Properties

Label 2100.2.k.a.1849.2
Level 2100
Weight 2
Character 2100.1849
Analytic conductor 16.769
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1849.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2100.1849
Dual form 2100.2.k.a.1849.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000i q^{3} -1.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} -1.00000i q^{7} -1.00000 q^{9} -6.00000 q^{11} +2.00000i q^{13} +4.00000 q^{19} +1.00000 q^{21} -6.00000i q^{23} -1.00000i q^{27} -6.00000 q^{29} +8.00000 q^{31} -6.00000i q^{33} -2.00000i q^{37} -2.00000 q^{39} +12.0000 q^{41} -4.00000i q^{43} -12.0000i q^{47} -1.00000 q^{49} -6.00000i q^{53} +4.00000i q^{57} -10.0000 q^{61} +1.00000i q^{63} -8.00000i q^{67} +6.00000 q^{69} +6.00000 q^{71} -10.0000i q^{73} +6.00000i q^{77} +4.00000 q^{79} +1.00000 q^{81} -12.0000i q^{83} -6.00000i q^{87} -12.0000 q^{89} +2.00000 q^{91} +8.00000i q^{93} +10.0000i q^{97} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} - 12q^{11} + 8q^{19} + 2q^{21} - 12q^{29} + 16q^{31} - 4q^{39} + 24q^{41} - 2q^{49} - 20q^{61} + 12q^{69} + 12q^{71} + 8q^{79} + 2q^{81} - 24q^{89} + 4q^{91} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.00000i − 0.377964i
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) − 6.00000i − 1.25109i −0.780189 0.625543i \(-0.784877\pi\)
0.780189 0.625543i \(-0.215123\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) − 6.00000i − 1.04447i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) − 4.00000i − 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 12.0000i − 1.75038i −0.483779 0.875190i \(-0.660736\pi\)
0.483779 0.875190i \(-0.339264\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.00000i − 0.824163i −0.911147 0.412082i \(-0.864802\pi\)
0.911147 0.412082i \(-0.135198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 8.00000i − 0.977356i −0.872464 0.488678i \(-0.837479\pi\)
0.872464 0.488678i \(-0.162521\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) − 10.0000i − 1.17041i −0.810885 0.585206i \(-0.801014\pi\)
0.810885 0.585206i \(-0.198986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.00000i 0.683763i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 6.00000i − 0.643268i
\(88\) 0 0
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 0 0
\(93\) 8.00000i 0.829561i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000i 1.01535i 0.861550 + 0.507673i \(0.169494\pi\)
−0.861550 + 0.507673i \(0.830506\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.00000i 0.580042i 0.957020 + 0.290021i \(0.0936623\pi\)
−0.957020 + 0.290021i \(0.906338\pi\)
\(108\) 0 0
\(109\) −14.0000 −1.34096 −0.670478 0.741929i \(-0.733911\pi\)
−0.670478 + 0.741929i \(0.733911\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.00000i − 0.184900i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) 12.0000i 1.08200i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 4.00000i 0.354943i 0.984126 + 0.177471i \(0.0567917\pi\)
−0.984126 + 0.177471i \(0.943208\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 12.0000 1.04844 0.524222 0.851581i \(-0.324356\pi\)
0.524222 + 0.851581i \(0.324356\pi\)
\(132\) 0 0
\(133\) − 4.00000i − 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 6.00000i − 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) − 12.0000i − 1.00349i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.00000i − 0.0824786i
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 14.0000i − 1.11732i −0.829396 0.558661i \(-0.811315\pi\)
0.829396 0.558661i \(-0.188685\pi\)
\(158\) 0 0
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) − 16.0000i − 1.25322i −0.779334 0.626608i \(-0.784443\pi\)
0.779334 0.626608i \(-0.215557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) − 12.0000i − 0.912343i −0.889892 0.456172i \(-0.849220\pi\)
0.889892 0.456172i \(-0.150780\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.00000 −0.448461 −0.224231 0.974536i \(-0.571987\pi\)
