Properties

Label 210.3.w.b.47.3
Level 210
Weight 3
Character 210.47
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.3
Character \(\chi\) \(=\) 210.47
Dual form 210.3.w.b.143.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.80804 - 1.05588i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.87492 - 1.11135i) q^{5} +(-0.414547 + 4.22234i) q^{6} +(0.132847 + 6.99874i) q^{7} +(2.00000 + 2.00000i) q^{8} +(6.77022 + 5.92993i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.80804 - 1.05588i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(4.87492 - 1.11135i) q^{5} +(-0.414547 + 4.22234i) q^{6} +(0.132847 + 6.99874i) q^{7} +(2.00000 + 2.00000i) q^{8} +(6.77022 + 5.92993i) q^{9} +(-3.30248 - 6.25249i) q^{10} +(9.30088 - 5.36987i) q^{11} +(5.91956 - 0.979202i) q^{12} +(3.28522 + 3.28522i) q^{13} +(9.51183 - 2.74319i) q^{14} +(-14.8625 - 2.02662i) q^{15} +(2.00000 - 3.46410i) q^{16} +(4.29378 - 16.0246i) q^{17} +(5.62236 - 11.4188i) q^{18} +(1.04608 - 1.81186i) q^{19} +(-7.33226 + 6.79985i) q^{20} +(7.01681 - 19.7930i) q^{21} +(-10.7397 - 10.7397i) q^{22} +(-12.7041 + 3.40405i) q^{23} +(-3.50432 - 7.72785i) q^{24} +(22.5298 - 10.8355i) q^{25} +(3.28522 - 5.69017i) q^{26} +(-12.7498 - 23.8001i) q^{27} +(-7.22884 - 11.9893i) q^{28} +21.8689 q^{29} +(2.67163 + 21.0443i) q^{30} +(40.3894 - 23.3188i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-31.7872 + 5.25818i) q^{33} -23.4616 q^{34} +(8.42570 + 33.9707i) q^{35} +(-17.6563 - 3.50072i) q^{36} +(40.7704 - 10.9244i) q^{37} +(-2.85794 - 0.765783i) q^{38} +(-5.75624 - 12.6939i) q^{39} +(11.9726 + 7.52714i) q^{40} +41.7957 q^{41} +(-29.6061 - 2.34038i) q^{42} +(-32.4714 + 32.4714i) q^{43} +(-10.7397 + 18.6018i) q^{44} +(39.5946 + 21.3838i) q^{45} +(9.30003 + 16.1081i) q^{46} +(-67.3444 + 18.0449i) q^{47} +(-9.27377 + 7.61558i) q^{48} +(-48.9647 + 1.85952i) q^{49} +(-23.0481 - 26.8102i) q^{50} +(-28.9772 + 40.4641i) q^{51} +(-8.97539 - 2.40495i) q^{52} +(-8.36609 + 31.2227i) q^{53} +(-27.8448 + 26.1279i) q^{54} +(39.3733 - 36.5143i) q^{55} +(-13.7318 + 14.2632i) q^{56} +(-4.85055 + 3.98325i) q^{57} +(-8.00456 - 29.8734i) q^{58} +(8.21615 - 4.74360i) q^{59} +(27.7692 - 11.3523i) q^{60} +(100.996 + 58.3099i) q^{61} +(-46.6377 - 46.6377i) q^{62} +(-40.6026 + 48.1708i) q^{63} +8.00000i q^{64} +(19.6663 + 12.3642i) q^{65} +(18.8177 + 41.4975i) q^{66} +(0.604518 - 2.25609i) q^{67} +(8.58756 + 32.0492i) q^{68} +(39.2679 + 3.85530i) q^{69} +(43.3208 - 23.9438i) q^{70} +82.6653i q^{71} +(1.68059 + 25.4003i) q^{72} +(23.8646 - 89.0639i) q^{73} +(-29.8460 - 51.6948i) q^{74} +(-74.7057 + 6.63786i) q^{75} +4.18431i q^{76} +(38.8179 + 64.3811i) q^{77} +(-15.2332 + 12.5094i) q^{78} +(27.5447 + 15.9030i) q^{79} +(5.90001 - 19.1099i) q^{80} +(10.6719 + 80.2939i) q^{81} +(-15.2983 - 57.0939i) q^{82} +(37.0831 - 37.0831i) q^{83} +(7.63957 + 41.2994i) q^{84} +(3.12284 - 82.8906i) q^{85} +(56.2421 + 32.4714i) q^{86} +(-61.4087 - 23.0909i) q^{87} +(29.3415 + 7.86203i) q^{88} +(-136.159 - 78.6114i) q^{89} +(14.7183 - 61.9142i) q^{90} +(-22.5560 + 23.4288i) q^{91} +(18.6001 - 18.6001i) q^{92} +(-138.037 + 22.8339i) q^{93} +(49.2996 + 85.3893i) q^{94} +(3.08593 - 9.99525i) q^{95} +(13.7975 + 9.88071i) q^{96} +(41.8856 - 41.8856i) q^{97} +(20.4625 + 66.2064i) q^{98} +(94.8120 + 18.7984i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −2.80804 1.05588i −0.936015 0.351961i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 4.87492 1.11135i 0.974985 0.222271i
\(6\) −0.414547 + 4.22234i −0.0690912 + 0.703723i
\(7\) 0.132847 + 6.99874i 0.0189781 + 0.999820i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 6.77022 + 5.92993i 0.752247 + 0.658881i
\(10\) −3.30248 6.25249i −0.330248 0.625249i
\(11\) 9.30088 5.36987i 0.845535 0.488170i −0.0136071 0.999907i \(-0.504331\pi\)
0.859142 + 0.511738i \(0.170998\pi\)
\(12\) 5.91956 0.979202i 0.493296 0.0816001i
\(13\) 3.28522 + 3.28522i 0.252709 + 0.252709i 0.822081 0.569371i \(-0.192813\pi\)
−0.569371 + 0.822081i \(0.692813\pi\)
\(14\) 9.51183 2.74319i 0.679416 0.195942i
\(15\) −14.8625 2.02662i −0.990831 0.135108i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 4.29378 16.0246i 0.252575 0.942624i −0.716848 0.697229i \(-0.754416\pi\)
0.969423 0.245394i \(-0.0789174\pi\)
\(18\) 5.62236 11.4188i 0.312353 0.634378i
\(19\) 1.04608 1.81186i 0.0550568 0.0953611i −0.837183 0.546922i \(-0.815799\pi\)
0.892240 + 0.451561i \(0.149133\pi\)
