Defining parameters
| Level: | \( N \) | \(=\) | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 210.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(210, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 152 | 32 | 120 |
| Cusp forms | 136 | 32 | 104 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(210, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 210.4.b.a | $16$ | $12.390$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(-4\) | \(80\) | \(-10\) | \(q+\beta _{5}q^{2}-\beta _{2}q^{3}-4q^{4}+5q^{5}+(-2+\cdots)q^{6}+\cdots\) |
| 210.4.b.b | $16$ | $12.390$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(4\) | \(-80\) | \(-10\) | \(q+\beta _{5}q^{2}+\beta _{2}q^{3}-4q^{4}-5q^{5}+(2+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(210, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(210, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(105, [\chi])\)\(^{\oplus 2}\)