−0.224231 + 0.974536i \(0.571987\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) − 10.0000i − 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) 6.00000 0.434145 0.217072 0.976156i \(-0.430349\pi\)
0.217072 + 0.976156i \(0.430349\pi\)
\(192\) 0 0
\(193\) − 10.0000i − 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 6.00000i 0.421117i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00000i 0.417029i
\(208\) 0 0
\(209\) −24.0000 −1.66011
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) 0 0
\(213\) 6.00000i 0.411113i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 8.00000i − 0.543075i
\(218\) 0 0
\(219\) 10.0000 0.675737
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 24.0000i − 1.59294i −0.604681 0.796468i \(-0.706699\pi\)
0.604681 0.796468i \(-0.293301\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) 6.00000i 0.393073i 0.980497 + 0.196537i \(0.0629694\pi\)
−0.980497 + 0.196537i \(0.937031\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) −10.0000 −0.644157 −0.322078 0.946713i \(-0.604381\pi\)
−0.322078 + 0.946713i \(0.604381\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) 0 0
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 36.0000i 2.26330i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) − 6.00000i − 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 12.0000i − 0.734388i
\(268\) 0 0
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) −16.0000 −0.971931 −0.485965 0.873978i \(-0.661532\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 2.00000i 0.121046i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 20.0000i 1.18888i 0.804141 + 0.594438i \(0.202626\pi\)
−0.804141 + 0.594438i \(0.797374\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 12.0000i − 0.708338i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) − 12.0000i − 0.701047i −0.936554 0.350524i \(-0.886004\pi\)
0.936554 0.350524i \(-0.113996\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.00000i 0.348155i
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −4.00000 −0.230556
\(302\) 0 0
\(303\) − 12.0000i − 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 20.0000i − 1.14146i −0.821138 0.570730i \(-0.806660\pi\)
0.821138 0.570730i \(-0.193340\pi\)
\(308\) 0 0
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 26.0000i 1.46961i 0.678280 + 0.734803i \(0.262726\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 30.0000i 1.68497i 0.538721 + 0.842484i \(0.318908\pi\)
−0.538721 + 0.842484i \(0.681092\pi\)
\(318\) 0 0
\(319\) 36.0000 2.01561
\(320\) 0 0
\(321\) −6.00000 −0.334887
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 14.0000i − 0.774202i
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −48.0000 −2.59935
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000i 0.966291i 0.875540 + 0.483145i \(0.160506\pi\)
−0.875540 + 0.483145i \(0.839494\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00000 −0.316668 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 25.0000i 1.31216i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 32.0000i − 1.67039i −0.549957 0.835193i \(-0.685356\pi\)
0.549957 0.835193i \(-0.314644\pi\)
\(368\) 0 0
\(369\) −12.0000 −0.624695
\(370\) 0 0
\(371\) −6.00000 −0.311504
\(372\) 0 0
\(373\) − 10.0000i − 0.517780i −0.965907 0.258890i \(-0.916643\pi\)
0.965907 0.258890i \(-0.0833568\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 12.0000i − 0.618031i
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) − 24.0000i − 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 14.0000i − 0.702640i −0.936255 0.351320i \(-0.885733\pi\)
0.936255 0.351320i \(-0.114267\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) 6.00000 0.299626 0.149813 0.988714i \(-0.452133\pi\)
0.149813 + 0.988714i \(0.452133\pi\)
\(402\) 0 0
\(403\) 16.0000i 0.797017i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12.0000i 0.594818i