\(20\) −7.33226 + 6.79985i −0.366613 + 0.339992i
\(21\) 7.01681 19.7930i 0.334134 0.942526i
\(22\) −10.7397 10.7397i −0.488170 0.488170i
\(23\) −12.7041 + 3.40405i −0.552351 + 0.148002i −0.524190 0.851601i \(-0.675632\pi\)
−0.0281612 + 0.999603i \(0.508965\pi\)
\(24\) −3.50432 7.72785i −0.146013 0.321994i
\(25\) 22.5298 10.8355i 0.901191 0.433421i
\(26\) 3.28522 5.69017i 0.126355 0.218853i
\(27\) −12.7498 23.8001i −0.472214 0.881484i
\(28\) −7.22884 11.9893i −0.258173 0.428190i
\(29\) 21.8689 0.754099 0.377049 0.926193i \(-0.376939\pi\)
0.377049 + 0.926193i \(0.376939\pi\)
\(30\) 2.67163 + 21.0443i 0.0890543 + 0.701477i
\(31\) 40.3894 23.3188i 1.30288 0.752221i 0.321987 0.946744i \(-0.395649\pi\)
0.980898 + 0.194523i \(0.0623160\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −31.7872 + 5.25818i −0.963249 + 0.159339i
\(34\) −23.4616 −0.690048
\(35\) 8.42570 + 33.9707i 0.240734 + 0.970591i
\(36\) −17.6563 3.50072i −0.490453 0.0972421i
\(37\) 40.7704 10.9244i 1.10190 0.295254i 0.338363 0.941016i \(-0.390127\pi\)
0.763539 + 0.645762i \(0.223460\pi\)
\(38\) −2.85794 0.765783i −0.0752089 0.0201522i
\(39\) −5.75624 12.6939i −0.147596 0.325484i
\(40\) 11.9726 + 7.52714i 0.299314 + 0.188179i
\(41\) 41.7957 1.01941 0.509703 0.860350i \(-0.329755\pi\)
0.509703 + 0.860350i \(0.329755\pi\)
\(42\) −29.6061 2.34038i −0.704908 0.0557234i
\(43\) −32.4714 + 32.4714i −0.755148 + 0.755148i −0.975435 0.220287i \(-0.929301\pi\)
0.220287 + 0.975435i \(0.429301\pi\)
\(44\) −10.7397 + 18.6018i −0.244085 + 0.422767i
\(45\) 39.5946 + 21.3838i 0.879880 + 0.475197i
\(46\) 9.30003 + 16.1081i 0.202175 + 0.350177i
\(47\) −67.3444 + 18.0449i −1.43286 + 0.383934i −0.890028 0.455907i \(-0.849315\pi\)
−0.542833 + 0.839841i \(0.682648\pi\)
\(48\) −9.27377 + 7.61558i −0.193204 + 0.158658i
\(49\) −48.9647 + 1.85952i −0.999280 + 0.0379493i
\(50\) −23.0481 26.8102i −0.460962 0.536203i
\(51\) −28.9772 + 40.4641i −0.568181 + 0.793413i
\(52\) −8.97539 2.40495i −0.172604 0.0462490i
\(53\) −8.36609 + 31.2227i −0.157851 + 0.589107i 0.840994 + 0.541045i \(0.181971\pi\)
−0.998844 + 0.0480619i \(0.984696\pi\)
\(54\) −27.8448 + 26.1279i −0.515644 + 0.483851i
\(55\) 39.3733 36.5143i 0.715878 0.663896i
\(56\) −13.7318 + 14.2632i −0.245210 + 0.254699i
\(57\) −4.85055 + 3.98325i −0.0850973 + 0.0698816i
\(58\) −8.00456 29.8734i −0.138010 0.515059i
\(59\) 8.21615 4.74360i 0.139257 0.0804000i −0.428753 0.903422i \(-0.641047\pi\)
0.568010 + 0.823022i \(0.307714\pi\)
\(60\) 27.7692 11.3523i 0.462819 0.189204i
\(61\) 100.996 + 58.3099i 1.65567 + 0.955901i 0.974679 + 0.223607i \(0.0717832\pi\)
0.680989 + 0.732294i \(0.261550\pi\)
\(62\) −46.6377 46.6377i −0.752221 0.752221i
\(63\) −40.6026 + 48.1708i −0.644486 + 0.764616i
\(64\) 8.00000i 0.125000i
\(65\) 19.6663 + 12.3642i 0.302558 + 0.190218i
\(66\) 18.8177 + 41.4975i 0.285117 + 0.628751i
\(67\) 0.604518 2.25609i 0.00902266 0.0336730i −0.961268 0.275616i \(-0.911118\pi\)
0.970290 + 0.241943i \(0.0777848\pi\)
\(68\) 8.58756 + 32.0492i 0.126288 + 0.471312i
\(69\) 39.2679 + 3.85530i 0.569100 + 0.0558739i
\(70\) 43.3208 23.9438i 0.618869 0.342055i
\(71\) 82.6653i 1.16430i 0.813082 + 0.582150i \(0.197788\pi\)
−0.813082 + 0.582150i \(0.802212\pi\)
\(72\) 1.68059 + 25.4003i 0.0233415 + 0.352782i
\(73\) 23.8646 89.0639i 0.326912 1.22005i −0.585463 0.810699i \(-0.699087\pi\)
0.912375 0.409355i \(-0.134246\pi\)
\(74\) −29.8460 51.6948i −0.403324 0.698578i
\(75\) −74.7057 + 6.63786i −0.996076 + 0.0885048i
\(76\) 4.18431i 0.0550568i
\(77\) 38.8179 + 64.3811i 0.504128 + 0.836118i
\(78\) −15.2332 + 12.5094i −0.195297 + 0.160377i
\(79\) 27.5447 + 15.9030i 0.348668 + 0.201303i 0.664098 0.747645i \(-0.268816\pi\)
−0.315431 + 0.948949i \(0.602149\pi\)
\(80\) 5.90001 19.1099i 0.0737501 0.238874i
\(81\) 10.6719 + 80.2939i 0.131751 + 0.991283i
\(82\) −15.2983 57.0939i −0.186564 0.696268i
\(83\) 37.0831 37.0831i 0.446785 0.446785i −0.447499 0.894284i \(-0.647685\pi\)
0.894284 + 0.447499i \(0.147685\pi\)
\(84\) 7.63957 + 41.2994i 0.0909473 + 0.491659i
\(85\) 3.12284 82.8906i 0.0367393 0.975184i
\(86\) 56.2421 + 32.4714i 0.653977 + 0.377574i
\(87\) −61.4087 23.0909i −0.705847 0.265413i
\(88\) 29.3415 + 7.86203i 0.333426 + 0.0893412i
\(89\) −136.159 78.6114i −1.52987 0.883274i −0.999366 0.0355942i \(-0.988668\pi\)
−0.530509 0.847680i \(-0.677999\pi\)
\(90\) 14.7183 61.9142i 0.163536 0.687936i
\(91\) −22.5560 + 23.4288i −0.247868 + 0.257460i
\(92\) 18.6001 18.6001i 0.202175 0.202175i
