i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 1.00000 1.73205i 0.0399362 0.0691714i
\(628\) 0 0
\(629\) −8.00000 −0.318981
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 2.00000 3.46410i 0.0794929 0.137686i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −19.5000 7.79423i −0.772618 0.308819i
\(638\) 0 0
\(639\) 5.00000 + 8.66025i 0.197797 + 0.342594i
\(640\) 0 0
\(641\) 20.0000 34.6410i 0.789953 1.36824i −0.136043 0.990703i \(-0.543438\pi\)
0.925995 0.377535i \(-0.123228\pi\)
\(642\) 0 0
\(643\) −35.0000 −1.38027 −0.690133 0.723683i \(-0.742448\pi\)
−0.690133 + 0.723683i \(0.742448\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.00000 5.19615i 0.117942 0.204282i −0.801010 0.598651i \(-0.795704\pi\)
0.918952 + 0.394369i \(0.129037\pi\)
\(648\) 0 0
\(649\) −4.00000 6.92820i −0.157014 0.271956i
\(650\) 0 0
\(651\) 7.50000 2.59808i 0.293948 0.101827i
\(652\) 0 0
\(653\) −3.00000 5.19615i −0.117399 0.203341i 0.801337 0.598213i \(-0.204122\pi\)
−0.918736 + 0.394872i \(0.870789\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 11.0000 0.429151
\(658\) 0 0
\(659\) −28.0000 −1.09073 −0.545363 0.838200i \(-0.683608\pi\)
−0.545363 + 0.838200i \(0.683608\pi\)
\(660\) 0 0
\(661\) 14.5000 25.1147i 0.563985 0.976850i −0.433159 0.901318i \(-0.642601\pi\)
0.997143 0.0755324i \(-0.0240656\pi\)
\(662\) 0 0
\(663\) 12.0000 + 20.7846i 0.466041 + 0.807207i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000 + 27.7128i 0.619522 + 1.07304i
\(668\) 0 0
\(669\) 4.00000 6.92820i 0.154649 0.267860i
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) 1.00000 0.0385472 0.0192736 0.999814i \(-0.493865\pi\)
0.0192736 + 0.999814i \(0.493865\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6.00000 + 10.3923i 0.230599 + 0.399409i 0.957984 0.286820i \(-0.0925982\pi\)
−0.727386 + 0.686229i \(0.759265\pi\)
\(678\) 0 0
\(679\) 5.00000 25.9808i 0.191882 0.997050i
\(680\) 0 0
\(681\) −9.00000 15.5885i −0.344881 0.597351i
\(682\) 0 0
\(683\) 18.0000 31.1769i 0.688751 1.19295i −0.283491 0.958975i \(-0.591493\pi\)
0.972242 0.233977i \(-0.0751739\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.00000 0.0381524
\(688\) 0 0
\(689\) −18.0000 + 31.1769i −0.685745 + 1.18775i
\(690\) 0 0
\(691\) 21.5000 + 37.2391i 0.817899 + 1.41664i 0.907228 + 0.420640i \(0.138194\pi\)
−0.0893292 + 0.996002i \(0.528472\pi\)
\(692\) 0 0
\(693\) −1.00000 + 5.19615i −0.0379869 + 0.197386i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 24.0000 41.5692i 0.909065 1.57455i
\(698\) 0 0
\(699\) −14.0000 −0.529529
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) 0 0
\(703\) 0.500000 0.866025i 0.0188579 0.0326628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −20.0000 17.3205i −0.752177 0.651405i
\(708\) 0 0
\(709\) −7.00000 12.1244i −0.262891 0.455340i 0.704118 0.710083i \(-0.251342\pi\)
−0.967009 + 0.254743i \(0.918009\pi\)
\(710\) 0 0
\(711\) 1.50000 2.59808i 0.0562544 0.0974355i
\(712\) 0 0
\(713\) −24.0000 −0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −9.00000 + 15.5885i −0.336111 + 0.582162i
\(718\) 0 0
\(719\) 3.00000 + 5.19615i 0.111881 + 0.193784i 0.916529 0.399969i \(-0.130979\pi\)
−0.804648 + 0.593753i \(0.797646\pi\)
\(720\) 0 0
\(721\) −27.5000 + 9.52628i −1.02415 + 0.354777i
\(722\) 0 0
\(723\) −7.00000 12.1244i −0.260333 0.450910i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 23.0000 0.853023 0.426511 0.904482i \(-0.359742\pi\)
0.426511 + 0.904482i \(0.359742\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −44.0000 + 76.2102i −1.62740 + 2.81874i
\(732\) 0 0
\(733\) 22.5000 + 38.9711i 0.831056 + 1.43943i 0.897201 + 0.441622i \(0.145597\pi\)
−0.0661448 + 0.997810i \(0.521070\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13.0000 + 22.5167i 0.478861 + 0.829412i
\(738\) 0 0
\(739\) 4.50000 7.79423i 0.165535 0.286715i −0.771310 0.636460i \(-0.780398\pi\)
0.936845 + 0.349744i \(0.113732\pi\)
\(740\) 0 0
\(741\) −3.00000 −0.110208
\(742\) 0 0
\(743\) 18.0000 0.660356 0.330178 0.943919i \(-0.392891\pi\)
0.330178 + 0.943919i \(0.392891\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.00000 + 1.73205i 0.0365881 + 0.0633724i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −7.50000 12.9904i −0.273679 0.474026i 0.696122 0.717923i \(-0.254907\pi\)
−0.969801 + 0.243898i \(0.921574\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −42.0000 −1.52652 −0.763258 0.646094i \(-0.776401\pi\)
−0.763258 + 0.646094i \(0.776401\pi\)
\(758\) 0 0
\(759\) 8.00000 13.8564i 0.290382 0.502956i
\(760\) 0 0
\(761\) −4.00000 6.92820i −0.145000 0.251147i 0.784373 0.620289i \(-0.212985\pi\)
−0.929373 + 0.369142i \(0.879652\pi\)
\(762\) 0 0
\(763\) 22.0000 + 19.0526i 0.796453 + 0.689749i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.00000 + 10.3923i −0.216647 + 0.375244i
\(768\) 0 0
\(769\) 31.0000 1.11789 0.558944 0.829205i \(-0.311207\pi\)
0.558944 + 0.829205i \(0.311207\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) 11.0000 19.0526i 0.395643 0.685273i −0.597540 0.801839i \(-0.703855\pi\)
0.993183 + 0.116566i \(0.0371886\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.500000 + 2.59808i −0.0179374 + 0.0932055i
\(778\) 0 0
\(779\) 3.00000 + 5.19615i 0.107486 + 0.186171i
\(780\) 0 0
\(781\) 10.0000 17.3205i 0.357828 0.619777i
\(782\) 0 0
\(783\) 4.00000 0.142948
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 12.0000 20.7846i 0.427754 0.740891i −0.568919 0.822393i \(-0.692638\pi\)
0.996673 + 0.0815020i \(0.0259717\pi\)
\(788\) 0 0
\(789\) 6.00000 + 10.3923i 0.213606 + 0.369976i
\(790\) 0 0
\(791\) −7.00000 + 36.3731i −0.248891 + 1.29328i
\(792\) 0 0
\(793\) 9.00000 + 15.5885i 0.319599 + 0.553562i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 48.0000 1.70025 0.850124 0.526583i \(-0.176527\pi\)
0.850124 + 0.526583i \(0.176527\pi\)
\(798\) 0 0
\(799\) 48.0000 1.69812
\(800\) 0 0