Properties

Label 2100.2.bo.d
Level 2100
Weight 2
Character orbit 2100.bo
Analytic conductor 16.769
Analytic rank 0
Dimension 4
CM discriminant -3
Inner twists 8

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.bo (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(16.7685844245\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{3} + ( -2 \zeta_{12} - \zeta_{12}^{3} ) q^{7} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} +O(q^{10})\) \( q + ( -\zeta_{12} - \zeta_{12}^{3} ) q^{3} + ( -2 \zeta_{12} - \zeta_{12}^{3} ) q^{7} + ( -3 + 3 \zeta_{12}^{2} ) q^{9} + ( -8 \zeta_{12} + 4 \zeta_{12}^{3} ) q^{13} + ( 2 + 2 \zeta_{12}^{2} ) q^{19} + ( -4 + 5 \zeta_{12}^{2} ) q^{21} + ( 6 \zeta_{12} - 3 \zeta_{12}^{3} ) q^{27} + ( 2 - \zeta_{12}^{2} ) q^{31} + \zeta_{12} q^{37} + 12 \zeta_{12}^{2} q^{39} + 13 \zeta_{12}^{3} q^{43} + ( -5 + 8 \zeta_{12}^{2} ) q^{49} -6 \zeta_{12}^{3} q^{57} + ( 5 + 5 \zeta_{12}^{2} ) q^{61} + ( 9 \zeta_{12} - 6 \zeta_{12}^{3} ) q^{63} + ( 16 \zeta_{12} - 16 \zeta_{12}^{3} ) q^{67} + ( -9 \zeta_{12} - 9 \zeta_{12}^{3} ) q^{73} + ( -13 + 13 \zeta_{12}^{2} ) q^{79} -9 \zeta_{12}^{2} q^{81} + ( 4 + 16 \zeta_{12}^{2} ) q^{91} -3 \zeta_{12} q^{93} + ( 22 \zeta_{12} - 11 \zeta_{12}^{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 6q^{9} + O(q^{10}) \) \( 4q - 6q^{9} + 12q^{19} - 6q^{21} + 6q^{31} + 24q^{39} - 4q^{49} + 30q^{61} - 26q^{79} - 18q^{81} + 48q^{91} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2100\mathbb{Z}\right)^\times\).

\(n\) \(701\) \(1051\) \(1177\) \(1501\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1 - \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1349.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 −0.866025 1.50000i 0 0 0 −1.73205 2.00000i 0 −1.50000 + 2.59808i 0
1349.2 0 0.866025 + 1.50000i 0 0 0 1.73205 + 2.00000i 0 −1.50000 + 2.59808i 0
1949.1 0 −0.866025 + 1.50000i 0 0 0 −1.73205 + 2.00000i 0 −1.50000 2.59808i 0
1949.2 0 0.866025 1.50000i 0 0 0 1.73205 2.00000i 0 −1.50000 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
5.b even 2 1 inner
7.d odd 6 1 inner
15.d odd 2 1 inner
21.g even 6 1 inner
35.i odd 6 1 inner
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.bo.d 4
3.b odd 2 1 CM 2100.2.bo.d 4
5.b even 2 1 inner 2100.2.bo.d 4
5.c odd 4 1 2100.2.bi.c 2
5.c odd 4 1 2100.2.bi.g yes 2
7.d odd 6 1 inner 2100.2.bo.d 4
15.d odd 2 1 inner 2100.2.bo.d 4
15.e even 4 1 2100.2.bi.c 2
15.e even 4 1 2100.2.bi.g yes 2
21.g even 6 1 inner 2100.2.bo.d 4
35.i odd 6 1 inner 2100.2.bo.d 4
35.k even 12 1 2100.2.bi.c 2
35.k even 12 1 2100.2.bi.g yes 2
105.p even 6 1 inner 2100.2.bo.d 4
105.w odd 12 1 2100.2.bi.c 2
105.w odd 12 1 2100.2.bi.g yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2100.2.bi.c 2 5.c odd 4 1
2100.2.bi.c 2 15.e even 4 1
2100.2.bi.c 2 35.k even 12 1
2100.2.bi.c 2 105.w odd 12 1
2100.2.bi.g yes 2 5.c odd 4 1
2100.2.bi.g yes 2 15.e even 4 1
2100.2.bi.g yes 2 35.k even 12 1
2100.2.bi.g yes 2 105.w odd 12 1
2100.2.bo.d 4 1.a even 1 1 trivial
2100.2.bo.d 4 3.b odd 2 1 CM
2100.2.bo.d 4 5.b even 2 1 inner
2100.2.bo.d 4 7.d odd 6 1 inner
2100.2.bo.d 4 15.d odd 2 1 inner
2100.2.bo.d 4 21.g even 6 1 inner
2100.2.bo.d 4 35.i odd 6 1 inner
2100.2.bo.d 4 105.p even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2100, [\chi])\):

\( T_{11} \)
\( T_{13}^{2} - 48 \)
\( T_{19}^{2} - 6 T_{19} + 12 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + 3 T^{2} + 9 T^{4} \)
$5$ 1
$7$ \( 1 + 2 T^{2} + 49 T^{4} \)
$11$ \( ( 1 + 11 T^{2} + 121 T^{4} )^{2} \)
$13$ \( ( 1 - 22 T^{2} + 169 T^{4} )^{2} \)
$17$ \( ( 1 + 17 T^{2} + 289 T^{4} )^{2} \)
$19$ \( ( 1 - 7 T + 19 T^{2} )^{2}( 1 + T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 23 T^{2} + 529 T^{4} )^{2} \)
$29$ \( ( 1 - 29 T^{2} )^{4} \)
$31$ \( ( 1 - 7 T + 31 T^{2} )^{2}( 1 + 4 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 + 26 T^{2} + 1369 T^{4} )( 1 + 47 T^{2} + 1369 T^{4} ) \)
$41$ \( ( 1 + 41 T^{2} )^{4} \)
$43$ \( ( 1 + 83 T^{2} + 1849 T^{4} )^{2} \)
$47$ \( ( 1 + 47 T^{2} + 2209 T^{4} )^{2} \)
$53$ \( ( 1 - 53 T^{2} + 2809 T^{4} )^{2} \)
$59$ \( ( 1 - 59 T^{2} + 3481 T^{4} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2}( 1 - T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 109 T^{2} + 4489 T^{4} )( 1 - 13 T^{2} + 4489 T^{4} ) \)
$71$ \( ( 1 - 71 T^{2} )^{4} \)
$73$ \( ( 1 - 46 T^{2} + 5329 T^{4} )( 1 + 143 T^{2} + 5329 T^{4} ) \)
$79$ \( ( 1 - 4 T + 79 T^{2} )^{2}( 1 + 17 T + 79 T^{2} )^{2} \)
$83$ \( ( 1 - 83 T^{2} )^{4} \)
$89$ \( ( 1 - 89 T^{2} + 7921 T^{4} )^{2} \)
$97$ \( ( 1 - 169 T^{2} + 9409 T^{4} )^{2} \)
show more
show less