\(93\) −138.037 + 22.8339i −1.48427 + 0.245525i
\(94\) 49.2996 + 85.3893i 0.524463 + 0.908397i
\(95\) 3.08593 9.99525i 0.0324835 0.105213i
\(96\) 13.7975 + 9.88071i 0.143724 + 0.102924i
\(97\) 41.8856 41.8856i 0.431810 0.431810i −0.457434 0.889244i \(-0.651231\pi\)
0.889244 + 0.457434i \(0.151231\pi\)
\(98\) 20.4625 + 66.2064i 0.208801 + 0.675575i
\(99\) 94.8120 + 18.7984i 0.957697 + 0.189883i
\(100\) −28.1872 + 41.2975i −0.281872 + 0.412975i
\(101\) −92.9876 161.059i −0.920670 1.59465i −0.798381 0.602152i \(-0.794310\pi\)
−0.122288 0.992495i \(-0.539023\pi\)
\(102\) 65.8813 + 24.7727i 0.645895 + 0.242870i
\(103\) −73.2287 + 19.6216i −0.710958 + 0.190501i −0.596134 0.802885i \(-0.703297\pi\)
−0.114824 + 0.993386i \(0.536630\pi\)
\(104\) 13.1409i 0.126355i
\(105\) 12.2093 104.288i 0.116279 0.993217i
\(106\) 45.7132 0.431256
\(107\) 34.2483 + 127.816i 0.320077 + 1.19454i 0.919169 + 0.393864i \(0.128862\pi\)
−0.599092 + 0.800681i \(0.704471\pi\)
\(108\) 45.8833 + 28.4732i 0.424846 + 0.263640i
\(109\) −140.071 + 80.8701i −1.28506 + 0.741927i −0.977768 0.209689i \(-0.932755\pi\)
−0.307288 + 0.951617i \(0.599421\pi\)
\(110\) −64.2910 40.4197i −0.584464 0.367452i
\(111\) −126.020 12.3726i −1.13531 0.111465i
\(112\) 24.5100 + 13.5373i 0.218840 + 0.120869i
\(113\) 15.2685 + 15.2685i 0.135119 + 0.135119i 0.771432 0.636312i \(-0.219541\pi\)
−0.636312 + 0.771432i \(0.719541\pi\)
\(114\) 7.21664 + 5.16800i 0.0633039 + 0.0453333i
\(115\) −58.1483 + 30.7132i −0.505638 + 0.267071i
\(116\) −37.8780 + 21.8689i −0.326534 + 0.188525i
\(117\) 2.76055 + 41.7228i 0.0235944 + 0.356605i
\(118\) −9.48720 9.48720i −0.0804000 0.0804000i
\(119\) 112.722 + 27.9222i 0.947247 + 0.234641i
\(120\) −25.6717 33.7782i −0.213931 0.281485i
\(121\) −2.82907 + 4.90010i −0.0233808 + 0.0404967i
\(122\) 42.6858 159.306i 0.349884 1.30578i
\(123\) −117.364 44.1313i −0.954179 0.358791i
\(124\) −46.6377 + 80.7789i −0.376110 + 0.651442i
\(125\) 97.7889 77.8610i 0.782311 0.622888i
\(126\) 80.6641 + 37.8325i 0.640192 + 0.300258i
\(127\) −60.5483 60.5483i −0.476758 0.476758i 0.427335 0.904093i \(-0.359453\pi\)
−0.904093 + 0.427335i \(0.859453\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) 125.467 56.8951i 0.972612 0.441047i
\(130\) 9.69141 31.3902i 0.0745493 0.241463i
\(131\) 85.5142 148.115i 0.652780 1.13065i −0.329666 0.944098i \(-0.606936\pi\)
0.982445 0.186550i \(-0.0597307\pi\)
\(132\) 49.7989 40.8947i 0.377265 0.309808i
\(133\) 12.8197 + 7.08053i 0.0963888 + 0.0532371i
\(134\) −3.30315 −0.0246504
\(135\) −88.6045 101.854i −0.656330 0.754474i
\(136\) 40.6368 23.4616i 0.298800 0.172512i
\(137\) 36.3340 + 9.73567i 0.265212 + 0.0710633i 0.388974 0.921249i \(-0.372829\pi\)
−0.123763 + 0.992312i \(0.539496\pi\)
\(138\) −9.10660 55.0521i −0.0659899 0.398928i
\(139\) −167.962 −1.20836 −0.604180 0.796848i \(-0.706499\pi\)
−0.604180 + 0.796848i \(0.706499\pi\)
\(140\) −48.5644 50.4133i −0.346889 0.360095i
\(141\) 208.159 + 20.4370i 1.47631 + 0.144943i
\(142\) 112.923 30.2576i 0.795231 0.213082i
\(143\) 48.1967 + 12.9143i 0.337040 + 0.0903095i
\(144\) 34.0823 11.5929i 0.236683 0.0805061i
\(145\) 106.609 24.3040i 0.735235 0.167614i
\(146\) −130.399 −0.893141
\(147\) 139.458 + 46.4794i 0.948697 + 0.316186i
\(148\) −59.6920 + 59.6920i −0.403324 + 0.403324i
\(149\) −137.856 + 238.773i −0.925207 + 1.60251i −0.133979 + 0.990984i \(0.542776\pi\)
−0.791228 + 0.611522i \(0.790558\pi\)
\(150\) 36.4117 + 99.6202i 0.242744 + 0.664135i
\(151\) −60.5110 104.808i −0.400735 0.694093i 0.593080 0.805144i \(-0.297912\pi\)
−0.993815 + 0.111051i \(0.964578\pi\)
\(152\) 5.71588 1.53157i 0.0376045 0.0100761i
\(153\) 124.095 83.0283i 0.811076 0.542669i
\(154\) 73.7379 76.5913i 0.478817 0.497346i
\(155\) 170.980 158.565i 1.10310 1.02300i
\(156\) 22.6640 + 16.2302i 0.145282 + 0.104040i
\(157\) −87.1243 23.3449i −0.554932 0.148694i −0.0295549 0.999563i \(-0.509409\pi\)
−0.525377 + 0.850870i \(0.676076\pi\)
\(158\) 11.6418 43.4477i 0.0736821 0.274986i
\(159\) 56.4598 78.8410i 0.355093 0.495855i
\(160\) −28.2642 1.06483i −0.176651 0.00665520i
\(161\) −25.5117 88.4603i −0.158458 0.549443i
\(162\) 105.777 43.9676i 0.652947 0.271405i
\(163\) 16.1458 + 60.2571i 0.0990543 + 0.369676i 0.997603 0.0691984i \(-0.0220441\pi\)
−0.898549 + 0.438874i \(0.855377\pi\)
\(164\) −72.3922 + 41.7957i −0.441416 + 0.254852i
\(165\) −149.117 + 60.9601i −0.903737 + 0.369455i
\(166\) −64.2299 37.0831i −0.386927 0.223392i
