Properties

Label 2100.2.i
Level 2100
Weight 2
Character orbit i
Rep. character \(\chi_{2100}(1399,\cdot)\)
Character field \(\Q\)
Dimension 144
Sturm bound 960

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 140 \)
Character field: \(\Q\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2100, [\chi])\).

Total New Old
Modular forms 504 144 360
Cusp forms 456 144 312
Eisenstein series 48 0 48

Trace form

\( 144q - 144q^{9} + O(q^{10}) \) \( 144q - 144q^{9} - 28q^{14} + 32q^{16} + 20q^{44} - 52q^{46} + 24q^{49} - 20q^{56} - 60q^{64} + 76q^{74} + 144q^{81} + 40q^{84} + 44q^{86} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2100, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(140, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(700, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database