Defining parameters
| Level: | \( N \) | \(=\) | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 210.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 11 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(210))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 152 | 12 | 140 |
| Cusp forms | 136 | 12 | 124 |
| Eisenstein series | 16 | 0 | 16 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(12\) | \(0\) | \(12\) | \(11\) | \(0\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(8\) | \(1\) | \(7\) | \(7\) | \(1\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(9\) | \(1\) | \(8\) | \(8\) | \(1\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(9\) | \(1\) | \(8\) | \(8\) | \(1\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(9\) | \(1\) | \(8\) | \(8\) | \(1\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(9\) | \(0\) | \(9\) | \(8\) | \(0\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(9\) | \(1\) | \(8\) | \(8\) | \(1\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(8\) | \(1\) | \(7\) | \(7\) | \(1\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(10\) | \(0\) | \(10\) | \(9\) | \(0\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(10\) | \(1\) | \(9\) | \(9\) | \(1\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(10\) | \(0\) | \(10\) | \(9\) | \(0\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(8\) | \(0\) | \(8\) | \(7\) | \(0\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(11\) | \(2\) | \(9\) | \(10\) | \(2\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(78\) | \(8\) | \(70\) | \(70\) | \(8\) | \(62\) | \(8\) | \(0\) | \(8\) | ||||||
| Minus space | \(-\) | \(74\) | \(4\) | \(70\) | \(66\) | \(4\) | \(62\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(210))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 7 | |||||||
| 210.4.a.a | $1$ | $12.390$ | \(\Q\) | None | \(-2\) | \(-3\) | \(-5\) | \(7\) | $+$ | $+$ | $+$ | $-$ | \(q-2q^{2}-3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\) | |
| 210.4.a.b | $1$ | $12.390$ | \(\Q\) | None | \(-2\) | \(-3\) | \(5\) | \(-7\) | $+$ | $+$ | $-$ | $+$ | \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\) | |
| 210.4.a.c | $1$ | $12.390$ | \(\Q\) | None | \(-2\) | \(-3\) | \(5\) | \(7\) | $+$ | $+$ | $-$ | $-$ | \(q-2q^{2}-3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\) | |
| 210.4.a.d | $1$ | $12.390$ | \(\Q\) | None | \(-2\) | \(3\) | \(-5\) | \(-7\) | $+$ | $-$ | $+$ | $+$ | \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\) | |
| 210.4.a.e | $1$ | $12.390$ | \(\Q\) | None | \(-2\) | \(3\) | \(-5\) | \(7\) | $+$ | $-$ | $+$ | $-$ | \(q-2q^{2}+3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\) | |
| 210.4.a.f | $1$ | $12.390$ | \(\Q\) | None | \(-2\) | \(3\) | \(5\) | \(-7\) | $+$ | $-$ | $-$ | $+$ | \(q-2q^{2}+3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\) | |
| 210.4.a.g | $1$ | $12.390$ | \(\Q\) | None | \(2\) | \(-3\) | \(-5\) | \(-7\) | $-$ | $+$ | $+$ | $+$ | \(q+2q^{2}-3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\) | |
| 210.4.a.h | $1$ | $12.390$ | \(\Q\) | None | \(2\) | \(-3\) | \(-5\) | \(7\) | $-$ | $+$ | $+$ | $-$ | \(q+2q^{2}-3q^{3}+4q^{4}-5q^{5}-6q^{6}+\cdots\) | |
| 210.4.a.i | $1$ | $12.390$ | \(\Q\) | None | \(2\) | \(-3\) | \(5\) | \(-7\) | $-$ | $+$ | $-$ | $+$ | \(q+2q^{2}-3q^{3}+4q^{4}+5q^{5}-6q^{6}+\cdots\) | |
| 210.4.a.j | $1$ | $12.390$ | \(\Q\) | None | \(2\) | \(3\) | \(-5\) | \(-7\) | $-$ | $-$ | $+$ | $+$ | \(q+2q^{2}+3q^{3}+4q^{4}-5q^{5}+6q^{6}+\cdots\) | |
| 210.4.a.k | $2$ | $12.390$ | \(\Q(\sqrt{106}) \) | None | \(4\) | \(6\) | \(10\) | \(14\) | $-$ | $-$ | $-$ | $-$ | \(q+2q^{2}+3q^{3}+4q^{4}+5q^{5}+6q^{6}+\cdots\) | |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(210))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(210)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(42))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(70))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)