\(167\) −5.23730 5.23730i −0.0313611 0.0313611i 0.691252 0.722613i \(-0.257059\pi\)
−0.722613 + 0.691252i \(0.757059\pi\)
\(168\) 53.6197 25.5525i 0.319165 0.152098i
\(169\) 147.415i 0.872276i
\(170\) −114.374 + 26.0742i −0.672787 + 0.153378i
\(171\) 17.8264 6.06353i 0.104248 0.0354593i
\(172\) 23.7707 88.7134i 0.138202 0.515776i
\(173\) 31.5466 + 117.733i 0.182350 + 0.680540i 0.995182 + 0.0980419i \(0.0312579\pi\)
−0.812832 + 0.582498i \(0.802075\pi\)
\(174\) −9.06567 + 92.3377i −0.0521016 + 0.530677i
\(175\) 78.8281 + 156.241i 0.450446 + 0.892804i
\(176\) 42.9589i 0.244085i
\(177\) −28.0800 + 4.64494i −0.158644 + 0.0262426i
\(178\) −57.5475 + 214.770i −0.323301 + 1.20657i
\(179\) −32.0467 55.5065i −0.179032 0.310092i 0.762517 0.646968i \(-0.223963\pi\)
−0.941549 + 0.336876i \(0.890630\pi\)
\(180\) −89.9637 + 2.55667i −0.499798 + 0.0142037i
\(181\) 305.611i 1.68846i 0.535984 + 0.844228i \(0.319941\pi\)
−0.535984 + 0.844228i \(0.680059\pi\)
\(182\) 40.2605 + 22.2365i 0.221211 + 0.122179i
\(183\) −222.032 270.377i −1.21329 1.47747i
\(184\) −32.2162 18.6001i −0.175088 0.101087i
\(185\) 186.612 98.5659i 1.00871 0.532789i
\(186\) 81.7168 + 180.205i 0.439337 + 0.968842i
\(187\) −46.1140 172.100i −0.246599 0.920321i
\(188\) 98.5991 98.5991i 0.524463 0.524463i
\(189\) 164.877 92.3941i 0.872364 0.488858i
\(190\) −14.7833 0.556949i −0.0778068 0.00293131i
\(191\) 91.1439 + 52.6220i 0.477193 + 0.275508i 0.719246 0.694755i \(-0.244487\pi\)
−0.242053 + 0.970263i \(0.577821\pi\)
\(192\) 8.44706 22.4644i 0.0439951 0.117002i
\(193\) −113.183 30.3272i −0.586439 0.157136i −0.0466140 0.998913i \(-0.514843\pi\)
−0.539825 + 0.841777i \(0.681510\pi\)
\(194\) −72.5479 41.8856i −0.373958 0.215905i
\(195\) −42.1686 55.4844i −0.216249 0.284535i
\(196\) 82.9498 52.1855i 0.423213 0.266252i
\(197\) −227.255 + 227.255i −1.15358 + 1.15358i −0.167748 + 0.985830i \(0.553649\pi\)
−0.985830 + 0.167748i \(0.946351\pi\)
\(198\) −9.02453 136.396i −0.0455784 0.688870i
\(199\) 53.7513 + 93.1000i 0.270107 + 0.467839i 0.968889 0.247495i \(-0.0796075\pi\)
−0.698782 + 0.715335i \(0.746274\pi\)
\(200\) 66.7306 + 23.3885i 0.333653 + 0.116942i
\(201\) −4.07968 + 5.69690i −0.0202969 + 0.0283428i
\(202\) −185.975 + 185.975i −0.920670 + 0.920670i
\(203\) 2.90520 + 153.054i 0.0143113 + 0.753963i
\(204\) 9.72596 99.0630i 0.0476763 0.485603i
\(205\) 203.751 46.4498i 0.993906 0.226584i
\(206\) 53.6071 + 92.8502i 0.260229 + 0.450729i
\(207\) −106.195 52.2881i −0.513020 0.252600i
\(208\) 17.9508 4.80990i 0.0863019 0.0231245i
\(209\) 22.4692i 0.107508i
\(210\) −146.929 + 21.4937i −0.699660 + 0.102351i
\(211\) −297.536 −1.41012 −0.705061 0.709147i \(-0.749080\pi\)
−0.705061 + 0.709147i \(0.749080\pi\)
\(212\) −16.7322 62.4453i −0.0789254 0.294553i
\(213\) 87.2848 232.128i 0.409788 1.08980i
\(214\) 162.065 93.5680i 0.757311 0.437234i
\(215\) −122.208 + 194.383i −0.568411 + 0.904105i
\(216\) 22.1006 73.0997i 0.102318 0.338424i
\(217\) 168.568 + 279.577i 0.776812 + 1.28837i
\(218\) 161.740 + 161.740i 0.741927 + 0.741927i
\(219\) −161.054 + 224.897i −0.735406 + 1.02693i
\(220\) −31.6822 + 102.618i −0.144010 + 0.466445i
\(221\) 66.7504 38.5384i 0.302038 0.174382i
\(222\) 29.2252 + 176.675i 0.131645 + 0.795833i
\(223\) 194.026 + 194.026i 0.870074 + 0.870074i 0.992480 0.122406i \(-0.0390611\pi\)
−0.122406 + 0.992480i \(0.539061\pi\)
\(224\) 9.52098 38.4363i 0.0425044 0.171591i
\(225\) 216.786 + 60.2410i 0.963492 + 0.267738i
\(226\) 15.2685 26.4458i 0.0675597 0.117017i
\(227\) −17.2555 + 64.3983i −0.0760153 + 0.283693i −0.993462 0.114167i \(-0.963580\pi\)
0.917446 + 0.397860i \(0.130247\pi\)
\(228\) 4.41815 11.7497i 0.0193778 0.0515339i
\(229\) 22.0393 38.1732i 0.0962416 0.166695i −0.813885 0.581027i \(-0.802651\pi\)
0.910126 + 0.414331i \(0.135985\pi\)
\(230\) 63.2388 + 68.1903i 0.274951 + 0.296479i
\(231\) −41.0235 221.772i −0.177591 0.960052i
\(232\) 43.7377 + 43.7377i 0.188525 + 0.188525i
\(233\) 29.5268 7.91167i 0.126724 0.0339557i −0.194899 0.980823i \(-0.562438\pi\)
0.321624 + 0.946868i \(0.395771\pi\)
\(234\) 55.9840 19.0426i 0.239248 0.0813786i
\(235\) −308.245 + 162.811i −1.31168 + 0.692813i
\(236\) −9.48720 + 16.4323i −0.0402000 + 0.0696284i
\(237\) −60.5552 73.7403i −0.255507 0.311140i
\(238\) −3.11680 164.202i −0.0130958 0.689924i
\(239\) 213.748 0.894343 0.447171 0.894448i \(-0.352431\pi\)
0.447171 + 0.894448i \(0.352431\pi\)
\(240\) −36.7453 + 47.4319i −0.153106 + 0.197633i
