Properties

Label 210.3.w.b.47.4
Level 210
Weight 3
Character 210.47
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.4
Character \(\chi\) \(=\) 210.47
Dual form 210.3.w.b.143.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-1.76063 - 2.42903i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(2.77440 + 4.15965i) q^{5} +(-2.67368 + 3.29415i) q^{6} +(-5.04081 - 4.85698i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.80035 + 8.55325i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-1.76063 - 2.42903i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(2.77440 + 4.15965i) q^{5} +(-2.67368 + 3.29415i) q^{6} +(-5.04081 - 4.85698i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-2.80035 + 8.55325i) q^{9} +(4.66669 - 5.31244i) q^{10} +(-17.0019 + 9.81605i) q^{11} +(5.47853 + 2.44657i) q^{12} +(7.73283 + 7.73283i) q^{13} +(-4.78970 + 8.66365i) q^{14} +(5.21922 - 14.0627i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-3.28852 + 12.2729i) q^{17} +(12.7090 + 0.694649i) q^{18} +(-0.306444 + 0.530777i) q^{19} +(-8.96505 - 4.43033i) q^{20} +(-2.92274 + 20.7956i) q^{21} +(19.6321 + 19.6321i) q^{22} +(12.1940 - 3.26736i) q^{23} +(1.33679 - 8.37932i) q^{24} +(-9.60543 + 23.0811i) q^{25} +(7.73283 - 13.3937i) q^{26} +(25.7065 - 8.25698i) q^{27} +(13.5879 + 3.37173i) q^{28} +29.8506 q^{29} +(-21.1204 - 1.98228i) q^{30} +(-17.4831 + 10.0939i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(53.7776 + 24.0156i) q^{33} +17.9688 q^{34} +(6.21815 - 34.4432i) q^{35} +(-3.70289 - 17.6150i) q^{36} +(13.2325 - 3.54563i) q^{37} +(0.837221 + 0.224333i) q^{38} +(5.16860 - 32.3979i) q^{39} +(-2.77051 + 13.8681i) q^{40} -75.0186 q^{41} +(29.4771 - 3.61918i) q^{42} +(-46.7727 + 46.7727i) q^{43} +(19.6321 - 34.0038i) q^{44} +(-43.3478 + 12.0816i) q^{45} +(-8.92659 - 15.4613i) q^{46} +(-50.2630 + 13.4679i) q^{47} +(-11.9357 + 1.24095i) q^{48} +(1.81945 + 48.9662i) q^{49} +(35.0452 + 4.67300i) q^{50} +(35.6011 - 13.6202i) q^{51} +(-21.1265 - 5.66082i) q^{52} +(17.2462 - 64.3636i) q^{53} +(-20.6885 - 32.0934i) q^{54} +(-88.0014 - 43.4884i) q^{55} +(-0.367649 - 19.7956i) q^{56} +(1.82881 - 0.190141i) q^{57} +(-10.9261 - 40.7767i) q^{58} +(-64.0605 + 36.9854i) q^{59} +(5.02275 + 29.5765i) q^{60} +(-19.2793 - 11.1309i) q^{61} +(20.1878 + 20.1878i) q^{62} +(55.6590 - 29.5140i) q^{63} +8.00000i q^{64} +(-10.7119 + 53.6198i) q^{65} +(13.1220 - 82.2519i) q^{66} +(-2.36524 + 8.82719i) q^{67} +(-6.57703 - 24.5458i) q^{68} +(-29.4056 - 23.8668i) q^{69} +(-49.3263 + 4.11293i) q^{70} -4.20881i q^{71} +(-22.7072 + 11.5058i) q^{72} +(6.15460 - 22.9693i) q^{73} +(-9.68684 - 16.7781i) q^{74} +(72.9762 - 17.3054i) q^{75} -1.22578i q^{76} +(133.380 + 33.0971i) q^{77} +(-46.1482 + 4.79803i) q^{78} +(67.0631 + 38.7189i) q^{79} +(19.9583 - 1.29149i) q^{80} +(-65.3160 - 47.9042i) q^{81} +(27.4587 + 102.477i) q^{82} +(41.1330 - 41.1330i) q^{83} +(-15.7333 - 38.9418i) q^{84} +(-60.1747 + 20.3709i) q^{85} +(81.0127 + 46.7727i) q^{86} +(-52.5559 - 72.5080i) q^{87} +(-53.6359 - 14.3717i) q^{88} +(1.42979 + 0.825490i) q^{89} +(32.3702 + 54.7921i) q^{90} +(-1.42148 - 76.5379i) q^{91} +(-17.8532 + 17.8532i) q^{92} +(55.2997 + 24.6954i) q^{93} +(36.7950 + 63.7309i) q^{94} +(-3.05804 + 0.197885i) q^{95} +(6.06393 + 15.8502i) q^{96} +(-92.5224 + 92.5224i) q^{97} +(66.2231 - 20.4083i) q^{98} +(-36.3478 - 172.910i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −1.76063 2.42903i −0.586877 0.809676i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 2.77440 + 4.15965i 0.554880 + 0.831931i
\(6\) −2.67368 + 3.29415i −0.445613 + 0.549026i
\(7\) −5.04081 4.85698i −0.720115 0.693855i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −2.80035 + 8.55325i −0.311150 + 0.950361i
\(10\) 4.66669 5.31244i 0.466669 0.531244i
\(11\) −17.0019 + 9.81605i −1.54563 + 0.892369i −0.547160 + 0.837028i \(0.684291\pi\)
−0.998468 + 0.0553407i \(0.982375\pi\)
\(12\) 5.47853 + 2.44657i 0.456544 + 0.203881i
\(13\) 7.73283 + 7.73283i 0.594833 + 0.594833i 0.938933 0.344100i \(-0.111816\pi\)
−0.344100 + 0.938933i \(0.611816\pi\)
\(14\) −4.78970 + 8.66365i −0.342121 + 0.618832i
\(15\) 5.21922 14.0627i 0.347948 0.937514i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −3.28852 + 12.2729i −0.193442 + 0.721936i 0.799223 + 0.601035i \(0.205245\pi\)
−0.992665 + 0.120901i \(0.961422\pi\)
\(18\) 12.7090 + 0.694649i 0.706053 + 0.0385916i
\(19\) −0.306444 + 0.530777i −0.0161286 + 0.0279356i −0.873977 0.485967i \(-0.838467\pi\)
0.857848 + 0.513903i \(0.171801\pi\)
\(20\) −8.96505 4.43033i −0.448253 0.221517i
\(21\) −2.92274 + 20.7956i −0.139178 + 0.990267i
\(22\) 19.6321 + 19.6321i 0.892369 + 0.892369i
\(23\) 12.1940 3.26736i 0.530172 0.142059i 0.0162043 0.999869i \(-0.494842\pi\)
0.513968 + 0.857810i \(0.328175\pi\)
\(24\) 1.33679 8.37932i 0.0556997 0.349138i
\(25\) −9.60543 + 23.0811i −0.384217 + 0.923243i
\(26\) 7.73283 13.3937i 0.297416 0.515140i
\(27\) 25.7065 8.25698i 0.952091 0.305814i
\(28\) 13.5879 + 3.37173i 0.485283 + 0.120419i
\(29\) 29.8506 1.02933 0.514666 0.857391i \(-0.327916\pi\)
0.514666 + 0.857391i \(0.327916\pi\)
\(30\) −21.1204 1.98228i −0.704013 0.0660760i
\(31\) −17.4831 + 10.0939i −0.563972 + 0.325610i −0.754738 0.656026i \(-0.772236\pi\)
0.190766 + 0.981636i \(0.438903\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 53.7776 + 24.0156i 1.62962 + 0.727747i
\(34\) 17.9688 0.528494
\(35\) 6.21815 34.4432i 0.177662 0.984092i
\(36\) −3.70289 17.6150i −0.102858 0.489306i
\(37\) 13.2325 3.54563i 0.357634 0.0958278i −0.0755282 0.997144i \(-0.524064\pi\)
0.433162 + 0.901316i \(0.357398\pi\)
\(38\) 0.837221 + 0.224333i 0.0220321 + 0.00590349i
\(39\) 5.16860 32.3979i 0.132528 0.830716i
\(40\) −2.77051 + 13.8681i −0.0692627 + 0.346703i
\(41\) −75.0186 −1.82972 −0.914861 0.403768i \(-0.867700\pi\)
−0.914861 + 0.403768i \(0.867700\pi\)
\(42\) 29.4771 3.61918i 0.701837 0.0861710i
\(43\) −46.7727 + 46.7727i −1.08774 + 1.08774i −0.0919759 + 0.995761i \(0.529318\pi\)
−0.995761 + 0.0919759i \(0.970682\pi\)
