Properties

Label 2100.2.q.b
Level $2100$
Weight $2$
Character orbit 2100.q
Analytic conductor $16.769$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{3} + ( -2 + 3 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{3} + ( -2 + 3 \zeta_{6} ) q^{7} -\zeta_{6} q^{9} + ( -2 + 2 \zeta_{6} ) q^{11} + 3 q^{13} + ( 8 - 8 \zeta_{6} ) q^{17} + \zeta_{6} q^{19} + ( -1 - 2 \zeta_{6} ) q^{21} + 8 \zeta_{6} q^{23} + q^{27} + 4 q^{29} + ( -3 + 3 \zeta_{6} ) q^{31} -2 \zeta_{6} q^{33} -\zeta_{6} q^{37} + ( -3 + 3 \zeta_{6} ) q^{39} + 6 q^{41} -11 q^{43} + 6 \zeta_{6} q^{47} + ( -5 - 3 \zeta_{6} ) q^{49} + 8 \zeta_{6} q^{51} + ( -12 + 12 \zeta_{6} ) q^{53} - q^{57} + ( -4 + 4 \zeta_{6} ) q^{59} + 6 \zeta_{6} q^{61} + ( 3 - \zeta_{6} ) q^{63} + ( 13 - 13 \zeta_{6} ) q^{67} -8 q^{69} -10 q^{71} + ( -11 + 11 \zeta_{6} ) q^{73} + ( -2 - 4 \zeta_{6} ) q^{77} + 3 \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -2 q^{83} + ( -4 + 4 \zeta_{6} ) q^{87} + ( -6 + 9 \zeta_{6} ) q^{91} -3 \zeta_{6} q^{93} -10 q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{3} - q^{7} - q^{9} + O(q^{10}) \) \( 2q - q^{3} - q^{7} - q^{9} - 2q^{11} + 6q^{13} + 8q^{17} + q^{19} - 4q^{21} + 8q^{23} + 2q^{27} + 8q^{29} - 3q^{31} - 2q^{33} - q^{37} - 3q^{39} + 12q^{41} - 22q^{43} + 6q^{47} - 13q^{49} + 8q^{51} - 12q^{53} - 2q^{57} - 4q^{59} + 6q^{61} + 5q^{63} + 13q^{67} - 16q^{69} - 20q^{71} - 11q^{73} - 8q^{77} + 3q^{79} - q^{81} - 4q^{83} - 4q^{87} - 3q^{91} - 3q^{93} - 20q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1201.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0 0 −0.500000 + 2.59808i 0 −0.500000 0.866025i 0
1801.1 0 −0.500000 0.866025i 0 0 0 −0.500000 2.59808i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.q.b 2
5.b even 2 1 84.2.i.a 2
5.c odd 4 2 2100.2.bc.a 4
7.c even 3 1 inner 2100.2.q.b 2
15.d odd 2 1 252.2.k.a 2
20.d odd 2 1 336.2.q.c 2
35.c odd 2 1 588.2.i.b 2
35.i odd 6 1 588.2.a.f 1
35.i odd 6 1 588.2.i.b 2
35.j even 6 1 84.2.i.a 2
35.j even 6 1 588.2.a.a 1
35.l odd 12 2 2100.2.bc.a 4
40.e odd 2 1 1344.2.q.n 2
40.f even 2 1 1344.2.q.b 2
45.h odd 6 1 2268.2.i.b 2
45.h odd 6 1 2268.2.l.g 2
45.j even 6 1 2268.2.i.g 2
45.j even 6 1 2268.2.l.b 2
60.h even 2 1 1008.2.s.c 2
105.g even 2 1 1764.2.k.j 2
105.o odd 6 1 252.2.k.a 2
105.o odd 6 1 1764.2.a.h 1
105.p even 6 1 1764.2.a.c 1
105.p even 6 1 1764.2.k.j 2
140.c even 2 1 2352.2.q.q 2
140.p odd 6 1 336.2.q.c 2
140.p odd 6 1 2352.2.a.o 1
140.s even 6 1 2352.2.a.k 1
140.s even 6 1 2352.2.q.q 2
280.ba even 6 1 9408.2.a.bx 1
280.bf even 6 1 1344.2.q.b 2
280.bf even 6 1 9408.2.a.cx 1
280.bi odd 6 1 1344.2.q.n 2
280.bi odd 6 1 9408.2.a.bi 1
280.bk odd 6 1 9408.2.a.i 1
315.r even 6 1 2268.2.l.b 2
315.v odd 6 1 2268.2.i.b 2
315.bo even 6 1 2268.2.i.g 2
315.br odd 6 1 2268.2.l.g 2
420.ba even 6 1 1008.2.s.c 2
420.ba even 6 1 7056.2.a.bs 1
420.be odd 6 1 7056.2.a.o 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.2.i.a 2 5.b even 2 1
84.2.i.a 2 35.j even 6 1
252.2.k.a 2 15.d odd 2 1
252.2.k.a 2 105.o odd 6 1
336.2.q.c 2 20.d odd 2 1
336.2.q.c 2 140.p odd 6 1
588.2.a.a 1 35.j even 6 1
588.2.a.f 1 35.i odd 6 1
588.2.i.b 2 35.c odd 2 1
588.2.i.b 2 35.i odd 6 1
1008.2.s.c 2 60.h even 2 1
1008.2.s.c 2 420.ba even 6 1
1344.2.q.b 2 40.f even 2 1
1344.2.q.b 2 280.bf even 6 1
1344.2.q.n 2 40.e odd 2 1
1344.2.q.n 2 280.bi odd 6 1
1764.2.a.c 1 105.p even 6 1
1764.2.a.h 1 105.o odd 6 1
1764.2.k.j 2 105.g even 2 1
1764.2.k.j 2 105.p even 6 1
2100.2.q.b 2 1.a even 1 1 trivial
2100.2.q.b 2 7.c even 3 1 inner
2100.2.bc.a 4 5.c odd 4 2
2100.2.bc.a 4 35.l odd 12 2
2268.2.i.b 2 45.h odd 6 1
2268.2.i.b 2 315.v odd 6 1
2268.2.i.g 2 45.j even 6 1
2268.2.i.g 2 315.bo even 6 1
2268.2.l.b 2 45.j even 6 1
2268.2.l.b 2 315.r even 6 1
2268.2.l.g 2 45.h odd 6 1
2268.2.l.g 2 315.br odd 6 1
2352.2.a.k 1 140.s even 6 1
2352.2.a.o 1 140.p odd 6 1
2352.2.q.q 2 140.c even 2 1
2352.2.q.q 2 140.s even 6 1
7056.2.a.o 1 420.be odd 6 1
7056.2.a.bs 1 420.ba even 6 1
9408.2.a.i 1 280.bk odd 6 1
9408.2.a.bi 1 280.bi odd 6 1
9408.2.a.bx 1 280.ba even 6 1
9408.2.a.cx 1 280.bf even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{2} + 2 T_{11} + 4 \)
\( T_{13} - 3 \)