Properties

 Label 2100.2.f.c Level 2100 Weight 2 Character orbit 2100.f Analytic conductor 16.769 Analytic rank 0 Dimension 4 CM no Inner twists 4

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2100.f (of order $$2$$, degree $$1$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$16.7685844245$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\zeta_{12})$$ Defining polynomial: $$x^{4} - x^{2} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 420) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{12}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{3} + ( -2 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{7} -3 \zeta_{12}^{2} q^{9} +O(q^{10})$$ $$q + ( -\zeta_{12} + 2 \zeta_{12}^{3} ) q^{3} + ( -2 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{7} -3 \zeta_{12}^{2} q^{9} + ( 3 - 6 \zeta_{12}^{2} ) q^{11} + ( -2 \zeta_{12} + \zeta_{12}^{3} ) q^{13} + 3 \zeta_{12}^{3} q^{17} + ( -2 + 4 \zeta_{12}^{2} ) q^{19} + ( 1 - 5 \zeta_{12}^{2} ) q^{21} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( -3 + 6 \zeta_{12}^{2} ) q^{29} + ( 6 - 12 \zeta_{12}^{2} ) q^{31} + 9 \zeta_{12} q^{33} -8 \zeta_{12}^{3} q^{37} + ( 3 - 3 \zeta_{12}^{2} ) q^{39} + 6 q^{41} -10 \zeta_{12}^{3} q^{43} + 3 \zeta_{12}^{3} q^{47} + ( 3 - 8 \zeta_{12}^{2} ) q^{49} + ( -3 - 3 \zeta_{12}^{2} ) q^{51} + ( 12 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{53} -6 \zeta_{12} q^{57} -6 q^{59} + ( -4 + 8 \zeta_{12}^{2} ) q^{61} + ( 9 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{63} + 2 \zeta_{12}^{3} q^{67} + ( 6 - 12 \zeta_{12}^{2} ) q^{71} + ( 8 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{73} + ( 12 \zeta_{12} + 3 \zeta_{12}^{3} ) q^{77} + 13 q^{79} + ( -9 + 9 \zeta_{12}^{2} ) q^{81} + 12 \zeta_{12}^{3} q^{83} -9 \zeta_{12} q^{87} + ( 5 - 4 \zeta_{12}^{2} ) q^{91} + 18 \zeta_{12} q^{93} + ( 2 \zeta_{12} - \zeta_{12}^{3} ) q^{97} + ( -18 + 9 \zeta_{12}^{2} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q - 6q^{9} + O(q^{10})$$ $$4q - 6q^{9} - 6q^{21} + 6q^{39} + 24q^{41} - 4q^{49} - 18q^{51} - 24q^{59} + 52q^{79} - 18q^{81} + 12q^{91} - 54q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times$$.

