Properties

Label 2100.2.co
Level 2100
Weight 2
Character orbit co
Rep. character \(\chi_{2100}(13,\cdot)\)
Character field \(\Q(\zeta_{20})\)
Dimension 320
Sturm bound 960

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.co (of order \(20\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 175 \)
Character field: \(\Q(\zeta_{20})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2100, [\chi])\).

Total New Old
Modular forms 3936 320 3616
Cusp forms 3744 320 3424
Eisenstein series 192 0 192

Trace form

\( 320q + O(q^{10}) \) \( 320q + 8q^{15} - 48q^{23} - 16q^{25} - 40q^{29} + 4q^{35} - 16q^{37} + 112q^{43} - 120q^{53} + 8q^{57} + 56q^{65} + 48q^{67} + 24q^{77} + 80q^{81} + 64q^{85} - 32q^{93} + 56q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2100, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(700, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database