Properties

Label 210.4.a
Level $210$
Weight $4$
Character orbit 210.a
Rep. character $\chi_{210}(1,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $11$
Sturm bound $192$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 210.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 11 \)
Sturm bound: \(192\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(210))\).

Total New Old
Modular forms 152 12 140
Cusp forms 136 12 124
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(12\)\(0\)\(12\)\(11\)\(0\)\(11\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(9\)\(1\)\(8\)\(8\)\(1\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(9\)\(1\)\(8\)\(8\)\(1\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(9\)\(1\)\(8\)\(8\)\(1\)\(7\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(9\)\(0\)\(9\)\(8\)\(0\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(9\)\(1\)\(8\)\(8\)\(1\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(8\)\(1\)\(7\)\(7\)\(1\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(10\)\(0\)\(10\)\(9\)\(0\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(10\)\(1\)\(9\)\(9\)\(1\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(10\)\(0\)\(10\)\(9\)\(0\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(8\)\(0\)\(8\)\(7\)\(0\)\(7\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(11\)\(2\)\(9\)\(10\)\(2\)\(8\)\(1\)\(0\)\(1\)
Plus space\(+\)\(78\)\(8\)\(70\)\(70\)\(8\)\(62\)\(8\)\(0\)\(8\)
Minus space\(-\)\(74\)\(4\)\(70\)\(66\)\(4\)\(62\)\(8\)\(0\)\(8\)

Trace form

\( 12 q + 48 q^{4} + 108 q^{9} + 160 q^{11} + 64 q^{13} + 192 q^{16} + 128 q^{17} + 160 q^{19} + 176 q^{22} - 144 q^{23} + 300 q^{25} + 160 q^{26} - 320 q^{29} + 120 q^{30} - 184 q^{31} + 384 q^{33} + 144 q^{34}+ \cdots + 1440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(210))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 7
210.4.a.a 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.a \(-2\) \(-3\) \(-5\) \(7\) $+$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
210.4.a.b 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.b \(-2\) \(-3\) \(5\) \(-7\) $+$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
210.4.a.c 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.c \(-2\) \(-3\) \(5\) \(7\) $+$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)
210.4.a.d 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.d \(-2\) \(3\) \(-5\) \(-7\) $+$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
210.4.a.e 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.e \(-2\) \(3\) \(-5\) \(7\) $+$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
210.4.a.f 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.f \(-2\) \(3\) \(5\) \(-7\) $+$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
210.4.a.g 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.g \(2\) \(-3\) \(-5\) \(-7\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
210.4.a.h 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.h \(2\) \(-3\) \(-5\) \(7\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\)
210.4.a.i 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.i \(2\) \(-3\) \(5\) \(-7\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}-3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\)
210.4.a.j 210.a 1.a $1$ $12.390$ \(\Q\) None 210.4.a.j \(2\) \(3\) \(-5\) \(-7\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\)
210.4.a.k 210.a 1.a $2$ $12.390$ \(\Q(\sqrt{106}) \) None 210.4.a.k \(4\) \(6\) \(10\) \(14\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(210))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(210)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)