Properties

Label 210.4.b
Level $210$
Weight $4$
Character orbit 210.b
Rep. character $\chi_{210}(41,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $2$
Sturm bound $192$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 210.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(210, [\chi])\).

Total New Old
Modular forms 152 32 120
Cusp forms 136 32 104
Eisenstein series 16 0 16

Trace form

\( 32 q - 128 q^{4} - 20 q^{7} + 60 q^{9} - 40 q^{15} + 512 q^{16} + 224 q^{18} + 332 q^{21} + 800 q^{25} + 80 q^{28} - 280 q^{30} - 240 q^{36} + 1400 q^{37} + 1260 q^{39} + 776 q^{42} + 704 q^{43} - 1248 q^{46}+ \cdots - 7716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(210, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
210.4.b.a 210.b 21.c $16$ $12.390$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 210.4.b.a \(0\) \(-4\) \(80\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}-\beta _{2}q^{3}-4q^{4}+5q^{5}+(-2+\cdots)q^{6}+\cdots\)
210.4.b.b 210.b 21.c $16$ $12.390$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 210.4.b.a \(0\) \(4\) \(-80\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{2}+\beta _{2}q^{3}-4q^{4}-5q^{5}+(2+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(210, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(210, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)