\(44\) 19.6321 34.0038i 0.446184 0.772814i
\(45\) −43.3478 + 12.0816i −0.963285 + 0.268480i
\(46\) −8.92659 15.4613i −0.194056 0.336116i
\(47\) −50.2630 + 13.4679i −1.06942 + 0.286552i −0.750257 0.661147i \(-0.770070\pi\)
−0.319168 + 0.947698i \(0.603403\pi\)
\(48\) −11.9357 + 1.24095i −0.248660 + 0.0258531i
\(49\) 1.81945 + 48.9662i 0.0371317 + 0.999310i
\(50\) 35.0452 + 4.67300i 0.700903 + 0.0934600i
\(51\) 35.6011 13.6202i 0.698061 0.267062i
\(52\) −21.1265 5.66082i −0.406278 0.108862i
\(53\) 17.2462 64.3636i 0.325400 1.21441i −0.588510 0.808490i \(-0.700285\pi\)
0.913909 0.405918i \(-0.133048\pi\)
\(54\) −20.6885 32.0934i −0.383120 0.594323i
\(55\) −88.0014 43.4884i −1.60003 0.790698i
\(56\) −0.367649 19.7956i −0.00656516 0.353492i
\(57\) 1.82881 0.190141i 0.0320843 0.00333580i
\(58\) −10.9261 40.7767i −0.188381 0.703047i
\(59\) −64.0605 + 36.9854i −1.08577 + 0.626871i −0.932448 0.361305i \(-0.882331\pi\)
−0.153324 + 0.988176i \(0.548998\pi\)
\(60\) 5.02275 + 29.5765i 0.0837125 + 0.492942i
\(61\) −19.2793 11.1309i −0.316055 0.182474i 0.333578 0.942723i \(-0.391744\pi\)
−0.649633 + 0.760248i \(0.725077\pi\)
\(62\) 20.1878 + 20.1878i 0.325610 + 0.325610i
\(63\) 55.6590 29.5140i 0.883476 0.468476i
\(64\) 8.00000i 0.125000i
\(65\) −10.7119 + 53.6198i −0.164799 + 0.824920i
\(66\) 13.1220 82.2519i 0.198819 1.24624i
\(67\) −2.36524 + 8.82719i −0.0353021 + 0.131749i −0.981328 0.192342i \(-0.938392\pi\)
0.946026 + 0.324091i \(0.105058\pi\)
\(68\) −6.57703 24.5458i −0.0967210 0.360968i
\(69\) −29.4056 23.8668i −0.426168 0.345896i
\(70\) −49.3263 + 4.11293i −0.704661 + 0.0587562i
\(71\) 4.20881i 0.0592790i −0.999561 0.0296395i \(-0.990564\pi\)
0.999561 0.0296395i \(-0.00943592\pi\)
\(72\) −22.7072 + 11.5058i −0.315378 + 0.159803i
\(73\) 6.15460 22.9693i 0.0843096 0.314648i −0.910873 0.412687i \(-0.864590\pi\)
0.995183 + 0.0980391i \(0.0312570\pi\)
\(74\) −9.68684 16.7781i −0.130903 0.226731i
\(75\) 72.9762 17.3054i 0.973016 0.230739i
\(76\) 1.22578i 0.0161286i
\(77\) 133.380 + 33.0971i 1.73220 + 0.429833i
\(78\) −46.1482 + 4.79803i −0.591644 + 0.0615132i
\(79\) 67.0631 + 38.7189i 0.848900 + 0.490113i 0.860280 0.509822i \(-0.170289\pi\)
−0.0113794 + 0.999935i \(0.503622\pi\)
\(80\) 19.9583 1.29149i 0.249478 0.0161437i
\(81\) −65.3160 47.9042i −0.806371 0.591410i
\(82\) 27.4587 + 102.477i 0.334863 + 1.24972i
\(83\) 41.1330 41.1330i 0.495579 0.495579i −0.414480 0.910059i \(-0.636036\pi\)
0.910059 + 0.414480i \(0.136036\pi\)
\(84\) −15.7333 38.9418i −0.187301 0.463593i
\(85\) −60.1747 + 20.3709i −0.707938 + 0.239657i
\(86\) 81.0127 + 46.7727i 0.942008 + 0.543869i
\(87\) −52.5559 72.5080i −0.604091 0.833425i
\(88\) −53.6359 14.3717i −0.609499 0.163315i
\(89\) 1.42979 + 0.825490i 0.0160651 + 0.00927517i 0.508011 0.861351i \(-0.330381\pi\)
−0.491946 + 0.870626i \(0.663714\pi\)
\(90\) 32.3702 + 54.7921i 0.359669 + 0.608801i
\(91\) −1.42148 76.5379i −0.0156207 0.841076i
\(92\) −17.8532 + 17.8532i −0.194056 + 0.194056i
\(93\) 55.2997 + 24.6954i 0.594621 + 0.265542i
\(94\) 36.7950 + 63.7309i 0.391437 + 0.677988i
\(95\) −3.05804 + 0.197885i −0.0321899 + 0.00208300i
\(96\) 6.06393 + 15.8502i 0.0631659 + 0.165106i
\(97\) −92.5224 + 92.5224i −0.953839 + 0.953839i −0.998981 0.0451414i \(-0.985626\pi\)
0.0451414 + 0.998981i \(0.485626\pi\)
\(98\) 66.2231 20.4083i 0.675746 0.208248i
\(99\) −36.3478 172.910i −0.367149 1.74656i
\(100\) −6.44398 49.5830i −0.0644398 0.495830i
\(101\) −51.1520 88.5979i −0.506456 0.877207i −0.999972 0.00747054i \(-0.997622\pi\)
0.493516 0.869737i \(-0.335711\pi\)
\(102\) −31.6364 43.6467i −0.310161 0.427909i
\(103\) 141.503 37.9157i 1.37382 0.368114i 0.504947 0.863150i \(-0.331512\pi\)
0.868872 + 0.495036i \(0.164845\pi\)
\(104\) 30.9313i 0.297416i
\(105\) −94.6114 + 45.5377i −0.901061 + 0.433693i
\(106\) −94.2349 −0.889009
\(107\) −15.6874 58.5462i −0.146611 0.547160i −0.999678 0.0253594i \(-0.991927\pi\)
0.853067 0.521801i \(-0.174740\pi\)
\(108\) −36.2679 + 40.0080i −0.335814 + 0.370444i
\(109\) −24.8552 + 14.3502i −0.228029 + 0.131653i −0.609663 0.792661i \(-0.708695\pi\)
0.381633 + 0.924314i \(0.375362\pi\)
\(110\) −27.1955 + 136.130i −0.247232 + 1.23755i
\(111\) −31.9099 25.8995i −0.287477 0.233329i
\(112\) −26.9067 + 7.74790i −0.240238 + 0.0691777i
\(113\) −14.6106 14.6106i −0.129297 0.129297i 0.639497 0.768794i \(-0.279143\pi\)
−0.768794 + 0.639497i \(0.779143\pi\)
\(114\) −0.929127 2.42860i −0.00815023 0.0213035i
\(115\) 47.4220 + 41.6577i 0.412365 + 0.362241i
\(116\) −51.7028 + 29.8506i −0.445714 + 0.257333i
\(117\) −87.7954 + 44.4861i −0.750388 + 0.380223i
\(118\) 73.9707 + 73.9707i 0.626871 + 0.626871i
\(119\) 76.1861 45.8931i 0.640219 0.385656i
\(120\) 38.5639 17.6870i 0.321365 0.147391i
\(121\) 132.210 228.994i 1.09264 1.89251i
\(122\) −8.14841 + 30.4103i −0.0667902 + 0.249265i
\(123\) 132.080 + 182.222i 1.07382 + 1.48148i
\(124\) 20.1878 34.9663i 0.162805 0.281986i
\(125\) −122.659 + 24.0808i −0.981268 + 0.192647i
\(126\) −60.6895 65.2287i −0.481662 0.517688i
\(127\) −8.36779 8.36779i −0.0658881 0.0658881i 0.673395 0.739283i \(-0.264835\pi\)
−0.739283 + 0.673395i \(0.764835\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 195.962 + 31.2627i 1.51908 + 0.242347i
\(130\) 77.1669 4.99344i 0.593591 0.0384111i
\(131\) −84.5571 + 146.457i −0.645474 + 1.11799i 0.338718 + 0.940888i \(0.390007\pi\)
−0.984192 + 0.177105i \(0.943327\pi\)
\(132\) −117.161 + 12.1812i −0.887584 + 0.0922821i
\(133\) 4.12270 1.18715i 0.0309977 0.00892593i
\(134\) 12.9239 0.0964471
\(135\) 105.666 + 84.0218i 0.782712 + 0.622384i
\(136\) −31.1228 + 17.9688i −0.228844 + 0.132123i
\(137\) 241.728 + 64.7708i 1.76444 + 0.472780i 0.987609 0.156933i \(-0.0501607\pi\)
0.776828 + 0.629713i \(0.216827\pi\)
\(138\) −21.8395 + 48.9046i −0.158257 + 0.354381i
\(139\) 229.593 1.65175 0.825875 0.563853i \(-0.190682\pi\)
0.825875 + 0.563853i \(0.190682\pi\)
\(140\) 23.6730 + 65.8755i 0.169093 + 0.470540i
\(141\) 121.209 + 98.3781i 0.859635 + 0.697717i