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 6.00000 0.295958
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.00000i 0.195881i
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) 12.0000i 0.583460i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 10.0000i 0.483934i
\(428\) 0 0
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) 6.00000 0.289010 0.144505 0.989504i \(-0.453841\pi\)
0.144505 + 0.989504i \(0.453841\pi\)
\(432\) 0 0
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 24.0000i − 1.14808i
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 30.0000i 1.42534i 0.701498 + 0.712672i \(0.252515\pi\)
−0.701498 + 0.712672i \(0.747485\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000i 0.283790i
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −72.0000 −3.39035
\(452\) 0 0
\(453\) 8.00000i 0.375873i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) − 28.0000i − 1.30127i −0.759390 0.650635i \(-0.774503\pi\)
0.759390 0.650635i \(-0.225497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) 0 0
\(473\) 24.0000i 1.10352i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000i 0.274721i
\(478\) 0 0
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) − 6.00000i − 0.273009i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 32.0000i − 1.45006i −0.688718 0.725029i \(-0.741826\pi\)
0.688718 0.725029i \(-0.258174\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −18.0000 −0.812329 −0.406164 0.913800i \(-0.633134\pi\)
−0.406164 + 0.913800i \(0.633134\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 6.00000i − 0.269137i
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) − 24.0000i − 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 9.00000i 0.399704i
\(508\) 0 0
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) − 4.00000i − 0.176604i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 72.0000i 3.16656i
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) − 4.00000i − 0.174908i −0.996169 0.0874539i \(-0.972127\pi\)
0.996169 0.0874539i \(-0.0278730\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000i 1.03956i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 6.00000i − 0.258919i
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 2.00000i 0.0858282i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 8.00000i − 0.342055i −0.985266 0.171028i \(-0.945291\pi\)
0.985266 0.171028i \(-0.0547087\pi\)
\(548\) 0 0
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) − 4.00000i − 0.170097i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 42.0000i − 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 1.00000i − 0.0419961i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) −40.0000 −1.67395 −0.836974 0.547243i \(-0.815677\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 6.00000i 0.250654i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 22.0000i 0.915872i 0.888985 + 0.457936i \(0.151411\pi\)
−0.888985 + 0.457936i \(0.848589\pi\)
\(578\) 0 0
\(579\) 10.0000 0.415586
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 36.0000i 1.49097i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.0000i 0.990586i 0.868726 + 0.495293i \(0.164939\pi\)
−0.868726 + 0.495293i \(0.835061\pi\)
\(588\) 0 0
\(589\) 32.0000 1.31854
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 48.0000i 1.97112i 0.169316 + 0.985562i \(0.445844\pi\)
−0.169316 + 0.985562i \(0.554156\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 16.0000i 0.654836i
\(598\) 0 0
\(599\) −30.0000 −1.22577 −0.612883 0.790173i \(-0.709990\pi\)
−0.612883 + 0.790173i \(0.709990\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 8.00000i 0.325785i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 32.0000i − 1.29884i −0.760430 0.649420i \(-0.775012\pi\)
0.760430 0.649420i \(-0.224988\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) 38.0000i 1.53481i 0.641165 + 0.767403i \(0.278451\pi\)