\(241\) 63.6195 36.7307i 0.263981 0.152410i −0.362168 0.932113i \(-0.617963\pi\)
0.626149 + 0.779703i \(0.284630\pi\)
\(242\) 7.72917 + 2.07103i 0.0319387 + 0.00855796i
\(243\) 54.8139 236.737i 0.225572 0.974227i
\(244\) −233.240 −0.955901
\(245\) −236.633 + 63.4821i −0.965848 + 0.259111i
\(246\) −17.3263 + 176.475i −0.0704320 + 0.717380i
\(247\) 9.38897 2.51577i 0.0380120 0.0101853i
\(248\) 127.417 + 34.1412i 0.513776 + 0.137666i
\(249\) −143.287 + 64.9757i −0.575448 + 0.260946i
\(250\) −142.153 105.083i −0.568613 0.420332i
\(251\) −235.026 −0.936358 −0.468179 0.883634i \(-0.655090\pi\)
−0.468179 + 0.883634i \(0.655090\pi\)
\(252\) 22.1550 124.037i 0.0879168 0.492210i
\(253\) −99.8798 + 99.8798i −0.394782 + 0.394782i
\(254\) −60.5483 + 104.873i −0.238379 + 0.412885i
\(255\) −96.2919 + 229.463i −0.377615 + 0.899856i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −369.295 + 98.9522i −1.43694 + 0.385028i −0.891462 0.453095i \(-0.850320\pi\)
−0.545482 + 0.838123i \(0.683653\pi\)
\(258\) −123.644 150.566i −0.479241 0.583589i
\(259\) 81.8731 + 283.890i 0.316113 + 1.09610i
\(260\) −46.4271 1.74911i −0.178566 0.00672733i
\(261\) 148.057 + 129.681i 0.567268 + 0.496861i
\(262\) −233.629 62.6007i −0.891714 0.238934i
\(263\) 79.0345 294.961i 0.300511 1.12152i −0.636230 0.771500i \(-0.719507\pi\)
0.936741 0.350024i \(-0.113826\pi\)
\(264\) −74.0908 53.0581i −0.280647 0.200978i
\(265\) −6.08461 + 161.506i −0.0229608 + 0.609456i
\(266\) 4.97985 20.1037i 0.0187212 0.0755779i
\(267\) 299.336 + 364.512i 1.12111 + 1.36521i
\(268\) 1.20904 + 4.51218i 0.00451133 + 0.0168365i
\(269\) −153.231 + 88.4680i −0.569632 + 0.328877i −0.757002 0.653412i \(-0.773337\pi\)
0.187370 + 0.982289i \(0.440004\pi\)
\(270\) −106.704 + 158.317i −0.395199 + 0.586360i
\(271\) −334.108 192.897i −1.23287 0.711798i −0.265243 0.964182i \(-0.585452\pi\)
−0.967627 + 0.252383i \(0.918786\pi\)
\(272\) −46.9233 46.9233i −0.172512 0.172512i
\(273\) 88.0763 41.9728i 0.322624 0.153746i
\(274\) 53.1967i 0.194149i
\(275\) 151.361 221.762i 0.550405 0.806407i
\(276\) −71.8693 + 32.5903i −0.260396 + 0.118081i
\(277\) 119.607 446.379i 0.431794 1.61148i −0.316831 0.948482i \(-0.602619\pi\)
0.748625 0.662994i \(-0.230714\pi\)
\(278\) 61.4783 + 229.440i 0.221145 + 0.825325i
\(279\) 411.725 + 81.6327i 1.47572 + 0.292590i
\(280\) −51.0900 + 84.7928i −0.182464 + 0.302831i
\(281\) 100.962i 0.359295i 0.983731 + 0.179647i \(0.0574957\pi\)
−0.983731 + 0.179647i \(0.942504\pi\)
\(282\) −48.2742 291.832i −0.171185 1.03486i
\(283\) 99.6207 371.789i 0.352016 1.31374i −0.532181 0.846630i \(-0.678628\pi\)
0.884198 0.467113i \(-0.154706\pi\)
\(284\) −82.6653 143.180i −0.291075 0.504157i
\(285\) −19.2193 + 24.8087i −0.0674360 + 0.0870482i
\(286\) 70.5648i 0.246730i
\(287\) 5.55241 + 292.517i 0.0193464 + 1.01922i
\(288\) −28.3112 42.3140i −0.0983027 0.146924i
\(289\) 11.9300 + 6.88780i 0.0412804 + 0.0238332i
\(290\) −72.2216 136.735i −0.249040 0.471499i
\(291\) −161.843 + 73.3903i −0.556161 + 0.252200i
\(292\) 47.7292 + 178.128i 0.163456 + 0.610027i
\(293\) −259.252 + 259.252i −0.884820 + 0.884820i −0.994020 0.109200i \(-0.965171\pi\)
0.109200 + 0.994020i \(0.465171\pi\)
\(294\) 12.4467 207.516i 0.0423356 0.705838i
\(295\) 34.7813 32.2557i 0.117903 0.109341i
\(296\) 103.390 + 59.6920i 0.349289 + 0.201662i
\(297\) −246.387 152.897i −0.829587 0.514805i
\(298\) 376.629 + 100.917i 1.26386 + 0.338649i
\(299\) −52.9188 30.5527i −0.176986 0.102183i
\(300\) 122.756 86.2028i 0.409187 0.287343i
\(301\) −231.572 222.945i −0.769343 0.740681i
\(302\) −121.022 + 121.022i −0.400735 + 0.400735i
\(303\) 91.0537 + 550.446i 0.300507 + 1.81665i
\(304\) −4.18431 7.24745i −0.0137642 0.0238403i
\(305\) 557.150 + 172.014i 1.82672 + 0.563982i
\(306\) −158.841 139.126i −0.519087 0.454660i
\(307\) −150.022 + 150.022i −0.488672 + 0.488672i −0.907887 0.419215i \(-0.862305\pi\)
0.419215 + 0.907887i \(0.362305\pi\)
\(308\) −131.616 72.6934i −0.427323 0.236018i
\(309\) 226.347 + 22.2227i 0.732516 + 0.0719180i
\(310\) −279.186 175.524i −0.900601 0.566207i
\(311\) −29.8412 51.6864i −0.0959523 0.166194i 0.814053 0.580790i \(-0.197256\pi\)
−0.910006 + 0.414596i \(0.863923\pi\)
\(312\) 13.8752 36.9002i 0.0444719 0.118270i
\(313\) 122.588 32.8475i 0.391656 0.104944i −0.0576160 0.998339i \(-0.518350\pi\)
0.449272 + 0.893395i \(0.351683\pi\)
\(314\) 127.559i 0.406238i
\(315\) −144.400 + 279.953i −0.458413 + 0.888739i
\(316\) −63.6119 −0.201303