\(142\) −5.74934 + 1.54053i −0.0404883 + 0.0108488i
\(143\) −207.379 55.5670i −1.45020 0.388580i
\(144\) 24.0286 + 26.8072i 0.166865 + 0.186161i
\(145\) 82.8175 + 124.168i 0.571155 + 0.856333i
\(146\) −33.6294 −0.230338
\(147\) 115.737 90.6310i 0.787326 0.616537i
\(148\) −19.3737 + 19.3737i −0.130903 + 0.130903i
\(149\) −42.3960 + 73.4319i −0.284537 + 0.492832i −0.972497 0.232917i \(-0.925173\pi\)
0.687960 + 0.725749i \(0.258506\pi\)
\(150\) −50.3508 93.3531i −0.335672 0.622354i
\(151\) 139.651 + 241.882i 0.924838 + 1.60187i 0.791821 + 0.610753i \(0.209133\pi\)
0.133017 + 0.991114i \(0.457533\pi\)
\(152\) −1.67444 + 0.448665i −0.0110161 + 0.00295174i
\(153\) −95.7642 62.4960i −0.625910 0.408470i
\(154\) −3.60886 194.314i −0.0234342 1.26178i
\(155\) −90.4923 44.7193i −0.583821 0.288512i
\(156\) 23.4456 + 61.2834i 0.150293 + 0.392843i
\(157\) −249.829 66.9415i −1.59127 0.426379i −0.648877 0.760894i \(-0.724761\pi\)
−0.942390 + 0.334515i \(0.891428\pi\)
\(158\) 28.3442 105.782i 0.179394 0.669507i
\(159\) −186.705 + 71.4292i −1.17425 + 0.449240i
\(160\) −9.06944 26.7908i −0.0566840 0.167442i
\(161\) −77.3369 42.7557i −0.480353 0.265563i
\(162\) −41.5311 + 106.758i −0.256365 + 0.658997i
\(163\) −4.92845 18.3932i −0.0302359 0.112842i 0.949159 0.314798i \(-0.101937\pi\)
−0.979395 + 0.201956i \(0.935270\pi\)
\(164\) 129.936 75.0186i 0.792293 0.457431i
\(165\) 49.3036 + 290.325i 0.298810 + 1.75955i
\(166\) −71.2445 41.1330i −0.429184 0.247789i
\(167\) −72.3691 72.3691i −0.433348 0.433348i 0.456418 0.889766i \(-0.349132\pi\)
−0.889766 + 0.456418i \(0.849132\pi\)
\(168\) −47.4367 + 35.7457i −0.282361 + 0.212772i
\(169\) 49.4067i 0.292348i
\(170\) 49.8526 + 74.7439i 0.293250 + 0.439670i
\(171\) −3.68171 4.10745i −0.0215305 0.0240202i
\(172\) 34.2400 127.785i 0.199070 0.742938i
\(173\) 43.1289 + 160.959i 0.249300 + 0.930401i 0.971173 + 0.238375i \(0.0766149\pi\)
−0.721873 + 0.692026i \(0.756718\pi\)
\(174\) −79.8109 + 98.3325i −0.458684 + 0.565129i
\(175\) 160.523 69.6938i 0.917277 0.398250i
\(176\) 78.5284i 0.446184i
\(177\) 202.625 + 90.4872i 1.14478 + 0.511227i
\(178\) 0.604300 2.25528i 0.00339495 0.0126701i
\(179\) −35.9900 62.3366i −0.201062 0.348249i 0.747809 0.663914i \(-0.231106\pi\)
−0.948871 + 0.315665i \(0.897772\pi\)
\(180\) 62.9990 64.2738i 0.349995 0.357077i
\(181\) 134.777i 0.744624i 0.928108 + 0.372312i \(0.121435\pi\)
−0.928108 + 0.372312i \(0.878565\pi\)
\(182\) −104.032 + 29.9566i −0.571607 + 0.164597i
\(183\) 6.90647 + 66.4275i 0.0377403 + 0.362992i
\(184\) 30.9226 + 17.8532i 0.168058 + 0.0970282i
\(185\) 51.4607 + 45.2055i 0.278166 + 0.244354i
\(186\) 13.4934 84.5800i 0.0725454 0.454731i
\(187\) −64.5605 240.943i −0.345243 1.28847i
\(188\) 73.5901 73.5901i 0.391437 0.391437i
\(189\) −169.685 83.2340i −0.897806 0.440392i
\(190\) 1.38964 + 4.10493i 0.00731388 + 0.0216049i
\(191\) 161.123 + 93.0244i 0.843575 + 0.487038i 0.858478 0.512850i \(-0.171410\pi\)
−0.0149025 + 0.999889i \(0.504744\pi\)
\(192\) 19.4322 14.0851i 0.101209 0.0733596i
\(193\) −127.992 34.2952i −0.663169 0.177696i −0.0884931 0.996077i \(-0.528205\pi\)
−0.574676 + 0.818381i \(0.694872\pi\)
\(194\) 160.253 + 92.5224i 0.826049 + 0.476920i
\(195\) 149.104 68.3852i 0.764635 0.350693i
\(196\) −52.1176 82.9925i −0.265906 0.423431i
\(197\) 193.225 193.225i 0.980838 0.980838i −0.0189815 0.999820i \(-0.506042\pi\)
0.999820 + 0.0189815i \(0.00604235\pi\)
\(198\) −222.895 + 112.941i −1.12573 + 0.570411i
\(199\) −65.1380 112.822i −0.327326 0.566946i 0.654654 0.755929i \(-0.272814\pi\)
−0.981980 + 0.188983i \(0.939481\pi\)
\(200\) −65.3730 + 26.9513i −0.326865 + 0.134756i
\(201\) 25.6058 9.79620i 0.127392 0.0487373i
\(202\) −102.304 + 102.304i −0.506456 + 0.506456i
\(203\) −150.471 144.984i −0.741237 0.714206i
\(204\) −48.0427 + 59.1919i −0.235504 + 0.290156i
\(205\) −208.132 312.052i −1.01528 1.52220i
\(206\) −103.588 179.419i −0.502853 0.870967i
\(207\) −6.20085 + 113.448i −0.0299558 + 0.548056i
\(208\) 42.2530 11.3216i 0.203139 0.0544310i
\(209\) 12.0323i 0.0575707i
\(210\) 96.8359 + 112.574i 0.461123 + 0.536065i
\(211\) 134.658 0.638191 0.319095 0.947723i \(-0.396621\pi\)
0.319095 + 0.947723i \(0.396621\pi\)
\(212\) 34.4924 + 128.727i 0.162700 + 0.607204i
\(213\) −10.2233 + 7.41016i −0.0479968 + 0.0347895i
\(214\) −74.2336 + 42.8588i −0.346886 + 0.200275i
\(215\) −324.324 64.7921i −1.50849 0.301359i
\(216\) 67.9269 + 34.8990i 0.314476 + 0.161569i
\(217\) 137.155 + 34.0339i 0.632051 + 0.156838i
\(218\) 28.7003 + 28.7003i 0.131653 + 0.131653i
\(219\) −66.6290 + 25.4907i −0.304242 + 0.116396i
\(220\) 195.911 12.6774i 0.890506 0.0576244i
\(221\) −120.334 + 69.4748i −0.544497 + 0.314365i
\(222\) −23.6995 + 53.0696i −0.106755 + 0.239052i
\(223\) 247.996 + 247.996i 1.11209 + 1.11209i 0.992867 + 0.119223i \(0.0380404\pi\)
0.119223 + 0.992867i \(0.461960\pi\)
\(224\) 20.4324 + 33.9193i 0.0912159 + 0.151425i
\(225\) −170.519 146.793i −0.757864 0.652412i
\(226\) −14.6106 + 25.3063i −0.0646486 + 0.111975i
\(227\) 19.2302 71.7681i 0.0847146 0.316159i −0.910545 0.413409i \(-0.864338\pi\)
0.995260 + 0.0972500i \(0.0310046\pi\)
\(228\) −2.97744 + 2.15814i −0.0130590 + 0.00946552i
\(229\) −34.0586 + 58.9912i −0.148727 + 0.257603i −0.930757 0.365637i \(-0.880851\pi\)
0.782030 + 0.623241i \(0.214184\pi\)
\(230\) 39.5478 80.0274i 0.171947 0.347945i
\(231\) −154.439 382.255i −0.668566 1.65478i
\(232\) 59.7012 + 59.7012i 0.257333 + 0.257333i
\(233\) 250.355 67.0823i 1.07448 0.287907i 0.322150 0.946689i \(-0.395595\pi\)
0.752334 + 0.658782i \(0.228928\pi\)
\(234\) 92.9045 + 103.648i 0.397028 + 0.442939i
\(235\) −195.471 171.711i −0.831793 0.730686i
\(236\) 73.9707 128.121i 0.313435 0.542886i
\(237\) −24.0241 231.068i −0.101368 0.974970i
\(238\) −90.5772 87.2741i −0.380576 0.366698i
\(239\) −33.1697 −0.138785 −0.0693927 0.997589i \(-0.522106\pi\)
−0.0693927 + 0.997589i \(0.522106\pi\)
\(240\) −38.2762 46.2053i −0.159484 0.192522i
\(241\) −246.276 + 142.188i −1.02189 + 0.589990i −0.914652 0.404243i \(-0.867535\pi\)