−0.641165 + 0.767403i \(0.721549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.0000i 0.724653i 0.932051 + 0.362326i \(0.118017\pi\)
−0.932051 + 0.362326i \(0.881983\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 24.0000i − 0.958468i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 20.0000 0.796187 0.398094 0.917345i \(-0.369672\pi\)
0.398094 + 0.917345i \(0.369672\pi\)
\(632\) 0 0
\(633\) − 4.00000i − 0.158986i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 2.00000i − 0.0792429i
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) − 4.00000i − 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 36.0000i 1.41531i 0.706560 + 0.707653i \(0.250246\pi\)
−0.706560 + 0.707653i \(0.749754\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 8.00000 0.313545
\(652\) 0 0
\(653\) − 18.0000i − 0.704394i −0.935926 0.352197i \(-0.885435\pi\)
0.935926 0.352197i \(-0.114565\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10.0000i 0.390137i
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000i 1.39393i
\(668\) 0 0
\(669\) −8.00000 −0.309298
\(670\) 0 0
\(671\) 60.0000 2.31627
\(672\) 0 0
\(673\) − 34.0000i − 1.31060i −0.755367 0.655302i \(-0.772541\pi\)
0.755367 0.655302i \(-0.227459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 12.0000i − 0.461197i −0.973049 0.230599i \(-0.925932\pi\)
0.973049 0.230599i \(-0.0740685\pi\)
\(678\) 0 0
\(679\) 10.0000 0.383765
\(680\) 0 0
\(681\) 24.0000 0.919682
\(682\) 0 0
\(683\) − 42.0000i − 1.60709i −0.595247 0.803543i \(-0.702946\pi\)
0.595247 0.803543i \(-0.297054\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 2.00000i − 0.0763048i
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −4.00000 −0.152167 −0.0760836 0.997101i \(-0.524242\pi\)
−0.0760836 + 0.997101i \(0.524242\pi\)
\(692\) 0 0
\(693\) − 6.00000i − 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) − 8.00000i − 0.301726i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0000i 0.451306i
\(708\) 0 0
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 0 0
\(713\) − 48.0000i − 1.79761i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 18.0000i − 0.672222i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) − 10.0000i − 0.371904i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 8.00000i − 0.296704i −0.988935 0.148352i \(-0.952603\pi\)
0.988935 0.148352i \(-0.0473968\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 46.0000i − 1.69905i −0.527549 0.849524i \(-0.676889\pi\)
0.527549 0.849524i \(-0.323111\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 48.0000i 1.76810i
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) 6.00000i 0.220119i 0.993925 + 0.110059i \(0.0351041\pi\)
−0.993925 + 0.110059i \(0.964896\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) 6.00000 0.219235
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 38.0000i − 1.38113i −0.723269 0.690567i \(-0.757361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) 0 0
\(759\) −36.0000 −1.30672
\(760\) 0 0
\(761\) −36.0000 −1.30500 −0.652499 0.757789i \(-0.726280\pi\)
−0.652499 + 0.757789i \(0.726280\pi\)
\(762\) 0 0
\(763\) 14.0000i 0.506834i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −26.0000 −0.937584 −0.468792 0.883309i \(-0.655311\pi\)
−0.468792 + 0.883309i \(0.655311\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) 12.0000i 0.431610i 0.976436 + 0.215805i \(0.0692376\pi\)
−0.976436 + 0.215805i \(0.930762\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 2.00000i − 0.0717496i
\(778\) 0 0
\(779\) 48.0000 1.71978
\(780\) 0 0
\(781\) −36.0000 −1.28818
\(782\) 0 0
\(783\) 6.00000i 0.214423i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 0 0
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) − 20.0000i − 0.710221i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 36.0000i − 1.27519i −0.770374 0.637593i \(-0.779930\pi\)