\(317\) −72.4174 270.266i −0.228446 0.852573i −0.980994 0.194036i \(-0.937842\pi\)
0.752548 0.658537i \(-0.228824\pi\)
\(318\) −128.365 48.2677i −0.403662 0.151785i
\(319\) 203.400 117.433i 0.637616 0.368128i
\(320\) 8.89083 + 38.9994i 0.0277839 + 0.121873i
\(321\) 38.7883 395.076i 0.120836 1.23077i
\(322\) −111.501 + 67.2284i −0.346277 + 0.208784i
\(323\) −24.5427 24.5427i −0.0759837 0.0759837i
\(324\) −98.7781 128.401i −0.304871 0.396300i
\(325\) 109.612 + 38.4182i 0.337269 + 0.118210i
\(326\) 76.4030 44.1113i 0.234365 0.135311i
\(327\) 478.715 79.1881i 1.46396 0.242166i
\(328\) 83.5913 + 83.5913i 0.254852 + 0.254852i
\(329\) −135.238 468.929i −0.411058 1.42532i
\(330\) 137.854 + 181.384i 0.417738 + 0.549649i
\(331\) 74.7861 129.533i 0.225940 0.391339i −0.730661 0.682740i \(-0.760788\pi\)
0.956601 + 0.291401i \(0.0941214\pi\)
\(332\) −27.1467 + 101.313i −0.0817673 + 0.305160i
\(333\) 340.805 + 167.805i 1.02344 + 0.503919i
\(334\) −5.23730 + 9.07126i −0.0156805 + 0.0271595i
\(335\) 0.439662 11.6701i 0.00131242 0.0348362i
\(336\) −54.5315 63.8930i −0.162296 0.190158i
\(337\) 217.610 + 217.610i 0.645728 + 0.645728i 0.951958 0.306230i \(-0.0990676\pi\)
−0.306230 + 0.951958i \(0.599068\pi\)
\(338\) −201.372 + 53.9575i −0.595776 + 0.159638i
\(339\) −26.7529 58.9963i −0.0789170 0.174031i
\(340\) 77.4817 + 146.694i 0.227887 + 0.431452i
\(341\) 250.438 433.772i 0.734423 1.27206i
\(342\) −14.8079 22.1319i −0.0432978 0.0647132i
\(343\) −19.5191 342.444i −0.0569069 0.998379i
\(344\) −129.885 −0.377574
\(345\) 195.713 24.8462i 0.567283 0.0720181i
\(346\) 149.280 86.1868i 0.431445 0.249095i
\(347\) −69.5709 18.6415i −0.200492 0.0537218i 0.157175 0.987571i \(-0.449761\pi\)
−0.357668 + 0.933849i \(0.616428\pi\)
\(348\) 129.454 21.4140i 0.371994 0.0615345i
\(349\) 257.887 0.738932 0.369466 0.929244i \(-0.379541\pi\)
0.369466 + 0.929244i \(0.379541\pi\)
\(350\) 184.576 164.869i 0.527359 0.471055i
\(351\) 36.3027 120.074i 0.103426 0.342092i
\(352\) −58.6830 + 15.7241i −0.166713 + 0.0446706i
\(353\) −125.874 33.7279i −0.356585 0.0955466i 0.0760795 0.997102i \(-0.475760\pi\)
−0.432664 + 0.901555i \(0.642426\pi\)
\(354\) 16.6231 + 36.6578i 0.0469579 + 0.103553i
\(355\) 91.8704 + 402.987i 0.258790 + 1.13517i
\(356\) 314.445 0.883274
\(357\) −287.047 197.429i −0.804053 0.553021i
\(358\) −64.0933 + 64.0933i −0.179032 + 0.179032i
\(359\) 315.396 546.282i 0.878540 1.52168i 0.0255973 0.999672i \(-0.491851\pi\)
0.852943 0.522004i \(-0.174815\pi\)
\(360\) 36.4215 + 121.957i 0.101171 + 0.338769i
\(361\) 178.311 + 308.844i 0.493938 + 0.855525i
\(362\) 417.472 111.861i 1.15324 0.309009i
\(363\) 13.1181 10.7725i 0.0361380 0.0296764i
\(364\) 15.6393 63.1359i 0.0429650 0.173450i
\(365\) 17.3566 460.702i 0.0475523 1.26220i
\(366\) −288.072 + 402.266i −0.787082 + 1.09909i
\(367\) 155.000 + 41.5321i 0.422343 + 0.113167i 0.463730 0.885977i \(-0.346511\pi\)
−0.0413865 + 0.999143i \(0.513178\pi\)
\(368\) −13.6162 + 50.8163i −0.0370005 + 0.138088i
\(369\) 282.966 + 247.845i 0.766845 + 0.671668i
\(370\) −202.948 218.839i −0.548508 0.591456i
\(371\) −219.631 54.4042i −0.591997 0.146642i
\(372\) 216.254 177.587i 0.581327 0.477383i
\(373\) 1.06291 + 3.96685i 0.00284963 + 0.0106350i 0.967336 0.253498i \(-0.0815810\pi\)
−0.964486 + 0.264133i \(0.914914\pi\)
\(374\) −218.214 + 125.986i −0.583460 + 0.336861i
\(375\) −356.808 + 115.384i −0.951487 + 0.307689i
\(376\) −170.779 98.5991i −0.454199 0.262232i
\(377\) 71.8441 + 71.8441i 0.190568 + 0.190568i
\(378\) −186.562 191.407i −0.493550 0.506368i
\(379\) 282.119i 0.744377i −0.928157 0.372189i \(-0.878607\pi\)
0.928157 0.372189i \(-0.121393\pi\)
\(380\) 4.65026 + 20.3982i 0.0122375 + 0.0536795i
\(381\) 106.090 + 233.954i 0.278453 + 0.614053i
\(382\) 38.5220 143.766i 0.100843 0.376351i
\(383\) 140.832 + 525.594i 0.367709 + 1.37231i 0.863712 + 0.503986i \(0.168134\pi\)
−0.496003 + 0.868321i \(0.665200\pi\)
\(384\) −33.7787 3.31638i −0.0879654 0.00863640i
\(385\) 260.784 + 270.712i 0.677362 + 0.703149i
\(386\) 165.711i 0.429303i
\(387\) −412.391 + 27.2855i −1.06561 + 0.0705051i
\(388\) −30.6624 + 114.433i −0.0790267 + 0.294932i
\(389\) −22.1584 38.3795i −0.0569626 0.0986621i 0.836138 0.548519i \(-0.184808\pi\)
−0.893101 + 0.449857i \(0.851475\pi\)
\(390\) −60.3583 + 77.9121i −0.154765 + 0.199775i
\(391\) 218.194i 0.558041i
\(392\) −101.648 94.2104i −0.259307 0.240333i
\(393\) −396.519 + 325.620i −1.00896 + 0.828550i