−0.107242 + 0.994233i \(0.534202\pi\)
\(242\) −361.204 96.7843i −1.49258 0.399935i
\(243\) −1.36326 + 242.996i −0.00561011 + 0.999984i
\(244\) 44.5237 0.182474
\(245\) −198.635 + 143.420i −0.810753 + 0.585388i
\(246\) 200.576 247.123i 0.815348 1.00456i
\(247\) −6.47408 + 1.73473i −0.0262109 + 0.00702318i
\(248\) −55.1541 14.7785i −0.222395 0.0595907i
\(249\) −172.333 27.4932i −0.692102 0.110414i
\(250\) 77.7912 + 158.740i 0.311165 + 0.634962i
\(251\) 134.588 0.536205 0.268103 0.963390i \(-0.413603\pi\)
0.268103 + 0.963390i \(0.413603\pi\)
\(252\) −66.8902 + 106.779i −0.265437 + 0.423725i
\(253\) −175.248 + 175.248i −0.692679 + 0.692679i
\(254\) −8.36779 + 14.4934i −0.0329441 + 0.0570608i
\(255\) 155.427 + 110.300i 0.609517 + 0.432551i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 122.294 32.7685i 0.475852 0.127504i −0.0129187 0.999917i \(-0.504112\pi\)
0.488770 + 0.872412i \(0.337446\pi\)
\(258\) −29.0213 279.132i −0.112486 1.08191i
\(259\) −83.9234 46.3970i −0.324028 0.179139i
\(260\) −35.0662 103.584i −0.134870 0.398401i
\(261\) −83.5923 + 255.320i −0.320277 + 0.978236i
\(262\) 231.014 + 61.9001i 0.881733 + 0.236260i
\(263\) 20.7801 77.5522i 0.0790116 0.294875i −0.915101 0.403224i \(-0.867890\pi\)
0.994113 + 0.108348i \(0.0345562\pi\)
\(264\) 59.5238 + 155.586i 0.225469 + 0.589343i
\(265\) 315.578 106.832i 1.19086 0.403141i
\(266\) −3.13069 5.19718i −0.0117695 0.0195383i
\(267\) −0.512196 4.92638i −0.00191834 0.0184509i
\(268\) −4.73048 17.6544i −0.0176510 0.0658746i
\(269\) −160.113 + 92.4410i −0.595214 + 0.343647i −0.767156 0.641460i \(-0.778329\pi\)
0.171943 + 0.985107i \(0.444996\pi\)
\(270\) 76.0995 175.097i 0.281850 0.648506i
\(271\) −166.881 96.3488i −0.615797 0.355531i 0.159434 0.987209i \(-0.449033\pi\)
−0.775231 + 0.631678i \(0.782367\pi\)
\(272\) 35.9376 + 35.9376i 0.132123 + 0.132123i
\(273\) −183.410 + 138.208i −0.671831 + 0.506256i
\(274\) 353.914i 1.29166i
\(275\) −63.2545 486.710i −0.230016 1.76985i
\(276\) 74.7988 + 11.9330i 0.271010 + 0.0432355i
\(277\) 113.301 422.843i 0.409027 1.52651i −0.387478 0.921879i \(-0.626654\pi\)
0.796505 0.604631i \(-0.206680\pi\)
\(278\) −84.0370 313.630i −0.302291 1.12817i
\(279\) −37.3766 177.804i −0.133966 0.637291i
\(280\) 81.3227 56.4501i 0.290438 0.201608i
\(281\) 221.523i 0.788340i 0.919038 + 0.394170i \(0.128968\pi\)
−0.919038 + 0.394170i \(0.871032\pi\)
\(282\) 90.0216 201.583i 0.319226 0.714833i
\(283\) 102.656 383.117i 0.362741 1.35377i −0.507715 0.861525i \(-0.669510\pi\)
0.870457 0.492245i \(-0.163823\pi\)
\(284\) 4.20881 + 7.28987i 0.0148197 + 0.0256685i
\(285\) 5.86476 + 7.07967i 0.0205781 + 0.0248410i
\(286\) 303.623i 1.06162i
\(287\) 378.154 + 364.364i 1.31761 + 1.26956i
\(288\) 27.8242 42.6358i 0.0966119 0.148041i
\(289\) 110.471 + 63.7807i 0.382254 + 0.220694i
\(290\) 139.304 158.580i 0.480357 0.546826i
\(291\) 387.637 + 61.8417i 1.33209 + 0.212514i
\(292\) 12.3092 + 45.9386i 0.0421548 + 0.157324i
\(293\) 156.018 156.018i 0.532484 0.532484i −0.388827 0.921311i \(-0.627120\pi\)
0.921311 + 0.388827i \(0.127120\pi\)
\(294\) −166.167 124.926i −0.565193 0.424919i
\(295\) −331.576 163.857i −1.12399 0.555449i
\(296\) 33.5562 + 19.3737i 0.113366 + 0.0654516i
\(297\) −356.008 + 392.720i −1.19868 + 1.32229i
\(298\) 115.828 + 31.0360i 0.388684 + 0.104148i
\(299\) 119.560 + 69.0278i 0.399865 + 0.230862i
\(300\) −109.093 + 102.950i −0.363643 + 0.343167i
\(301\) 462.946 8.59796i 1.53803 0.0285647i
\(302\) 279.301 279.301i 0.924838 0.924838i
\(303\) −125.147 + 280.238i −0.413026 + 0.924878i
\(304\) 1.22578 + 2.12311i 0.00403216 + 0.00698390i
\(305\) −7.18776 111.077i −0.0235664 0.364187i
\(306\) −50.3190 + 153.691i −0.164441 + 0.502260i
\(307\) 47.9690 47.9690i 0.156251 0.156251i −0.624652 0.780903i \(-0.714759\pi\)
0.780903 + 0.624652i \(0.214759\pi\)
\(308\) −264.118 + 76.0538i −0.857525 + 0.246928i
\(309\) −341.234 276.960i −1.10432 0.896311i
\(310\) −27.9652 + 139.983i −0.0902104 + 0.451559i
\(311\) 217.116 + 376.057i 0.698124 + 1.20919i 0.969116 + 0.246604i \(0.0793147\pi\)
−0.270993 + 0.962581i \(0.587352\pi\)
\(312\) 75.1330 54.4586i 0.240811 0.174547i
\(313\) −245.827 + 65.8692i −0.785390 + 0.210445i −0.629160 0.777276i \(-0.716601\pi\)
−0.156230 + 0.987721i \(0.549934\pi\)
\(314\) 365.775i 1.16489i
\(315\) 277.188 + 149.639i 0.879963 + 0.475043i
\(316\) −154.876 −0.490113
\(317\) −32.5934 121.640i −0.102818 0.383723i 0.895270 0.445523i \(-0.146982\pi\)
−0.998089 + 0.0618007i \(0.980316\pi\)
\(318\) 165.913 + 228.899i 0.521739 + 0.719809i
\(319\) −507.517 + 293.015i −1.59096 + 0.918543i
\(320\) −33.2772 + 22.1952i −0.103991 + 0.0693600i
\(321\) −114.591 + 141.183i −0.356980 + 0.439824i
\(322\) −30.0981 + 121.294i −0.0934723 + 0.376689i
\(323\) −5.50643 5.50643i −0.0170478 0.0170478i
\(324\) 161.035 + 17.6565i 0.497021 + 0.0544955i
\(325\) −252.759 + 104.205i −0.777720 + 0.320630i
\(326\) −23.3217 + 13.4648i −0.0715389 + 0.0413030i
\(327\) 78.6178 + 35.1086i 0.240421 + 0.107366i
\(328\) −150.037 150.037i −0.457431 0.457431i
\(329\) 318.779 + 176.237i 0.968934 + 0.535675i
\(330\) 378.545 173.616i 1.14711 0.526110i
\(331\) −147.637 + 255.715i −0.446034 + 0.772554i −0.998124 0.0612308i \(-0.980497\pi\)
0.552089 + 0.833785i \(0.313831\pi\)
\(332\) −30.1115 + 112.378i −0.0906972 + 0.338487i
\(333\) −6.72895 + 123.110i −0.0202071 + 0.369698i
\(334\) −72.3691 + 125.347i −0.216674 + 0.375290i
\(335\) −43.2802 + 14.6516i −0.129195 + 0.0437360i
\(336\) 66.1926 + 51.7159i 0.197002 + 0.153916i
\(337\) 348.075 + 348.075i 1.03286 + 1.03286i 0.999441 + 0.0334221i \(0.0106406\pi\)
0.0334221 + 0.999441i \(0.489359\pi\)
\(338\) −67.4908 + 18.0841i −0.199677 + 0.0535033i
\(339\) −9.76566 + 61.2134i −0.0288073 + 0.180570i
\(340\) 83.8548 95.4580i 0.246632 0.280759i
\(341\) 198.164 343.231i 0.581127 1.00654i
\(342\) −4.26329 + 6.53274i −0.0124657 + 0.0191016i
\(343\) 228.656 255.666i 0.666637 0.745383i
\(344\) −187.091 −0.543869
\(345\) 17.6950 188.533i 0.0512899 0.546473i
\(346\) 204.088 117.830i 0.589851 0.340550i
