Properties

Label 2100.2.cp
Level 2100
Weight 2
Character orbit cp
Rep. character \(\chi_{2100}(83,\cdot)\)
Character field \(\Q(\zeta_{20})\)
Dimension 3776
Sturm bound 960

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.cp (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 2100 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2100, [\chi])\).

Total New Old
Modular forms 3904 3904 0
Cusp forms 3776 3776 0
Eisenstein series 128 128 0

Trace form

\( 3776q - 40q^{4} - 40q^{9} + O(q^{10}) \) \( 3776q - 40q^{4} - 40q^{9} - 24q^{16} - 8q^{18} - 12q^{21} - 16q^{22} - 64q^{25} + 16q^{28} - 16q^{30} - 44q^{36} - 64q^{37} + 6q^{42} - 24q^{46} - 40q^{57} - 8q^{58} - 80q^{60} - 40q^{64} + 32q^{70} - 4q^{72} - 76q^{78} - 24q^{81} - 10q^{84} - 64q^{85} - 64q^{88} - 8q^{93} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database