0.770374 0.637593i \(-0.220070\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) 60.0000i 2.11735i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 24.0000i − 0.844840i
\(808\) 0 0
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) − 16.0000i − 0.561144i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 16.0000i − 0.559769i
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) − 4.00000i − 0.139431i −0.997567 0.0697156i \(-0.977791\pi\)
0.997567 0.0697156i \(-0.0222092\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.00000i 0.208640i 0.994544 + 0.104320i \(0.0332667\pi\)
−0.994544 + 0.104320i \(0.966733\pi\)
\(828\) 0 0
\(829\) 22.0000 0.764092 0.382046 0.924143i \(-0.375220\pi\)
0.382046 + 0.924143i \(0.375220\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 8.00000i − 0.276520i
\(838\) 0 0
\(839\) −12.0000 −0.414286 −0.207143 0.978311i \(-0.566417\pi\)
−0.207143 + 0.978311i \(0.566417\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) − 18.0000i − 0.619953i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 25.0000i − 0.859010i
\(848\) 0 0
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 14.0000i 0.479351i 0.970853 + 0.239675i \(0.0770410\pi\)
−0.970853 + 0.239675i \(0.922959\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 12.0000i − 0.409912i −0.978771 0.204956i \(-0.934295\pi\)
0.978771 0.204956i \(-0.0657052\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 12.0000 0.408959
\(862\) 0 0
\(863\) − 6.00000i − 0.204242i −0.994772 0.102121i \(-0.967437\pi\)
0.994772 0.102121i \(-0.0325630\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 17.0000i 0.577350i
\(868\) 0 0
\(869\) −24.0000 −0.814144
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 0 0
\(873\) − 10.0000i − 0.338449i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 14.0000i − 0.472746i −0.971662 0.236373i \(-0.924041\pi\)
0.971662 0.236373i \(-0.0759588\pi\)
\(878\) 0 0
\(879\) 12.0000 0.404750
\(880\) 0 0
\(881\) 24.0000 0.808581 0.404290 0.914631i \(-0.367519\pi\)
0.404290 + 0.914631i \(0.367519\pi\)
\(882\) 0 0
\(883\) − 4.00000i − 0.134611i −0.997732 0.0673054i \(-0.978560\pi\)
0.997732 0.0673054i \(-0.0214402\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 36.0000i − 1.20876i −0.796696 0.604381i \(-0.793421\pi\)
0.796696 0.604381i \(-0.206579\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) −6.00000 −0.201008
\(892\) 0 0
\(893\) − 48.0000i − 1.60626i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 12.0000i 0.400668i
\(898\) 0 0
\(899\) −48.0000 −1.60089
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 4.00000i − 0.133112i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.00000i 0.132818i 0.997792 + 0.0664089i \(0.0211542\pi\)
−0.997792 + 0.0664089i \(0.978846\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 54.0000 1.78910 0.894550 0.446968i \(-0.147496\pi\)
0.894550 + 0.446968i \(0.147496\pi\)
\(912\) 0 0
\(913\) 72.0000i 2.38285i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 12.0000i − 0.396275i
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 20.0000 0.659022
\(922\) 0 0
\(923\) 12.0000i 0.394985i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.00000i − 0.262754i
\(928\) 0 0
\(929\) −12.0000 −0.393707 −0.196854 0.980433i \(-0.563072\pi\)
−0.196854 + 0.980433i \(0.563072\pi\)
\(930\) 0 0
\(931\) −4.00000 −0.131095
\(932\) 0 0
\(933\) − 12.0000i − 0.392862i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 2.00000i − 0.0653372i −0.999466 0.0326686i \(-0.989599\pi\)
0.999466 0.0326686i \(-0.0104006\pi\)
\(938\) 0 0
\(939\) −26.0000 −0.848478
\(940\) 0 0
\(941\) −24.0000 −0.782378 −0.391189 0.920310i \(-0.627936\pi\)
−0.391189 + 0.920310i \(0.627936\pi\)
\(942\) 0 0
\(943\) − 72.0000i − 2.34464i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 30.0000i 0.974869i 0.873160 + 0.487435i \(0.162067\pi\)
−0.873160 + 0.487435i \(0.837933\pi\)