\(347\) −555.480 148.840i −1.60081 0.428935i −0.655521 0.755177i \(-0.727551\pi\)
−0.945286 + 0.326242i \(0.894217\pi\)
\(348\) 163.538 + 73.0316i 0.469935 + 0.209861i
\(349\) 106.667 0.305637 0.152818 0.988254i \(-0.451165\pi\)
0.152818 + 0.988254i \(0.451165\pi\)
\(350\) −153.959 193.769i −0.439883 0.553627i
\(351\) 262.633 + 134.934i 0.748243 + 0.384427i
\(352\) 107.272 28.7434i 0.304750 0.0816574i
\(353\) −25.8683 6.93139i −0.0732813 0.0196357i 0.221992 0.975048i \(-0.428744\pi\)
−0.295273 + 0.955413i \(0.595411\pi\)
\(354\) 49.4418 309.912i 0.139666 0.875458i
\(355\) 17.5072 11.6769i 0.0493160 0.0328927i
\(356\) −3.30196 −0.00927517
\(357\) −245.611 104.257i −0.687986 0.292037i
\(358\) −71.9801 + 71.9801i −0.201062 + 0.201062i
\(359\) −182.112 + 315.427i −0.507275 + 0.878625i 0.492690 + 0.870205i \(0.336014\pi\)
−0.999965 + 0.00842047i \(0.997320\pi\)
\(360\) −110.859 62.5324i −0.307941 0.173701i
\(361\) 180.312 + 312.310i 0.499480 + 0.865124i
\(362\) 184.109 49.3318i 0.508588 0.136276i
\(363\) −789.006 + 82.0329i −2.17357 + 0.225986i
\(364\) 79.0000 + 131.146i 0.217033 + 0.360291i
\(365\) 112.620 38.1249i 0.308547 0.104452i
\(366\) 88.2137 33.7486i 0.241021 0.0922092i
\(367\) −211.883 56.7738i −0.577337 0.154697i −0.0416774 0.999131i \(-0.513270\pi\)
−0.535659 + 0.844434i \(0.679937\pi\)
\(368\) 13.0694 48.7758i 0.0355148 0.132543i
\(369\) 210.079 641.653i 0.569319 1.73890i
\(370\) 42.9159 86.8430i 0.115989 0.234711i
\(371\) −399.548 + 240.680i −1.07695 + 0.648734i
\(372\) −120.477 + 12.5260i −0.323864 + 0.0336721i
\(373\) −99.8013 372.463i −0.267564 0.998561i −0.960662 0.277719i \(-0.910422\pi\)
0.693099 0.720843i \(-0.256245\pi\)
\(374\) −305.504 + 176.383i −0.816854 + 0.471611i
\(375\) 274.449 + 255.543i 0.731865 + 0.681449i
\(376\) −127.462 73.5901i −0.338994 0.195718i
\(377\) 230.830 + 230.830i 0.612280 + 0.612280i
\(378\) −51.5907 + 262.260i −0.136483 + 0.693810i
\(379\) 381.328i 1.00614i 0.864245 + 0.503071i \(0.167797\pi\)
−0.864245 + 0.503071i \(0.832203\pi\)
\(380\) 5.09880 3.40079i 0.0134179 0.00894945i
\(381\) −5.59300 + 35.0582i −0.0146798 + 0.0920163i
\(382\) 68.0986 254.147i 0.178268 0.665307i
\(383\) 159.655 + 595.841i 0.416854 + 1.55572i 0.781093 + 0.624414i \(0.214662\pi\)
−0.364240 + 0.931305i \(0.618671\pi\)
\(384\) −26.3532 21.3894i −0.0686282 0.0557016i
\(385\) 232.376 + 646.638i 0.603574 + 1.67958i
\(386\) 187.393i 0.485473i
\(387\) −269.078 531.039i −0.695293 1.37219i
\(388\) 67.7311 252.776i 0.174565 0.651484i
\(389\) 362.523 + 627.909i 0.931937 + 1.61416i 0.780008 + 0.625770i \(0.215215\pi\)
0.151929 + 0.988391i \(0.451451\pi\)
\(390\) −147.992 178.649i −0.379466 0.458074i
\(391\) 160.400i 0.410230i
\(392\) −94.2935 + 101.571i −0.240545 + 0.259111i
\(393\) 504.622 52.4655i 1.28403 0.133500i
\(394\) −334.676 193.225i −0.849431 0.490419i
\(395\) 25.0026 + 386.381i 0.0632977 + 0.978180i
\(396\) 235.866 + 263.141i 0.595621 + 0.664497i
\(397\) 21.4159 + 79.9252i 0.0539443 + 0.201323i 0.987639 0.156748i \(-0.0501012\pi\)
−0.933694 + 0.358071i \(0.883434\pi\)
\(398\) −130.276 + 130.276i −0.327326 + 0.327326i
\(399\) −10.1422 7.92401i −0.0254190 0.0198597i
\(400\) 60.7443 + 79.4363i 0.151861 + 0.198591i
\(401\) −471.040 271.955i −1.17466 0.678193i −0.219890 0.975525i \(-0.570570\pi\)
−0.954774 + 0.297332i \(0.903903\pi\)
\(402\) −22.7542 31.3925i −0.0566026 0.0780909i
\(403\) −213.248 57.1398i −0.529153 0.141786i
\(404\) 177.196 + 102.304i 0.438604 + 0.253228i
\(405\) 18.0523 404.597i 0.0445735 0.999006i
\(406\) −142.975 + 258.615i −0.352156 + 0.636983i
\(407\) −190.173 + 190.173i −0.467256 + 0.467256i
\(408\) 98.4425 + 43.9619i 0.241281 + 0.107750i
\(409\) 186.164 + 322.446i 0.455170 + 0.788377i 0.998698 0.0510136i \(-0.0162452\pi\)
−0.543528 + 0.839391i \(0.682912\pi\)
\(410\) −350.089 + 398.532i −0.853875 + 0.972029i
\(411\) −268.264 701.201i −0.652710 1.70609i
\(412\) −207.175 + 207.175i −0.502853 + 0.502853i
\(413\) 502.554 + 124.705i 1.21684 + 0.301949i
\(414\) 157.242 33.0542i 0.379812 0.0798411i
\(415\) 285.219 + 56.9797i 0.687274 + 0.137301i
\(416\) −30.9313 53.5746i −0.0743541 0.128785i
\(417\) −404.229 557.688i −0.969374 1.33738i
\(418\) −16.4364 + 4.40412i −0.0393215 + 0.0105362i
\(419\) 289.110i 0.690000i −0.938603 0.345000i \(-0.887879\pi\)
0.938603 0.345000i \(-0.112121\pi\)
\(420\) 118.334 173.485i 0.281748 0.413060i
\(421\) −680.094 −1.61543 −0.807713 0.589576i \(-0.799295\pi\)
−0.807713 + 0.589576i \(0.799295\pi\)
\(422\) −49.2883 183.947i −0.116797 0.435892i
\(423\) 25.5597 467.627i 0.0604247 1.10550i
\(424\) 163.220 94.2349i 0.384952 0.222252i
\(425\) −251.684 193.789i −0.592198 0.455974i
\(426\) 13.8645 + 11.2530i 0.0325457 + 0.0264155i
\(427\) 43.1207 + 149.748i 0.100985 + 0.350699i
\(428\) 85.7175 + 85.7175i 0.200275 + 0.200275i
\(429\) 230.144 + 601.562i 0.536466 + 1.40224i
\(430\) 30.2033 + 466.751i 0.0702402 + 1.08547i
\(431\) 432.391 249.641i 1.00323 0.579214i 0.0940260 0.995570i \(-0.470026\pi\)
0.909202 + 0.416356i \(0.136693\pi\)
\(432\) 22.8099 105.564i 0.0528008 0.244361i
\(433\) 62.7615 + 62.7615i 0.144946 + 0.144946i 0.775856 0.630910i \(-0.217318\pi\)
−0.630910 + 0.775856i \(0.717318\pi\)
\(434\) −3.71101 199.814i −0.00855071 0.460402i
\(435\) 155.797 419.781i 0.358154 0.965013i
\(436\) 28.7003 49.7104i 0.0658264 0.114015i
\(437\) −2.00253 + 7.47353i −0.00458244 + 0.0171019i
\(438\) 59.2089 + 81.6867i 0.135180 + 0.186499i
\(439\) −6.32464 + 10.9546i −0.0144069 + 0.0249535i −0.873139 0.487471i \(-0.837919\pi\)
0.858732 + 0.512425i \(0.171253\pi\)
\(440\) −89.0261 262.980i −0.202332 0.597681i
\(441\) −423.915 121.560i −0.961259 0.275647i
\(442\) 138.950 + 138.950i 0.314365 + 0.314365i
\(443\) −80.1541 + 21.4772i −0.180935 + 0.0484813i −0.348149 0.937439i \(-0.613190\pi\)
0.167214 + 0.985921i \(0.446523\pi\)
\(444\) 81.1691 + 12.9493i 0.182813 + 0.0291651i
\(445\) 0.533057 + 8.23767i 0.00119788 + 0.0185116i
\(446\) 247.996 429.542i 0.556045 0.963099i
\(447\) 253.012 26.3056i 0.566022 0.0588493i
