Properties

Label 2100.2.bb
Level 2100
Weight 2
Character orbit bb
Rep. character \(\chi_{2100}(599,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 560
Sturm bound 960

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2100.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 420 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2100, [\chi])\).

Total New Old
Modular forms 1008 592 416
Cusp forms 912 560 352
Eisenstein series 96 32 64

Trace form

\( 560q + 4q^{4} + 4q^{9} + O(q^{10}) \) \( 560q + 4q^{4} + 4q^{9} - 4q^{16} - 28q^{21} + 8q^{24} + 64q^{34} + 48q^{36} + 32q^{46} + 24q^{49} + 34q^{54} - 8q^{61} + 16q^{64} - 72q^{66} + 24q^{69} + 144q^{76} - 28q^{81} + 10q^{84} - 36q^{94} + 110q^{96} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2100, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(2100, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2100, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(420, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database