\(394\) 393.617 + 227.255i 0.999028 + 0.576789i
\(395\) 151.952 + 46.9138i 0.384690 + 0.118769i
\(396\) −183.018 + 62.2522i −0.462166 + 0.157203i
\(397\) 73.2343 + 273.314i 0.184469 + 0.688448i 0.994744 + 0.102398i \(0.0326514\pi\)
−0.810274 + 0.586051i \(0.800682\pi\)
\(398\) 107.503 107.503i 0.270107 0.270107i
\(399\) −28.5221 33.4186i −0.0714840 0.0837558i
\(400\) 7.52416 99.7165i 0.0188104 0.249291i
\(401\) −359.724 207.687i −0.897067 0.517922i −0.0208196 0.999783i \(-0.506628\pi\)
−0.876247 + 0.481861i \(0.839961\pi\)
\(402\) 9.27538 + 3.48774i 0.0230731 + 0.00867596i
\(403\) 209.296 + 56.0806i 0.519344 + 0.139158i
\(404\) 322.119 + 185.975i 0.797323 + 0.460335i
\(405\) 141.259 + 379.567i 0.348789 + 0.937201i
\(406\) 208.013 59.9904i 0.512347 0.147760i
\(407\) 320.538 320.538i 0.787562 0.787562i
\(408\) −138.883 + 22.9737i −0.340398 + 0.0563080i
\(409\) −257.340 445.725i −0.629192 1.08979i −0.987714 0.156272i \(-0.950053\pi\)
0.358522 0.933521i \(-0.383281\pi\)
\(410\) −138.030 261.327i −0.336657 0.637383i
\(411\) −91.7478 65.7027i −0.223231 0.159860i
\(412\) 107.214 107.214i 0.260229 0.260229i
\(413\) 34.2907 + 56.8725i 0.0830283 + 0.137706i
\(414\) −32.5568 + 164.204i −0.0786395 + 0.396628i
\(415\) 139.565 221.990i 0.336301 0.534916i
\(416\) −13.1409 22.7607i −0.0315887 0.0547132i
\(417\) 471.645 + 177.348i 1.13104 + 0.425295i
\(418\) −30.6935 + 8.22430i −0.0734295 + 0.0196754i
\(419\) 18.1550i 0.0433294i 0.999765 + 0.0216647i \(0.00689662\pi\)
−0.999765 + 0.0216647i \(0.993103\pi\)
\(420\) 83.1405 + 192.841i 0.197954 + 0.459145i
\(421\) −744.462 −1.76832 −0.884160 0.467185i \(-0.845268\pi\)
−0.884160 + 0.467185i \(0.845268\pi\)
\(422\) 108.906 + 406.441i 0.258070 + 0.963131i
\(423\) −562.942 277.180i −1.33083 0.655272i
\(424\) −79.1775 + 45.7132i −0.186739 + 0.107814i
\(425\) −76.8973 407.556i −0.180935 0.958956i
\(426\) −349.041 34.2686i −0.819345 0.0804428i
\(427\) −394.679 + 714.589i −0.924307 + 1.67351i
\(428\) −187.136 187.136i −0.437234 0.437234i
\(429\) −121.702 87.1538i −0.283689 0.203156i
\(430\) 310.263 + 95.7906i 0.721542 + 0.222769i
\(431\) −250.590 + 144.678i −0.581416 + 0.335681i −0.761696 0.647935i \(-0.775633\pi\)
0.180280 + 0.983615i \(0.442300\pi\)
\(432\) −107.945 3.43362i −0.249874 0.00794819i
\(433\) −71.7806 71.7806i −0.165775 0.165775i 0.619344 0.785119i \(-0.287398\pi\)
−0.785119 + 0.619344i \(0.787398\pi\)
\(434\) 320.209 332.601i 0.737810 0.766361i
\(435\) −325.025 44.3198i −0.747184 0.101885i
\(436\) 161.740 280.142i 0.370964 0.642528i
\(437\) −7.12180 + 26.5789i −0.0162970 + 0.0608213i
\(438\) 366.165 + 137.686i 0.835993 + 0.314351i
\(439\) 387.852 671.779i 0.883489 1.53025i 0.0360543 0.999350i \(-0.488521\pi\)
0.847435 0.530899i \(-0.178146\pi\)
\(440\) 151.775 + 5.71801i 0.344943 + 0.0129955i
\(441\) −342.529 277.768i −0.776709 0.629859i
\(442\) −77.0767 77.0767i −0.174382 0.174382i
\(443\) 358.157 95.9678i 0.808480 0.216632i 0.169176 0.985586i \(-0.445889\pi\)
0.639304 + 0.768954i \(0.279223\pi\)
\(444\) 230.645 104.590i 0.519472 0.235563i
\(445\) −751.129 231.904i −1.68793 0.521132i
\(446\) 194.026 336.064i 0.435037 0.753506i
\(447\) 639.222 524.927i 1.43003 1.17433i
\(448\) −55.9899 + 1.06277i −0.124977 + 0.00237226i
\(449\) −777.510 −1.73165 −0.865825 0.500348i \(-0.833206\pi\)
−0.865825 + 0.500348i \(0.833206\pi\)
\(450\) 2.94173 318.184i 0.00653717 0.707077i
\(451\) 388.736 224.437i 0.861943 0.497643i
\(452\) −41.7143 11.1773i −0.0922883 0.0247286i
\(453\) 59.2524 + 358.198i 0.130800 + 0.790724i
\(454\) 94.2856 0.207678
\(455\) −83.9210 + 139.282i −0.184442 + 0.306113i
\(456\) −17.6676 1.73460i −0.0387447 0.00380394i
\(457\) 731.014 195.875i 1.59959 0.428609i 0.654673 0.755912i \(-0.272806\pi\)
0.944919 + 0.327303i \(0.106140\pi\)
\(458\) −60.2126 16.1339i −0.131468 0.0352269i
\(459\) −436.131 + 102.118i −0.950177 + 0.222479i
\(460\) 70.0026 111.345i 0.152180 0.242055i
\(461\) 199.974 0.433783 0.216892 0.976196i \(-0.430408\pi\)
0.216892 + 0.976196i \(0.430408\pi\)
\(462\) −287.931 + 137.213i −0.623226 + 0.296998i
\(463\) 508.040 508.040i 1.09728 1.09728i 0.102550 0.994728i \(-0.467300\pi\)
0.994728 0.102550i \(-0.0327002\pi\)
\(464\) 43.7377 75.7559i 0.0942623 0.163267i
\(465\) −647.545 + 264.722i −1.39257 + 0.569294i
\(466\) −21.6151 37.4384i −0.0463843 0.0803400i
\(467\) 251.229 67.3165i 0.537963 0.144147i 0.0204000 0.999792i \(-0.493506\pi\)
0.517563 + 0.855645i \(0.326839\pi\)