\(448\) 38.8559 40.3264i 0.0867318 0.0900144i
\(449\) 554.557 1.23509 0.617547 0.786534i \(-0.288126\pi\)
0.617547 + 0.786534i \(0.288126\pi\)
\(450\) −138.108 + 286.664i −0.306907 + 0.637031i
\(451\) 1275.46 736.387i 2.82807 1.63279i
\(452\) 39.9168 + 10.6957i 0.0883116 + 0.0236630i
\(453\) 341.665 765.080i 0.754227 1.68892i
\(454\) −105.076 −0.231445
\(455\) 314.427 218.260i 0.691049 0.479691i
\(456\) 4.03789 + 3.27733i 0.00885503 + 0.00718713i
\(457\) −488.822 + 130.979i −1.06963 + 0.286607i −0.750342 0.661050i \(-0.770111\pi\)
−0.319290 + 0.947657i \(0.603445\pi\)
\(458\) 93.0497 + 24.9326i 0.203165 + 0.0544380i
\(459\) 16.8010 + 342.646i 0.0366035 + 0.746506i
\(460\) −123.795 24.7312i −0.269119 0.0537635i
\(461\) 364.645 0.790987 0.395494 0.918469i \(-0.370573\pi\)
0.395494 + 0.918469i \(0.370573\pi\)
\(462\) −465.641 + 350.882i −1.00788 + 0.759485i
\(463\) −568.862 + 568.862i −1.22864 + 1.22864i −0.264166 + 0.964477i \(0.585097\pi\)
−0.964477 + 0.264166i \(0.914903\pi\)
\(464\) 59.7012 103.406i 0.128666 0.222857i
\(465\) 50.6991 + 298.543i 0.109030 + 0.642027i
\(466\) −183.272 317.437i −0.393288 0.681195i
\(467\) 55.3194 14.8228i 0.118457 0.0317405i −0.199104 0.979978i \(-0.563803\pi\)
0.317561 + 0.948238i \(0.397136\pi\)
\(468\) 107.580 164.848i 0.229872 0.352239i
\(469\) 54.7962 33.0082i 0.116836 0.0703800i
\(470\) −163.014 + 329.870i −0.346839 + 0.701850i
\(471\) 277.254 + 724.701i 0.588650 + 1.53864i
\(472\) −202.092 54.1503i −0.428161 0.114725i
\(473\) 336.102 1254.35i 0.710574 2.65190i
\(474\) −306.851 + 117.394i −0.647365 + 0.247667i
\(475\) −9.30737 12.1714i −0.0195945 0.0256240i
\(476\) −86.0650 + 155.675i −0.180809 + 0.327049i
\(477\) 502.223 + 327.752i 1.05288 + 0.687111i
\(478\) 12.1410 + 45.3107i 0.0253995 + 0.0947922i
\(479\) 129.731 74.9002i 0.270837 0.156368i −0.358431 0.933556i \(-0.616688\pi\)
0.629268 + 0.777188i \(0.283355\pi\)
\(480\) −49.1076 + 69.1986i −0.102307 + 0.144164i
\(481\) 129.742 + 74.9067i 0.269734 + 0.155731i
\(482\) 284.375 + 284.375i 0.589990 + 0.589990i
\(483\) 32.3070 + 263.130i 0.0668881 + 0.544784i
\(484\) 528.839i 1.09264i
\(485\) −641.555 128.167i −1.32279 0.264262i
\(486\) 332.438 87.0805i 0.684029 0.179178i
\(487\) −28.1798 + 105.168i −0.0578641 + 0.215952i −0.988804 0.149221i \(-0.952323\pi\)
0.930940 + 0.365173i \(0.118990\pi\)
\(488\) −16.2968 60.8205i −0.0333951 0.124632i
\(489\) −36.0005 + 44.3550i −0.0736206 + 0.0907056i
\(490\) 268.621 + 218.844i 0.548206 + 0.446621i
\(491\) 156.181i 0.318087i 0.987272 + 0.159043i \(0.0508410\pi\)
−0.987272 + 0.159043i \(0.949159\pi\)
\(492\) −410.992 183.538i −0.835349 0.373045i
\(493\) −98.1642 + 366.354i −0.199116 + 0.743111i
\(494\) 4.73936 + 8.20881i 0.00959384 + 0.0166170i
\(495\) 618.402 630.915i 1.24930 1.27458i
\(496\) 80.7512i 0.162805i
\(497\) −20.4421 + 21.2158i −0.0411310 + 0.0426877i
\(498\) 25.5220 + 245.475i 0.0512491 + 0.492922i
\(499\) −601.874 347.492i −1.20616 0.696377i −0.244242 0.969714i \(-0.578539\pi\)
−0.961918 + 0.273337i \(0.911873\pi\)
\(500\) 188.370 164.368i 0.376740 0.328736i
\(501\) −48.3712 + 303.202i −0.0965494 + 0.605193i
\(502\) −49.2625 183.850i −0.0981324 0.366235i
\(503\) −159.128 + 159.128i −0.316358 + 0.316358i −0.847366 0.531009i \(-0.821813\pi\)
0.531009 + 0.847366i \(0.321813\pi\)
\(504\) 170.346 + 52.2900i 0.337988 + 0.103750i
\(505\) 226.620 458.581i 0.448753 0.908080i
\(506\) 303.538 + 175.248i 0.599878 + 0.346340i
\(507\) −120.010 + 86.9870i −0.236707 + 0.171572i
\(508\) 22.8612 + 6.12565i 0.0450024 + 0.0120584i
\(509\) −303.860 175.434i −0.596974 0.344663i 0.170876 0.985293i \(-0.445340\pi\)
−0.767850 + 0.640629i \(0.778674\pi\)
\(510\) 93.7830 252.690i 0.183888 0.495470i
\(511\) −142.586 + 85.8909i −0.279032 + 0.168084i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −3.49498 + 16.1747i −0.00681283 + 0.0315296i
\(514\) −89.5253 155.062i −0.174174 0.301678i
\(515\) 550.303 + 483.412i 1.06855 + 0.938664i
\(516\) −370.678 + 141.813i −0.718369 + 0.274832i
\(517\) 722.364 722.364i 1.39722 1.39722i
\(518\) −32.6614 + 131.624i −0.0630530 + 0.254100i
\(519\) 315.041 388.152i 0.607015 0.747884i
\(520\) −128.664 + 85.8158i −0.247430 + 0.165030i
\(521\) −27.9815 48.4653i −0.0537072 0.0930237i 0.837922 0.545790i \(-0.183770\pi\)
−0.891629 + 0.452767i \(0.850437\pi\)
\(522\) 379.370 + 20.7357i 0.726763 + 0.0397236i
\(523\) −845.912 + 226.661i −1.61742 + 0.433387i −0.950243 0.311510i \(-0.899165\pi\)
−0.667180 + 0.744897i \(0.732499\pi\)
\(524\) 338.228i 0.645474i
\(525\) −451.911 267.211i −0.860783 0.508973i
\(526\) −113.544 −0.215864
\(527\) −66.3879 247.763i −0.125973 0.470138i
\(528\) 190.748 138.260i 0.361265 0.261855i
\(529\) −320.111 + 184.816i −0.605124 + 0.349368i
\(530\) −261.445 391.985i −0.493293 0.739593i
\(531\) −136.953 651.498i −0.257915 1.22693i
\(532\) −5.95357 + 6.17890i −0.0111909 + 0.0116145i
\(533\) −580.106 580.106i −1.08838 1.08838i
\(534\) −6.54209 + 2.50285i −0.0122511 + 0.00468699i
\(535\) 200.009 227.685i 0.373848 0.425579i
\(536\) −22.3849 + 12.9239i −0.0417628 + 0.0241118i
\(537\) −88.0521 + 197.173i −0.163970 + 0.367174i
\(538\) 184.882 + 184.882i 0.343647 + 0.343647i
\(539\) −511.589 814.659i −0.949145 1.51143i
\(540\) −267.041 39.8640i −0.494520 0.0738221i
\(541\) 325.449 563.694i 0.601569 1.04195i −0.391014 0.920385i \(-0.627876\pi\)
0.992584 0.121564i \(-0.0387909\pi\)
\(542\) −70.5322 + 263.230i −0.130133 + 0.485664i
\(543\) 327.377 237.293i 0.602904 0.437003i
\(544\) 35.9376 62.2457i 0.0660617 0.114422i
\(545\) −128.650 63.5759i −0.236055 0.116653i
\(546\) 255.928 + 199.955i 0.468733 + 0.366218i
\(547\) 155.700 + 155.700i 0.284644 + 0.284644i 0.834958 0.550314i \(-0.185492\pi\)
−0.550314 + 0.834958i \(0.685492\pi\)
\(548\) −483.456 + 129.542i −0.882219 + 0.236390i
\(549\) 149.195 133.730i 0.271757 0.243589i
\(550\) −641.705 + 264.555i −1.16674 + 0.481010i
\(551\) −9.14754 + 15.8440i −0.0166017 + 0.0287550i
\(552\) −11.0775 106.545i −0.0200679 0.193016i
