Properties

Label 2100.2.bu
Level 2100
Weight 2
Character orbit bu
Rep. character \(\chi_{2100}(169,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 112
Sturm bound 960

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.bu (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2100, [\chi])\).

Total New Old
Modular forms 1968 112 1856
Cusp forms 1872 112 1760
Eisenstein series 96 0 96

Trace form

\( 112q + 28q^{9} + O(q^{10}) \) \( 112q + 28q^{9} - 4q^{15} - 12q^{19} + 4q^{21} - 20q^{23} + 8q^{25} + 4q^{29} - 20q^{33} - 4q^{35} - 16q^{41} + 80q^{47} - 112q^{49} - 32q^{51} + 20q^{53} + 108q^{55} + 24q^{59} + 8q^{61} - 8q^{65} - 40q^{67} + 8q^{69} - 64q^{71} - 40q^{73} + 40q^{77} - 16q^{79} - 28q^{81} + 60q^{83} - 48q^{85} + 40q^{87} + 8q^{91} + 28q^{95} + 60q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2100, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(175, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(350, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(525, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(700, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1050, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database