Properties

Label 210.4.a.k
Level $210$
Weight $4$
Character orbit 210.a
Self dual yes
Analytic conductor $12.390$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [210,4,Mod(1,210)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("210.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(210, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 210.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,6,8,10,12,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(12.3904011012\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{106}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 106 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{106}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + 3 q^{3} + 4 q^{4} + 5 q^{5} + 6 q^{6} + 7 q^{7} + 8 q^{8} + 9 q^{9} + 10 q^{10} + (\beta + 16) q^{11} + 12 q^{12} + ( - 2 \beta - 6) q^{13} + 14 q^{14} + 15 q^{15} + 16 q^{16} + ( - \beta + 2) q^{17}+ \cdots + (9 \beta + 144) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} + 6 q^{3} + 8 q^{4} + 10 q^{5} + 12 q^{6} + 14 q^{7} + 16 q^{8} + 18 q^{9} + 20 q^{10} + 32 q^{11} + 24 q^{12} - 12 q^{13} + 28 q^{14} + 30 q^{15} + 32 q^{16} + 4 q^{17} + 36 q^{18} + 64 q^{19}+ \cdots + 288 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.2956
10.2956
2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10.0000
1.2 2.00000 3.00000 4.00000 5.00000 6.00000 7.00000 8.00000 9.00000 10.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 210.4.a.k 2
3.b odd 2 1 630.4.a.z 2
4.b odd 2 1 1680.4.a.be 2
5.b even 2 1 1050.4.a.z 2
5.c odd 4 2 1050.4.g.v 4
7.b odd 2 1 1470.4.a.bm 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
210.4.a.k 2 1.a even 1 1 trivial
630.4.a.z 2 3.b odd 2 1
1050.4.a.z 2 5.b even 2 1
1050.4.g.v 4 5.c odd 4 2
1470.4.a.bm 2 7.b odd 2 1
1680.4.a.be 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(210))\):

\( T_{11}^{2} - 32T_{11} - 1440 \) Copy content Toggle raw display
\( T_{13}^{2} + 12T_{13} - 6748 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( (T - 5)^{2} \) Copy content Toggle raw display
$7$ \( (T - 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 32T - 1440 \) Copy content Toggle raw display
$13$ \( T^{2} + 12T - 6748 \) Copy content Toggle raw display
$17$ \( T^{2} - 4T - 1692 \) Copy content Toggle raw display
$19$ \( T^{2} - 64T - 14240 \) Copy content Toggle raw display
$23$ \( T^{2} - 32T - 1440 \) Copy content Toggle raw display
$29$ \( T^{2} + 84T - 13500 \) Copy content Toggle raw display
$31$ \( T^{2} + 72T - 5488 \) Copy content Toggle raw display
$37$ \( T^{2} - 60T - 796 \) Copy content Toggle raw display
$41$ \( T^{2} + 92T - 106428 \) Copy content Toggle raw display
$43$ \( T^{2} + 184T + 6768 \) Copy content Toggle raw display
$47$ \( T^{2} + 208T - 31584 \) Copy content Toggle raw display
$53$ \( T^{2} + 300T + 7236 \) Copy content Toggle raw display
$59$ \( T^{2} + 568T + 53520 \) Copy content Toggle raw display
$61$ \( T^{2} + 516T + 24164 \) Copy content Toggle raw display
$67$ \( T^{2} - 392T - 3984 \) Copy content Toggle raw display
$71$ \( T^{2} + 1448 T + 497040 \) Copy content Toggle raw display
$73$ \( T^{2} + 756T - 26716 \) Copy content Toggle raw display
$79$ \( T^{2} - 416T + 36480 \) Copy content Toggle raw display
$83$ \( T^{2} + 1752 T + 523152 \) Copy content Toggle raw display
$89$ \( T^{2} + 956T + 119940 \) Copy content Toggle raw display
$97$ \( T^{2} - 684 T - 1029532 \) Copy content Toggle raw display
show more
show less