\(553\) −149.995 520.899i −0.271239 0.941951i
\(554\) −619.086 −1.11748
\(555\) 19.2020 204.590i 0.0345982 0.368630i
\(556\) −397.667 + 229.593i −0.715229 + 0.412938i
\(557\) 257.352 + 68.9573i 0.462033 + 0.123801i 0.482324 0.875993i \(-0.339793\pi\)
−0.0202914 + 0.999794i \(0.506459\pi\)
\(558\) −229.204 + 116.138i −0.410760 + 0.208133i
\(559\) −723.371 −1.29404
\(560\) −106.878 90.4267i −0.190854 0.161476i
\(561\) −471.590 + 581.031i −0.840624 + 1.03571i
\(562\) 302.607 81.0832i 0.538446 0.144276i
\(563\) −408.921 109.570i −0.726324 0.194618i −0.123332 0.992365i \(-0.539358\pi\)
−0.602992 + 0.797747i \(0.706025\pi\)
\(564\) −308.317 49.1874i −0.546662 0.0872116i
\(565\) 20.2394 101.311i 0.0358219 0.179311i
\(566\) −560.922 −0.991028
\(567\) 96.5755 + 558.715i 0.170327 + 0.985388i
\(568\) 8.41761 8.41761i 0.0148197 0.0148197i
\(569\) 102.317 177.219i 0.179819 0.311456i −0.761999 0.647578i \(-0.775782\pi\)
0.941819 + 0.336122i \(0.109115\pi\)
\(570\) 7.52436 10.6027i 0.0132006 0.0186013i
\(571\) −10.0374 17.3853i −0.0175786 0.0304471i 0.857102 0.515146i \(-0.172262\pi\)
−0.874681 + 0.484699i \(0.838929\pi\)
\(572\) 414.757 111.134i 0.725100 0.194290i
\(573\) −57.7193 555.154i −0.100732 0.968855i
\(574\) 359.317 649.935i 0.625987 1.13229i
\(575\) −41.7140 + 312.834i −0.0725460 + 0.544059i
\(576\) −68.4260 22.4028i −0.118795 0.0388938i
\(577\) −266.916 71.5200i −0.462593 0.123952i 0.0199925 0.999800i \(-0.493636\pi\)
−0.482586 + 0.875849i \(0.660302\pi\)
\(578\) 46.6907 174.252i 0.0807798 0.301474i
\(579\) 142.042 + 371.276i 0.245323 + 0.641237i
\(580\) −267.612 132.248i −0.461401 0.228014i
\(581\) −407.126 + 7.56126i −0.700734 + 0.0130142i
\(582\) −57.4078 552.158i −0.0986389 0.948725i
\(583\) 338.579 + 1263.59i 0.580753 + 2.16740i
\(584\) 58.2478 33.6294i 0.0997393 0.0575845i
\(585\) −428.626 241.776i −0.732695 0.413293i
\(586\) −270.231 156.018i −0.461144 0.266242i
\(587\) −384.403 384.403i −0.654860 0.654860i 0.299299 0.954159i \(-0.403247\pi\)
−0.954159 + 0.299299i \(0.903247\pi\)
\(588\) −109.831 + 272.714i −0.186788 + 0.463800i
\(589\) 12.3729i 0.0210065i
\(590\) −102.468 + 512.917i −0.173675 + 0.869351i
\(591\) −809.548 129.151i −1.36979 0.218530i
\(592\) 14.1825 52.9299i 0.0239570 0.0894086i
\(593\) −22.2236 82.9396i −0.0374766 0.139864i 0.944653 0.328072i \(-0.106399\pi\)
−0.982129 + 0.188208i \(0.939732\pi\)
\(594\) 666.774 + 342.570i 1.12252 + 0.576718i
\(595\) 402.270 + 189.582i 0.676084 + 0.318625i
\(596\) 169.584i 0.284537i
\(597\) −159.365 + 356.860i −0.266942 + 0.597756i
\(598\) 50.5319 188.588i 0.0845015 0.315364i
\(599\) 261.754 + 453.371i 0.436985 + 0.756880i 0.997455 0.0712942i \(-0.0227129\pi\)
−0.560470 + 0.828175i \(0.689380\pi\)
\(600\) 180.563 + 111.342i 0.300939 + 0.185569i
\(601\) 135.446i 0.225368i −0.993631 0.112684i \(-0.964055\pi\)
0.993631 0.112684i \(-0.0359448\pi\)
\(602\) −181.195 629.249i −0.300989 1.04526i
\(603\) −68.8776 44.9497i −0.114225 0.0745435i
\(604\) −483.764 279.301i −0.800934 0.462419i
\(605\) 1319.34 85.3740i 2.18073 0.141114i
\(606\) 428.619 + 68.3797i 0.707292 + 0.112838i
\(607\) 131.466 + 490.637i 0.216583 + 0.808298i 0.985603 + 0.169074i \(0.0540777\pi\)
−0.769021 + 0.639224i \(0.779256\pi\)
\(608\) 2.45155 2.45155i 0.00403216 0.00403216i
\(609\) −87.2457 + 620.762i −0.143261 + 1.01931i
\(610\) −149.103 + 50.4757i −0.244431 + 0.0827470i
\(611\) −492.820 284.530i −0.806580 0.465679i
\(612\) 228.364 + 12.4820i 0.373144 + 0.0203954i
\(613\) 679.722 + 182.131i 1.10885 + 0.297114i 0.766361 0.642410i \(-0.222065\pi\)
0.342484 + 0.939524i \(0.388732\pi\)
\(614\) −83.0848 47.9690i −0.135317 0.0781254i
\(615\) −391.539 + 1054.97i −0.636648 + 1.71539i
\(616\) 200.565 + 332.954i 0.325593 + 0.540509i
\(617\) −61.9920 + 61.9920i −0.100473 + 0.100473i −0.755557 0.655083i \(-0.772634\pi\)
0.655083 + 0.755557i \(0.272634\pi\)
\(618\) −253.434 + 567.508i −0.410088 + 0.918298i
\(619\) 55.8546 + 96.7431i 0.0902337 + 0.156289i 0.907609 0.419816i \(-0.137905\pi\)
−0.817376 + 0.576105i \(0.804572\pi\)
\(620\) 201.457 13.0362i 0.324930 0.0210261i
\(621\) 286.485 184.677i 0.461328 0.297387i
\(622\) 434.233 434.233i 0.698124 0.698124i
\(623\) −3.19791 11.1056i −0.00513308 0.0178260i
\(624\) −101.892 82.7004i −0.163289 0.132533i
\(625\) −440.472 443.407i −0.704755 0.709451i
\(626\) 179.958 + 311.696i 0.287473 + 0.497917i
\(627\) −29.2268 + 21.1844i −0.0466136 + 0.0337869i
\(628\) 499.658 133.883i 0.795634 0.213189i
\(629\) 174.061i 0.276726i
\(630\) 102.952 433.418i 0.163416 0.687965i
\(631\) −231.667 −0.367143 −0.183571 0.983006i \(-0.558766\pi\)
−0.183571 + 0.983006i \(0.558766\pi\)
\(632\) 56.6884 + 211.564i 0.0896969 + 0.334753i
\(633\) −237.083 327.089i −0.374539 0.516728i
\(634\) −154.233 + 89.0467i −0.243270 + 0.140452i
\(635\) 11.5915 58.0227i 0.0182544 0.0913743i
\(636\) 251.954 310.424i 0.396154 0.488088i
\(637\) −364.578 + 392.717i −0.572336 + 0.616510i
\(638\) 586.031 + 586.031i 0.918543 + 0.918543i
\(639\) 35.9990 + 11.7862i 0.0563364 + 0.0184447i
\(640\) 42.4995 + 37.3335i 0.0664055 + 0.0583336i
\(641\) 471.706 272.339i 0.735890 0.424866i −0.0846830 0.996408i \(-0.526988\pi\)
0.820573 + 0.571542i \(0.193654\pi\)
\(642\) 234.803 + 104.857i 0.365737 + 0.163329i
\(643\) 521.820 + 521.820i 0.811539 + 0.811539i 0.984865 0.173326i \(-0.0554513\pi\)
−0.173326 + 0.984865i \(0.555451\pi\)
\(644\) 176.707 3.28185i 0.274390 0.00509604i
\(645\) 413.634 + 901.868i 0.641293 + 1.39824i
\(646\) −5.50643 + 9.53741i −0.00852388 + 0.0147638i
\(647\) −69.3479 + 258.810i −0.107184 + 0.400016i −0.998584 0.0532020i \(-0.983057\pi\)
0.891400 + 0.453218i \(0.149724\pi\)
\(648\) −34.8236 226.441i −0.0537401 0.349445i
\(649\) 726.101 1257.64i 1.11880 1.93782i
\(650\) 234.863 + 307.134i 0.361327 + 0.472513i
\(651\) −158.810 393.074i −0.243948 0.603801i
\(652\) 26.9296 + 26.9296i 0.0413030 + 0.0413030i
\(653\) −85.6319 + 22.9450i −0.131136 + 0.0351378i −0.323790 0.946129i \(-0.604957\pi\)
0.192654 + 0.981267i \(0.438291\pi\)
