Properties

 Label 2100.2.d.c Level 2100 Weight 2 Character orbit 2100.d Analytic conductor 16.769 Analytic rank 0 Dimension 2 CM discriminant -3 Inner twists 4

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2100.d (of order $$2$$, degree $$1$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$16.7685844245$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( -1 + 2 \zeta_{6} ) q^{3} + ( 1 - 3 \zeta_{6} ) q^{7} -3 q^{9} +O(q^{10})$$ $$q + ( -1 + 2 \zeta_{6} ) q^{3} + ( 1 - 3 \zeta_{6} ) q^{7} -3 q^{9} + ( -1 + 2 \zeta_{6} ) q^{13} + ( -3 + 6 \zeta_{6} ) q^{19} + ( 5 - \zeta_{6} ) q^{21} + ( 3 - 6 \zeta_{6} ) q^{27} + ( -1 + 2 \zeta_{6} ) q^{31} -10 q^{37} -3 q^{39} -13 q^{43} + ( -8 + 3 \zeta_{6} ) q^{49} -9 q^{57} + ( -9 + 18 \zeta_{6} ) q^{61} + ( -3 + 9 \zeta_{6} ) q^{63} -11 q^{67} + ( 8 - 16 \zeta_{6} ) q^{73} -4 q^{79} + 9 q^{81} + ( 5 - \zeta_{6} ) q^{91} -3 q^{93} + ( -3 + 6 \zeta_{6} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{7} - 6q^{9} + O(q^{10})$$ $$2q - q^{7} - 6q^{9} + 9q^{21} - 20q^{37} - 6q^{39} - 26q^{43} - 13q^{49} - 18q^{57} + 3q^{63} - 22q^{67} - 8q^{79} + 18q^{81} + 9q^{91} - 6q^{93} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times$$.

 $$n$$ $$701$$ $$1051$$ $$1177$$ $$1501$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$-1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1301.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 1.73205i 0 0 0 −0.500000 + 2.59808i 0 −3.00000 0
1301.2 0 1.73205i 0 0 0 −0.500000 2.59808i 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.d.c 2
3.b odd 2 1 CM 2100.2.d.c 2
5.b even 2 1 2100.2.d.d yes 2
5.c odd 4 2 2100.2.f.f 4
7.b odd 2 1 inner 2100.2.d.c 2
15.d odd 2 1 2100.2.d.d yes 2
15.e even 4 2 2100.2.f.f 4
21.c even 2 1 inner 2100.2.d.c 2
35.c odd 2 1 2100.2.d.d yes 2
35.f even 4 2 2100.2.f.f 4
105.g even 2 1 2100.2.d.d yes 2
105.k odd 4 2 2100.2.f.f 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.2.d.c 2 1.a even 1 1 trivial
2100.2.d.c 2 3.b odd 2 1 CM
2100.2.d.c 2 7.b odd 2 1 inner
2100.2.d.c 2 21.c even 2 1 inner
2100.2.d.d yes 2 5.b even 2 1
2100.2.d.d yes 2 15.d odd 2 1
2100.2.d.d yes 2 35.c odd 2 1
2100.2.d.d yes 2 105.g even 2 1
2100.2.f.f 4 5.c odd 4 2
2100.2.f.f 4 15.e even 4 2
2100.2.f.f 4 35.f even 4 2
2100.2.f.f 4 105.k odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2100, [\chi])$$:

 $$T_{11}$$ $$T_{13}^{2} + 3$$ $$T_{17}$$ $$T_{37} + 10$$ $$T_{41}$$ $$T_{43} + 13$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 + 3 T^{2}$$
$5$ 1
$7$ $$1 + T + 7 T^{2}$$
$11$ $$( 1 - 11 T^{2} )^{2}$$
$13$ $$( 1 - 7 T + 13 T^{2} )( 1 + 7 T + 13 T^{2} )$$
$17$ $$( 1 + 17 T^{2} )^{2}$$
$19$ $$( 1 - 7 T + 19 T^{2} )( 1 + 7 T + 19 T^{2} )$$
$23$ $$( 1 - 23 T^{2} )^{2}$$
$29$ $$( 1 - 29 T^{2} )^{2}$$
$31$ $$( 1 - 11 T + 31 T^{2} )( 1 + 11 T + 31 T^{2} )$$
$37$ $$( 1 + 10 T + 37 T^{2} )^{2}$$
$41$ $$( 1 + 41 T^{2} )^{2}$$
$43$ $$( 1 + 13 T + 43 T^{2} )^{2}$$
$47$ $$( 1 + 47 T^{2} )^{2}$$
$53$ $$( 1 - 53 T^{2} )^{2}$$
$59$ $$( 1 + 59 T^{2} )^{2}$$
$61$ $$( 1 - T + 61 T^{2} )( 1 + T + 61 T^{2} )$$
$67$ $$( 1 + 11 T + 67 T^{2} )^{2}$$
$71$ $$( 1 - 71 T^{2} )^{2}$$
$73$ $$( 1 - 10 T + 73 T^{2} )( 1 + 10 T + 73 T^{2} )$$
$79$ $$( 1 + 4 T + 79 T^{2} )^{2}$$
$83$ $$( 1 + 83 T^{2} )^{2}$$
$89$ $$( 1 + 89 T^{2} )^{2}$$
$97$ $$( 1 - 19 T + 97 T^{2} )( 1 + 19 T + 97 T^{2} )$$