# Properties

 Label 2100.2.q.b Level $2100$ Weight $2$ Character orbit 2100.q Analytic conductor $16.769$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2100,2,Mod(1201,2100)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2100, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2100.1201");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2100.q (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$16.7685844245$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 84) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\zeta_{6} - 1) q^{3} + (3 \zeta_{6} - 2) q^{7} - \zeta_{6} q^{9} +O(q^{10})$$ q + (z - 1) * q^3 + (3*z - 2) * q^7 - z * q^9 $$q + (\zeta_{6} - 1) q^{3} + (3 \zeta_{6} - 2) q^{7} - \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{11} + 3 q^{13} + ( - 8 \zeta_{6} + 8) q^{17} + \zeta_{6} q^{19} + ( - 2 \zeta_{6} - 1) q^{21} + 8 \zeta_{6} q^{23} + q^{27} + 4 q^{29} + (3 \zeta_{6} - 3) q^{31} - 2 \zeta_{6} q^{33} - \zeta_{6} q^{37} + (3 \zeta_{6} - 3) q^{39} + 6 q^{41} - 11 q^{43} + 6 \zeta_{6} q^{47} + ( - 3 \zeta_{6} - 5) q^{49} + 8 \zeta_{6} q^{51} + (12 \zeta_{6} - 12) q^{53} - q^{57} + (4 \zeta_{6} - 4) q^{59} + 6 \zeta_{6} q^{61} + ( - \zeta_{6} + 3) q^{63} + ( - 13 \zeta_{6} + 13) q^{67} - 8 q^{69} - 10 q^{71} + (11 \zeta_{6} - 11) q^{73} + ( - 4 \zeta_{6} - 2) q^{77} + 3 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{81} - 2 q^{83} + (4 \zeta_{6} - 4) q^{87} + (9 \zeta_{6} - 6) q^{91} - 3 \zeta_{6} q^{93} - 10 q^{97} + 2 q^{99} +O(q^{100})$$ q + (z - 1) * q^3 + (3*z - 2) * q^7 - z * q^9 + (2*z - 2) * q^11 + 3 * q^13 + (-8*z + 8) * q^17 + z * q^19 + (-2*z - 1) * q^21 + 8*z * q^23 + q^27 + 4 * q^29 + (3*z - 3) * q^31 - 2*z * q^33 - z * q^37 + (3*z - 3) * q^39 + 6 * q^41 - 11 * q^43 + 6*z * q^47 + (-3*z - 5) * q^49 + 8*z * q^51 + (12*z - 12) * q^53 - q^57 + (4*z - 4) * q^59 + 6*z * q^61 + (-z + 3) * q^63 + (-13*z + 13) * q^67 - 8 * q^69 - 10 * q^71 + (11*z - 11) * q^73 + (-4*z - 2) * q^77 + 3*z * q^79 + (z - 1) * q^81 - 2 * q^83 + (4*z - 4) * q^87 + (9*z - 6) * q^91 - 3*z * q^93 - 10 * q^97 + 2 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{3} - q^{7} - q^{9}+O(q^{10})$$ 2 * q - q^3 - q^7 - q^9 $$2 q - q^{3} - q^{7} - q^{9} - 2 q^{11} + 6 q^{13} + 8 q^{17} + q^{19} - 4 q^{21} + 8 q^{23} + 2 q^{27} + 8 q^{29} - 3 q^{31} - 2 q^{33} - q^{37} - 3 q^{39} + 12 q^{41} - 22 q^{43} + 6 q^{47} - 13 q^{49} + 8 q^{51} - 12 q^{53} - 2 q^{57} - 4 q^{59} + 6 q^{61} + 5 q^{63} + 13 q^{67} - 16 q^{69} - 20 q^{71} - 11 q^{73} - 8 q^{77} + 3 q^{79} - q^{81} - 4 q^{83} - 4 q^{87} - 3 q^{91} - 3 q^{93} - 20 q^{97} + 4 q^{99}+O(q^{100})$$ 2 * q - q^3 - q^7 - q^9 - 2 * q^11 + 6 * q^13 + 8 * q^17 + q^19 - 4 * q^21 + 8 * q^23 + 2 * q^27 + 8 * q^29 - 3 * q^31 - 2 * q^33 - q^37 - 3 * q^39 + 12 * q^41 - 22 * q^43 + 6 * q^47 - 13 * q^49 + 8 * q^51 - 12 * q^53 - 2 * q^57 - 4 * q^59 + 6 * q^61 + 5 * q^63 + 13 * q^67 - 16 * q^69 - 20 * q^71 - 11 * q^73 - 8 * q^77 + 3 * q^79 - q^81 - 4 * q^83 - 4 * q^87 - 3 * q^91 - 3 * q^93 - 20 * q^97 + 4 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times$$.