\(654\) 19.1832 120.245i 0.0293321 0.183860i
\(655\) −843.806 + 54.6024i −1.28825 + 0.0833624i
\(656\) −150.037 + 259.872i −0.228715 + 0.396147i
\(657\) 179.227 + 116.964i 0.272796 + 0.178027i
\(658\) 124.063 499.968i 0.188546 0.759830i
\(659\) −80.5689 −0.122259 −0.0611297 0.998130i \(-0.519470\pi\)
−0.0611297 + 0.998130i \(0.519470\pi\)
\(660\) −375.721 453.554i −0.569275 0.687203i
\(661\) 697.809 402.880i 1.05569 0.609501i 0.131450 0.991323i \(-0.458037\pi\)
0.924236 + 0.381822i \(0.124703\pi\)
\(662\) 403.353 + 108.078i 0.609294 + 0.163260i
\(663\) 380.620 + 169.975i 0.574087 + 0.256372i
\(664\) 164.532 0.247789
\(665\) 16.3761 + 13.8554i 0.0246258 + 0.0208351i
\(666\) 170.634 35.8693i 0.256207 0.0538578i
\(667\) 363.997 97.5327i 0.545723 0.146226i
\(668\) 197.716 + 52.9778i 0.295982 + 0.0793081i
\(669\) 165.760 1039.02i 0.247772 1.55309i
\(670\) 35.8561 + 53.7590i 0.0535165 + 0.0802373i
\(671\) 437.047 0.651337
\(672\) 46.4171 109.350i 0.0690730 0.162723i
\(673\) 231.974 231.974i 0.344687 0.344687i −0.513439 0.858126i \(-0.671629\pi\)
0.858126 + 0.513439i \(0.171629\pi\)
\(674\) 348.075 602.884i 0.516432 0.894486i
\(675\) −56.3417 + 672.644i −0.0834692 + 0.996510i
\(676\) 49.4067 + 85.5750i 0.0730869 + 0.126590i
\(677\) −403.300 + 108.064i −0.595717 + 0.159622i −0.544065 0.839043i \(-0.683115\pi\)
−0.0516521 + 0.998665i \(0.516449\pi\)
\(678\) 87.1935 9.06550i 0.128604 0.0133709i
\(679\) 915.767 17.0079i 1.34870 0.0250484i
\(680\) −161.091 79.6077i −0.236899 0.117070i
\(681\) −208.184 + 79.6465i −0.305703 + 0.116955i
\(682\) −541.395 145.066i −0.793835 0.212707i
\(683\) −222.440 + 830.156i −0.325680 + 1.21546i 0.587946 + 0.808900i \(0.299937\pi\)
−0.913626 + 0.406555i \(0.866730\pi\)
\(684\) 10.4844 + 3.43261i 0.0153280 + 0.00501843i
\(685\) 401.226 + 1185.20i 0.585731 + 1.73023i
\(686\) −432.941 218.770i −0.631109 0.318907i
\(687\) 203.256 21.1325i 0.295860 0.0307605i
\(688\) 68.4800 + 255.571i 0.0995349 + 0.371469i
\(689\) 631.075 364.351i 0.915929 0.528812i
\(690\) −264.018 + 44.8361i −0.382635 + 0.0649798i
\(691\) −242.414 139.958i −0.350816 0.202544i 0.314229 0.949347i \(-0.398254\pi\)
−0.665045 + 0.746804i \(0.731587\pi\)
\(692\) −235.661 235.661i −0.340550 0.340550i
\(693\) −656.598 + 1048.15i −0.947472 + 1.51248i
\(694\) 813.279i 1.17187i
\(695\) 636.983 + 955.028i 0.916523 + 1.37414i
\(696\) 39.9041 250.128i 0.0573335 0.359379i
\(697\) 246.700 920.697i 0.353945 1.32094i
\(698\) −39.0429 145.710i −0.0559354 0.208754i
\(699\) −603.727 490.011i −0.863701 0.701018i
\(700\) −208.341 + 281.237i −0.297630 + 0.401767i
\(701\) 1078.49i 1.53850i 0.638949 + 0.769249i \(0.279370\pi\)
−0.638949 + 0.769249i \(0.720630\pi\)
\(702\) 88.1926 408.153i 0.125631 0.581415i
\(703\) −2.17307 + 8.11002i −0.00309114 + 0.0115363i
\(704\) −78.5284 136.015i −0.111546 0.193203i
\(705\) −72.9381 + 777.126i −0.103458 + 1.10231i
\(706\) 37.8738i 0.0536456i
\(707\) −172.471 + 695.049i −0.243948 + 0.983097i
\(708\) −441.445 + 45.8970i −0.623510 + 0.0648263i
\(709\) 379.565 + 219.142i 0.535353 + 0.309086i 0.743193 0.669077i \(-0.233310\pi\)
−0.207841 + 0.978163i \(0.566644\pi\)
\(710\) −22.3590 19.6412i −0.0314916 0.0276637i
\(711\) −518.973 + 465.181i −0.729920 + 0.654263i
\(712\) 1.20860 + 4.51056i 0.00169747 + 0.00633506i
\(713\) −180.208 + 180.208i −0.252746 + 0.252746i
\(714\) −52.5181 + 373.672i −0.0735548 + 0.523350i
\(715\) −344.212 1016.79i −0.481415 1.42208i
\(716\) 124.673 + 71.9801i 0.174124 + 0.100531i
\(717\) 58.3996 + 80.5702i 0.0814500 + 0.112371i
\(718\) 497.538 + 133.315i 0.692950 + 0.185675i
\(719\) −139.253 80.3980i −0.193677 0.111819i 0.400026 0.916504i \(-0.369001\pi\)
−0.593703 + 0.804685i \(0.702334\pi\)
\(720\) −44.8437 + 174.325i −0.0622830 + 0.242117i
\(721\) −897.447 496.154i −1.24473 0.688147i
\(722\) 360.624 360.624i 0.499480 0.499480i
\(723\) 778.980 + 347.872i 1.07743 + 0.481151i
\(724\) −134.777 233.441i −0.186156 0.322432i
\(725\) −286.728 + 688.984i −0.395487 + 0.950323i
\(726\) 400.855 + 1047.78i 0.552142 + 1.44322i
\(727\) −694.902 + 694.902i −0.955848 + 0.955848i −0.999066 0.0432176i \(-0.986239\pi\)
0.0432176 + 0.999066i \(0.486239\pi\)
\(728\) 150.233 155.919i 0.206364 0.214174i
\(729\) 592.645 424.515i 0.812956 0.582326i
\(730\) −93.3013 139.886i −0.127810 0.191625i
\(731\) −420.224 727.850i −0.574862 0.995690i
\(732\) −78.3899 108.149i −0.107090 0.147745i
\(733\) −146.048 + 39.1333i −0.199246 + 0.0533879i −0.357062 0.934081i \(-0.616222\pi\)
0.157816 + 0.987469i \(0.449555\pi\)
\(734\) 310.218i 0.422640i
\(735\) 698.094 + 229.979i 0.949787 + 0.312897i
\(736\) −71.4128 −0.0970282
\(737\) −46.4346 173.296i −0.0630049 0.235138i
\(738\) −953.408 52.1116i −1.29188 0.0706120i
\(739\) 1272.70 734.796i 1.72220 0.994311i 0.807843 0.589398i \(-0.200635\pi\)
0.914355 0.404913i \(-0.132698\pi\)
\(740\) −134.338 26.8375i −0.181538 0.0362669i
\(741\) 15.6122 + 12.6715i 0.0210691 + 0.0171006i
\(742\) 475.020 + 457.697i 0.640189 + 0.616843i
\(743\) −51.7779 51.7779i −0.0696876 0.0696876i 0.671404 0.741092i \(-0.265692\pi\)
−0.741092 + 0.671404i \(0.765692\pi\)
\(744\) 61.2086 + 159.990i 0.0822697 + 0.215041i
\(745\) −423.075 + 27.3770i −0.567885 + 0.0367477i
\(746\) −472.265 + 272.662i −0.633062 + 0.365499i
\(747\) 236.634 + 467.008i 0.316779 + 0.625178i
\(748\) 352.765 + 352.765i 0.471611 + 0.471611i
\(749\) −205.281 + 371.313i −0.274073 + 0.495745i
\(750\) 248.623 468.440i 0.331498 0.624587i
\(751\) −180.515 + 312.661i −0.240366 + 0.416327i −0.960819 0.277178i \(-0.910601\pi\)
0.720452 + 0.693505i \(0.243934\pi\)
\(752\) −53.8717 + 201.052i −0.0716379 + 0.267356i
\(753\) −236.959 326.917i −0.314687 0.434153i
\(754\) 230.830 399.809i 0.306140 0.530250i
\(755\) −618.698 + 1251.97i −0.819468 + 1.65824i
\(756\) 377.138 25.5197i 0.498859 0.0337563i
\(757\) −43.6499 43.6499i −0.0576617 0.0576617i 0.677688 0.735350i \(-0.262982\pi\)
−0.735350 + 0.677688i \(0.762982\pi\)
\(758\) 520.904 139.576i 0.687208 0.184137i
\(759\) 734.229 + 117.135i 0.967364 + 0.154328i
\(760\)