# Properties

 Label 2100.2.a.q Level 2100 Weight 2 Character orbit 2100.a Self dual yes Analytic conductor 16.769 Analytic rank 0 Dimension 1 CM no Inner twists 1

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$2100 = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2100.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$16.7685844245$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 420) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{7} + q^{9} + O(q^{10})$$ $$q + q^{3} + q^{7} + q^{9} + 2q^{11} - 4q^{13} - 6q^{17} + 6q^{19} + q^{21} + 8q^{23} + q^{27} - 2q^{29} + 10q^{31} + 2q^{33} - 2q^{37} - 4q^{39} + 10q^{41} + 4q^{43} + 8q^{47} + q^{49} - 6q^{51} - 4q^{53} + 6q^{57} - 8q^{59} + 6q^{61} + q^{63} - 12q^{67} + 8q^{69} - 6q^{71} + 12q^{73} + 2q^{77} - 8q^{79} + q^{81} + 4q^{83} - 2q^{87} - 10q^{89} - 4q^{91} + 10q^{93} - 8q^{97} + 2q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 0 0 1.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2100.2.a.q 1
3.b odd 2 1 6300.2.a.v 1
4.b odd 2 1 8400.2.a.c 1
5.b even 2 1 420.2.a.a 1
5.c odd 4 2 2100.2.k.g 2
15.d odd 2 1 1260.2.a.g 1
15.e even 4 2 6300.2.k.e 2
20.d odd 2 1 1680.2.a.n 1
35.c odd 2 1 2940.2.a.l 1
35.i odd 6 2 2940.2.q.a 2
35.j even 6 2 2940.2.q.m 2
40.e odd 2 1 6720.2.a.bd 1
40.f even 2 1 6720.2.a.cb 1
60.h even 2 1 5040.2.a.bl 1
105.g even 2 1 8820.2.a.f 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
420.2.a.a 1 5.b even 2 1
1260.2.a.g 1 15.d odd 2 1
1680.2.a.n 1 20.d odd 2 1
2100.2.a.q 1 1.a even 1 1 trivial
2100.2.k.g 2 5.c odd 4 2
2940.2.a.l 1 35.c odd 2 1
2940.2.q.a 2 35.i odd 6 2
2940.2.q.m 2 35.j even 6 2
5040.2.a.bl 1 60.h even 2 1
6300.2.a.v 1 3.b odd 2 1
6300.2.k.e 2 15.e even 4 2
6720.2.a.bd 1 40.e odd 2 1
6720.2.a.cb 1 40.f even 2 1
8400.2.a.c 1 4.b odd 2 1
8820.2.a.f 1 105.g even 2 1

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$7$$ $$-1$$

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2100))$$:

 $$T_{11} - 2$$ $$T_{13} + 4$$ $$T_{17} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ $$1 - T$$
$5$ 1
$7$ $$1 - T$$
$11$ $$1 - 2 T + 11 T^{2}$$
$13$ $$1 + 4 T + 13 T^{2}$$
$17$ $$1 + 6 T + 17 T^{2}$$
$19$ $$1 - 6 T + 19 T^{2}$$
$23$ $$1 - 8 T + 23 T^{2}$$
$29$ $$1 + 2 T + 29 T^{2}$$
$31$ $$1 - 10 T + 31 T^{2}$$
$37$ $$1 + 2 T + 37 T^{2}$$
$41$ $$1 - 10 T + 41 T^{2}$$
$43$ $$1 - 4 T + 43 T^{2}$$
$47$ $$1 - 8 T + 47 T^{2}$$
$53$ $$1 + 4 T + 53 T^{2}$$
$59$ $$1 + 8 T + 59 T^{2}$$
$61$ $$1 - 6 T + 61 T^{2}$$
$67$ $$1 + 12 T + 67 T^{2}$$
$71$ $$1 + 6 T + 71 T^{2}$$
$73$ $$1 - 12 T + 73 T^{2}$$
$79$ $$1 + 8 T + 79 T^{2}$$
$83$ $$1 - 4 T + 83 T^{2}$$
$89$ $$1 + 10 T + 89 T^{2}$$
$97$ $$1 + 8 T + 97 T^{2}$$
show more
show less