 $$n$$ $$701$$ $$1051$$ $$1177$$ $$1501$$ $$\chi(n)$$ $$-1$$ $$1$$ $$-1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1049.1
 0.866025 − 0.500000i 0.866025 + 0.500000i −0.866025 − 0.500000i −0.866025 + 0.500000i
0 −0.866025 1.50000i 0 0 0 −1.73205 2.00000i 0 −1.50000 + 2.59808i 0
1049.2 0 −0.866025 + 1.50000i 0 0 0 −1.73205 + 2.00000i 0 −1.50000 2.59808i 0
1049.3 0 0.866025 1.50000i 0 0 0 1.73205 2.00000i 0 −1.50000 2.59808i 0
1049.4 0 0.866025 + 1.50000i 0 0 0 1.73205 + 2.00000i 0 −1.50000 + 2.59808i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
21.c even 2 1 inner
105.g even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.f.c 4
3.b odd 2 1 2100.2.f.d 4
5.b even 2 1 inner 2100.2.f.c 4
5.c odd 4 1 420.2.d.a 2
5.c odd 4 1 2100.2.d.e 2
7.b odd 2 1 2100.2.f.d 4
15.d odd 2 1 2100.2.f.d 4
15.e even 4 1 420.2.d.b yes 2
15.e even 4 1 2100.2.d.a 2
20.e even 4 1 1680.2.f.d 2
21.c even 2 1 inner 2100.2.f.c 4
35.c odd 2 1 2100.2.f.d 4
35.f even 4 1 420.2.d.b yes 2
35.f even 4 1 2100.2.d.a 2
60.l odd 4 1 1680.2.f.a 2
105.g even 2 1 inner 2100.2.f.c 4
105.k odd 4 1 420.2.d.a 2
105.k odd 4 1 2100.2.d.e 2
140.j odd 4 1 1680.2.f.a 2
420.w even 4 1 1680.2.f.d 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.d.a 2 5.c odd 4 1
420.2.d.a 2 105.k odd 4 1
420.2.d.b yes 2 15.e even 4 1
420.2.d.b yes 2 35.f even 4 1
1680.2.f.a 2 60.l odd 4 1
1680.2.f.a 2 140.j odd 4 1
1680.2.f.d 2 20.e even 4 1
1680.2.f.d 2 420.w even 4 1
2100.2.d.a 2 15.e even 4 1
2100.2.d.a 2 35.f even 4 1
2100.2.d.e 2 5.c odd 4 1
2100.2.d.e 2 105.k odd 4 1
2100.2.f.c 4 1.a even 1 1 trivial
2100.2.f.c 4 5.b even 2 1 inner
2100.2.f.c 4 21.c even 2 1 inner
2100.2.f.c 4 105.g even 2 1 inner
2100.2.f.d 4 3.b odd 2 1
2100.2.f.d 4 7.b odd 2 1
2100.2.f.d 4 15.d odd 2 1
2100.2.f.d 4 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2100, [\chi])$$:

 $$T_{11}^{2} + 27$$ $$T_{13}^{2} - 3$$ $$T_{23}$$ $$T_{41} - 6$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 + 3 T^{2} + 9 T^{4}$$
$5$ 1
$7$ $$1 + 2 T^{2} + 49 T^{4}$$
$11$ $$( 1 + 5 T^{2} + 121 T^{4} )^{2}$$
$13$ $$( 1 + 23 T^{2} + 169 T^{4} )^{2}$$
$17$ $$( 1 - 25 T^{2} + 289 T^{4} )^{2}$$
$19$ $$( 1 - 8 T + 19 T^{2} )^{2}( 1 + 8 T + 19 T^{2} )^{2}$$
$23$ $$( 1 + 23 T^{2} )^{4}$$
$29$ $$( 1 - 31 T^{2} + 841 T^{4} )^{2}$$
$31$ $$( 1 - 4 T + 31 T^{2} )^{2}( 1 + 4 T + 31 T^{2} )^{2}$$
$37$ $$( 1 - 10 T^{2} + 1369 T^{4} )^{2}$$
$41$ $$( 1 - 6 T + 41 T^{2} )^{4}$$
$43$ $$( 1 + 14 T^{2} + 1849 T^{4} )^{2}$$
$47$ $$( 1 - 85 T^{2} + 2209 T^{4} )^{2}$$
$53$ $$( 1 - 2 T^{2} + 2809 T^{4} )^{2}$$
$59$ $$( 1 + 6 T + 59 T^{2} )^{4}$$
$61$ $$( 1 - 14 T + 61 T^{2} )^{2}( 1 + 14 T + 61 T^{2} )^{2}$$
$67$ $$( 1 - 130 T^{2} + 4489 T^{4} )^{2}$$
$71$ $$( 1 - 34 T^{2} + 5041 T^{4} )^{2}$$
$73$ $$( 1 + 98 T^{2} + 5329 T^{4} )^{2}$$
$79$ $$( 1 - 13 T + 79 T^{2} )^{4}$$
$83$ $$( 1 - 22 T^{2} + 6889 T^{4} )^{2}$$
$89$ $$( 1 + 89 T^{2} )^{4}$$
$97$ $$( 1 + 191 T^{2} + 9409 T^{4} )^{2}$$