 $$n$$ $$701$$ $$1051$$ $$1177$$ $$1501$$ $$\chi(n)$$ $$1$$ $$1$$ $$1$$ $$-\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1201.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 −0.500000 + 0.866025i 0 0 0 −0.500000 + 2.59808i 0 −0.500000 0.866025i 0
1801.1 0 −0.500000 0.866025i 0 0 0 −0.500000 2.59808i 0 −0.500000 + 0.866025i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.q.b 2
5.b even 2 1 84.2.i.a 2
5.c odd 4 2 2100.2.bc.a 4
7.c even 3 1 inner 2100.2.q.b 2
15.d odd 2 1 252.2.k.a 2
20.d odd 2 1 336.2.q.c 2
35.c odd 2 1 588.2.i.b 2
35.i odd 6 1 588.2.a.f 1
35.i odd 6 1 588.2.i.b 2
35.j even 6 1 84.2.i.a 2
35.j even 6 1 588.2.a.a 1
35.l odd 12 2 2100.2.bc.a 4
40.e odd 2 1 1344.2.q.n 2
40.f even 2 1 1344.2.q.b 2
45.h odd 6 1 2268.2.i.b 2
45.h odd 6 1 2268.2.l.g 2
45.j even 6 1 2268.2.i.g 2
45.j even 6 1 2268.2.l.b 2
60.h even 2 1 1008.2.s.c 2
105.g even 2 1 1764.2.k.j 2
105.o odd 6 1 252.2.k.a 2
105.o odd 6 1 1764.2.a.h 1
105.p even 6 1 1764.2.a.c 1
105.p even 6 1 1764.2.k.j 2
140.c even 2 1 2352.2.q.q 2
140.p odd 6 1 336.2.q.c 2
140.p odd 6 1 2352.2.a.o 1
140.s even 6 1 2352.2.a.k 1
140.s even 6 1 2352.2.q.q 2
280.ba even 6 1 9408.2.a.bx 1
280.bf even 6 1 1344.2.q.b 2
280.bf even 6 1 9408.2.a.cx 1
280.bi odd 6 1 1344.2.q.n 2
280.bi odd 6 1 9408.2.a.bi 1
280.bk odd 6 1 9408.2.a.i 1
315.r even 6 1 2268.2.l.b 2
315.v odd 6 1 2268.2.i.b 2
315.bo even 6 1 2268.2.i.g 2
315.br odd 6 1 2268.2.l.g 2
420.ba even 6 1 1008.2.s.c 2
420.ba even 6 1 7056.2.a.bs 1
420.be odd 6 1 7056.2.a.o 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.i.a 2 5.b even 2 1
84.2.i.a 2 35.j even 6 1
252.2.k.a 2 15.d odd 2 1
252.2.k.a 2 105.o odd 6 1
336.2.q.c 2 20.d odd 2 1
336.2.q.c 2 140.p odd 6 1
588.2.a.a 1 35.j even 6 1
588.2.a.f 1 35.i odd 6 1
588.2.i.b 2 35.c odd 2 1
588.2.i.b 2 35.i odd 6 1
1008.2.s.c 2 60.h even 2 1
1008.2.s.c 2 420.ba even 6 1
1344.2.q.b 2 40.f even 2 1
1344.2.q.b 2 280.bf even 6 1
1344.2.q.n 2 40.e odd 2 1
1344.2.q.n 2 280.bi odd 6 1
1764.2.a.c 1 105.p even 6 1
1764.2.a.h 1 105.o odd 6 1
1764.2.k.j 2 105.g even 2 1
1764.2.k.j 2 105.p even 6 1
2100.2.q.b 2 1.a even 1 1 trivial
2100.2.q.b 2 7.c even 3 1 inner
2100.2.bc.a 4 5.c odd 4 2
2100.2.bc.a 4 35.l odd 12 2
2268.2.i.b 2 45.h odd 6 1
2268.2.i.b 2 315.v odd 6 1
2268.2.i.g 2 45.j even 6 1
2268.2.i.g 2 315.bo even 6 1
2268.2.l.b 2 45.j even 6 1
2268.2.l.b 2 315.r even 6 1
2268.2.l.g 2 45.h odd 6 1
2268.2.l.g 2 315.br odd 6 1
2352.2.a.k 1 140.s even 6 1
2352.2.a.o 1 140.p odd 6 1
2352.2.q.q 2 140.c even 2 1
2352.2.q.q 2 140.s even 6 1
7056.2.a.o 1 420.be odd 6 1
7056.2.a.bs 1 420.ba even 6 1
9408.2.a.i 1 280.bk odd 6 1
9408.2.a.bi 1 280.bi odd 6 1
9408.2.a.bx 1 280.ba even 6 1
9408.2.a.cx 1 280.bf even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2100, [\chi])$$:

 $$T_{11}^{2} + 2T_{11} + 4$$ T11^2 + 2*T11 + 4 $$T_{13} - 3$$ T13 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + T + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + T + 7$$
$11$ $$T^{2} + 2T + 4$$
$13$ $$(T - 3)^{2}$$
$17$ $$T^{2} - 8T + 64$$
$19$ $$T^{2} - T + 1$$
$23$ $$T^{2} - 8T + 64$$
$29$ $$(T - 4)^{2}$$
$31$ $$T^{2} + 3T + 9$$
$37$ $$T^{2} + T + 1$$
$41$ $$(T - 6)^{2}$$
$43$ $$(T + 11)^{2}$$
$47$ $$T^{2} - 6T + 36$$
$53$ $$T^{2} + 12T + 144$$
$59$ $$T^{2} + 4T + 16$$
$61$ $$T^{2} - 6T + 36$$
$67$ $$T^{2} - 13T + 169$$
$71$ $$(T + 10)^{2}$$
$73$ $$T^{2} + 11T + 121$$
$79$ $$T^{2} - 3T + 9$$
$83$ $$(T + 2)^{2}$$
$89$ $$T^{2}$$
$97$ $$(T + 10)^{2}$$