Properties

Label 2100.2.ce.c
Level 2100
Weight 2
Character orbit 2100.ce
Analytic conductor 16.769
Analytic rank 0
Dimension 24
CM no
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 8q^{11} - 4q^{21} - 60q^{31} - 8q^{51} + 84q^{61} + 112q^{71} + 12q^{81} - 136q^{91} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
157.1 0 −0.965926 + 0.258819i 0 0 0 −0.588711 + 2.57942i 0 0.866025 0.500000i 0
157.2 0 −0.965926 + 0.258819i 0 0 0 2.48036 0.920762i 0 0.866025 0.500000i 0
157.3 0 −0.965926 + 0.258819i 0 0 0 −1.18454 2.36577i 0 0.866025 0.500000i 0
157.4 0 0.965926 0.258819i 0 0 0 1.18454 + 2.36577i 0 0.866025 0.500000i 0
157.5 0 0.965926 0.258819i 0 0 0 −2.48036 + 0.920762i 0 0.866025 0.500000i 0
157.6 0 0.965926 0.258819i 0 0 0 0.588711 2.57942i 0 0.866025 0.500000i 0
493.1 0 −0.258819 0.965926i 0 0 0 −0.920762 2.48036i 0 −0.866025 + 0.500000i 0
493.2 0 −0.258819 0.965926i 0 0 0 −2.36577 + 1.18454i 0 −0.866025 + 0.500000i 0
493.3 0 −0.258819 0.965926i 0 0 0 2.57942 + 0.588711i 0 −0.866025 + 0.500000i 0
493.4 0 0.258819 + 0.965926i 0 0 0 2.36577 1.18454i 0 −0.866025 + 0.500000i 0
493.5 0 0.258819 + 0.965926i 0 0 0 −2.57942 0.588711i 0 −0.866025 + 0.500000i 0
493.6 0 0.258819 + 0.965926i 0 0 0 0.920762 + 2.48036i 0 −0.866025 + 0.500000i 0
1657.1 0 −0.258819 + 0.965926i 0 0 0 −0.920762 + 2.48036i 0 −0.866025 0.500000i 0
1657.2 0 −0.258819 + 0.965926i 0 0 0 −2.36577 1.18454i 0 −0.866025 0.500000i 0
1657.3 0 −0.258819 + 0.965926i 0 0 0 2.57942 0.588711i 0 −0.866025 0.500000i 0
1657.4 0 0.258819 0.965926i 0 0 0 2.36577 + 1.18454i 0 −0.866025 0.500000i 0
1657.5 0 0.258819 0.965926i 0 0 0 −2.57942 + 0.588711i 0 −0.866025 0.500000i 0
1657.6 0 0.258819 0.965926i 0 0 0 0.920762 2.48036i 0 −0.866025 0.500000i 0
1993.1 0 −0.965926 0.258819i 0 0 0 −0.588711 2.57942i 0 0.866025 + 0.500000i 0
1993.2 0 −0.965926 0.258819i 0 0 0 2.48036 + 0.920762i 0 0.866025 + 0.500000i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1993.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
7.d odd 6 1 inner
35.i odd 6 1 inner
35.k even 12 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.ce.c 24
5.b even 2 1 inner 2100.2.ce.c 24
5.c odd 4 2 inner 2100.2.ce.c 24
7.d odd 6 1 inner 2100.2.ce.c 24
35.i odd 6 1 inner 2100.2.ce.c 24
35.k even 12 2 inner 2100.2.ce.c 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.2.ce.c 24 1.a even 1 1 trivial
2100.2.ce.c 24 5.b even 2 1 inner
2100.2.ce.c 24 5.c odd 4 2 inner
2100.2.ce.c 24 7.d odd 6 1 inner
2100.2.ce.c 24 35.i odd 6 1 inner
2100.2.ce.c 24 35.k even 12 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11}^{6} + 2 T_{11}^{5} + 18 T_{11}^{4} - 4 T_{11}^{3} + 220 T_{11}^{2} + 168 T_{11} + 144 \)
\( T_{17}^{24} - 536 T_{17}^{20} + 236976 T_{17}^{16} - 26930048 T_{17}^{12} + 2520987904 T_{17}^{8} - 1043435520 T_{17}^{4} + 429981696 \)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database