\(948\) 0 0
\(949\) 20.0000 0.649227
\(950\) 0 0
\(951\) −30.0000 −0.972817
\(952\) 0 0
\(953\) 42.0000i 1.36051i 0.732974 + 0.680257i \(0.238132\pi\)
−0.732974 + 0.680257i \(0.761868\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 36.0000i 1.16371i
\(958\) 0 0
\(959\) −6.00000 −0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) − 6.00000i − 0.193347i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 28.0000i 0.900419i 0.892923 + 0.450210i \(0.148651\pi\)
−0.892923 + 0.450210i \(0.851349\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 0 0
\(973\) − 4.00000i − 0.128234i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 6.00000i − 0.191957i −0.995383 0.0959785i \(-0.969402\pi\)
0.995383 0.0959785i \(-0.0305980\pi\)
\(978\) 0 0
\(979\) 72.0000 2.30113
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) 0 0
\(983\) − 48.0000i − 1.53096i −0.643458 0.765481i \(-0.722501\pi\)
0.643458 0.765481i \(-0.277499\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 12.0000i − 0.381964i
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 20.0000i 0.634681i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0000i 0.316703i 0.987383 + 0.158352i \(0.0506179\pi\)
−0.987383 + 0.158352i \(0.949382\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2100.2.k.a.1849.2 2
3.2 odd 2 6300.2.k.r.6049.1 2
5.2 odd 4 84.2.a.b.1.1 1
5.3 odd 4 2100.2.a.a.1.1 1
5.4 even 2 inner 2100.2.k.a.1849.1 2
15.2 even 4 252.2.a.b.1.1 1
15.8 even 4 6300.2.a.p.1.1 1
15.14 odd 2 6300.2.k.r.6049.2 2
20.3 even 4 8400.2.a.ct.1.1 1
20.7 even 4 336.2.a.b.1.1 1
35.2 odd 12 588.2.i.c.361.1 2
35.12 even 12 588.2.i.f.361.1 2
35.17 even 12 588.2.i.f.373.1 2
35.27 even 4 588.2.a.c.1.1 1
35.32 odd 12 588.2.i.c.373.1 2
40.27 even 4 1344.2.a.o.1.1 1
40.37 odd 4 1344.2.a.f.1.1 1
45.2 even 12 2268.2.j.f.757.1 2
45.7 odd 12 2268.2.j.i.757.1 2
45.22 odd 12 2268.2.j.i.1513.1 2
45.32 even 12 2268.2.j.f.1513.1 2
60.47 odd 4 1008.2.a.g.1.1 1
80.27 even 4 5376.2.c.x.2689.2 2
80.37 odd 4 5376.2.c.i.2689.1 2
80.67 even 4 5376.2.c.x.2689.1 2
80.77 odd 4 5376.2.c.i.2689.2 2
105.2 even 12 1764.2.k.e.361.1 2
105.17 odd 12 1764.2.k.d.1549.1 2
105.32 even 12 1764.2.k.e.1549.1 2
105.47 odd 12 1764.2.k.d.361.1 2
105.62 odd 4 1764.2.a.g.1.1 1
120.77 even 4 4032.2.a.u.1.1 1
120.107 odd 4 4032.2.a.t.1.1 1
140.27 odd 4 2352.2.a.s.1.1 1
140.47 odd 12 2352.2.q.g.1537.1 2
140.67 even 12 2352.2.q.s.961.1 2
140.87 odd 12 2352.2.q.g.961.1 2
140.107 even 12 2352.2.q.s.1537.1 2
280.27 odd 4 9408.2.a.r.1.1 1
280.237 even 4 9408.2.a.co.1.1 1
420.167 even 4 7056.2.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.2.a.b.1.1 1 5.2 odd 4
252.2.a.b.1.1 1 15.2 even 4
336.2.a.b.1.1 1 20.7 even 4
588.2.a.c.1.1 1 35.27 even 4
588.2.i.c.361.1 2 35.2 odd 12
588.2.i.c.373.1 2 35.32 odd 12
588.2.i.f.361.1 2 35.12 even 12
588.2.i.f.373.1 2 35.17 even 12
1008.2.a.g.1.1 1 60.47 odd 4
1344.2.a.f.1.1 1 40.37 odd 4
1344.2.a.o.1.1 1 40.27 even 4
1764.2.a.g.1.1 1 105.62 odd 4
1764.2.k.d.361.1 2 105.47 odd 12
1764.2.k.d.1549.1 2 105.17 odd 12
1764.2.k.e.361.1 2 105.2 even 12
1764.2.k.e.1549.1 2 105.32 even 12
2100.2.a.a.1.1 1 5.3 odd 4
2100.2.k.a.1849.1 2 5.4 even 2 inner
2100.2.k.a.1849.2 2 1.1 even 1 trivial
2268.2.j.f.757.1 2 45.2 even 12
2268.2.j.f.1513.1 2 45.32 even 12
2268.2.j.i.757.1 2 45.7 odd 12
2268.2.j.i.1513.1 2 45.22 odd 12
2352.2.a.s.1.1 1 140.27 odd 4
2352.2.q.g.961.1 2 140.87 odd 12
2352.2.q.g.1537.1 2 140.47 odd 12
2352.2.q.s.961.1 2 140.67 even 12
2352.2.q.s.1537.1 2 140.107 even 12
4032.2.a.t.1.1 1 120.107 odd 4
4032.2.a.u.1.1 1 120.77 even 4
5376.2.c.i.2689.1 2 80.37 odd 4
5376.2.c.i.2689.2 2 80.77 odd 4
5376.2.c.x.2689.1 2 80.67 even 4
5376.2.c.x.2689.2 2 80.27 even 4
6300.2.a.p.1.1 1 15.8 even 4
6300.2.k.r.6049.1 2 3.2 odd 2
6300.2.k.r.6049.2 2 15.14 odd 2
7056.2.a.x.1.1 1 420.167 even 4
8400.2.a.ct.1.1 1 20.3 even 4
9408.2.a.r.1.1 1 280.27 odd 4
9408.2.a.co.1.1 1 280.237 even 4