\(468\) −46.5042 69.5055i −0.0993680 0.148516i
\(469\) 15.8701 + 3.93115i 0.0338382 + 0.00838198i
\(470\) 335.229 + 361.477i 0.713254 + 0.769101i
\(471\) 219.999 + 157.547i 0.467090 + 0.334494i
\(472\) 25.9195 + 6.94511i 0.0549142 + 0.0147142i
\(473\) −127.645 + 476.379i −0.269863 + 1.00714i
\(474\) −78.5663 + 109.711i −0.165752 + 0.231457i
\(475\) 3.93543 52.1557i 0.00828512 0.109801i
\(476\) −223.163 + 64.3597i −0.468830 + 0.135209i
\(477\) −241.789 + 161.774i −0.506894 + 0.339149i
\(478\) −78.2372 291.985i −0.163676 0.610847i
\(479\) −559.185 + 322.846i −1.16740 + 0.674000i −0.953067 0.302761i \(-0.902092\pi\)
−0.214335 + 0.976760i \(0.568758\pi\)
\(480\) 78.2428 + 32.8338i 0.163006 + 0.0684037i
\(481\) 169.829 + 98.0507i 0.353074 + 0.203848i
\(482\) −73.4615 73.4615i −0.152410 0.152410i
\(483\) −21.7656 + 275.338i −0.0450634 + 0.570058i
\(484\) 11.3163i 0.0233808i
\(485\) 157.639 250.739i 0.325029 0.516987i
\(486\) −343.452 + 11.7746i −0.706692 + 0.0242275i
\(487\) 140.240 523.382i 0.287967 1.07471i −0.658677 0.752426i \(-0.728884\pi\)
0.946644 0.322281i \(-0.104450\pi\)
\(488\) 85.3717 + 318.611i 0.174942 + 0.652892i
\(489\) 18.2862 186.253i 0.0373951 0.380885i
\(490\) 173.332 + 300.010i 0.353738 + 0.612266i
\(491\) 663.596i 1.35152i 0.737122 + 0.675760i \(0.236184\pi\)
−0.737122 + 0.675760i \(0.763816\pi\)
\(492\) 247.412 40.9264i 0.502870 0.0831837i
\(493\) 93.9000 350.440i 0.190467 0.710831i
\(494\) −6.87320 11.9047i −0.0139134 0.0240987i
\(495\) 483.093 13.7290i 0.975945 0.0277354i
\(496\) 186.551i 0.376110i
\(497\) −578.553 + 10.9818i −1.16409 + 0.0220962i
\(498\) 141.205 + 171.950i 0.283544 + 0.345282i
\(499\) −632.196 364.999i −1.26693 0.731460i −0.292521 0.956259i \(-0.594494\pi\)
−0.974405 + 0.224799i \(0.927828\pi\)
\(500\) −91.5143 + 232.648i −0.183029 + 0.465296i
\(501\) 9.17659 + 20.2365i 0.0183165 + 0.0403923i
\(502\) 86.0255 + 321.051i 0.171365 + 0.639545i
\(503\) 151.136 151.136i 0.300470 0.300470i −0.540728 0.841198i \(-0.681851\pi\)
0.841198 + 0.540728i \(0.181851\pi\)
\(504\) −177.547 + 15.1363i −0.352276 + 0.0300324i
\(505\) −632.302 681.810i −1.25208 1.35012i
\(506\) 172.997 + 99.8798i 0.341891 + 0.197391i
\(507\) −155.653 + 413.947i −0.307007 + 0.816463i
\(508\) 165.421 + 44.3244i 0.325632 + 0.0872528i
\(509\) 315.266 + 182.019i 0.619383 + 0.357601i 0.776629 0.629959i \(-0.216928\pi\)
−0.157246 + 0.987560i \(0.550261\pi\)
\(510\) 348.698 + 47.5478i 0.683721 + 0.0932309i
\(511\) 626.506 + 155.190i 1.22604 + 0.303699i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −56.4597 1.79592i −0.110058 0.00350081i
\(514\) 270.342 + 468.247i 0.525958 + 0.910986i
\(515\) −335.178 + 177.037i −0.650830 + 0.343760i
\(516\) −160.420 + 224.012i −0.310892 + 0.434132i
\(517\) −529.464 + 529.464i −1.02411 + 1.02411i
\(518\) 357.833 215.752i 0.690798 0.416509i
\(519\) 35.7285 363.910i 0.0688410 0.701175i
\(520\) 14.6042 + 64.0608i 0.0280850 + 0.123194i
\(521\) 98.0617 + 169.848i 0.188218 + 0.326003i 0.944656 0.328062i \(-0.106395\pi\)
−0.756438 + 0.654065i \(0.773062\pi\)
\(522\) 122.955 249.716i 0.235545 0.478383i
\(523\) −680.391 + 182.310i −1.30094 + 0.348586i −0.841805 0.539781i \(-0.818507\pi\)
−0.459134 + 0.888367i \(0.651840\pi\)
\(524\) 342.057i 0.652780i
\(525\) −56.3810 521.964i −0.107392 0.994217i
\(526\) −431.852 −0.821012
\(527\) −200.252 747.350i −0.379985 1.41812i
\(528\) −45.3596 + 120.631i −0.0859083 + 0.228467i
\(529\) −308.321 + 178.009i −0.582838 + 0.336502i
\(530\) 222.848 50.8035i 0.420468 0.0958557i
\(531\) 83.7544 + 16.6060i 0.157730 + 0.0312731i
\(532\) −29.2849 + 0.555872i −0.0550469 + 0.00104487i
\(533\) 137.308 + 137.308i 0.257614 + 0.257614i
\(534\) 388.368 542.321i 0.727281 1.01558i
\(535\) 309.007 + 585.033i 0.577583 + 1.09352i
\(536\) 5.72122 3.30315i 0.0106739 0.00616259i
\(537\) 31.3802 + 189.702i 0.0584360 + 0.353263i
\(538\) 176.936 + 176.936i 0.328877 + 0.328877i
\(539\) −445.430 + 280.229i −0.826400 + 0.519905i
\(540\) 255.322 + 87.8118i 0.472818 + 0.162615i
\(541\) −36.0002 + 62.3542i −0.0665438 + 0.115257i −0.897378 0.441263i \(-0.854531\pi\)
0.830834 + 0.556520i \(0.187864\pi\)
\(542\) −141.211 + 527.005i −0.260536 + 0.972334i
\(543\) 322.689 858.168i 0.594271 1.58042i
\(544\) −46.9233 + 81.2735i −0.0862560 + 0.149400i
\(545\) −592.961 + 549.904i −1.08800 + 1.00900i
\(546\) −89.5740 104.951i −0.164055 0.192219i
\(547\) 369.252 + 369.252i 0.675049 + 0.675049i 0.958876 0.283827i \(-0.0916040\pi\)
−0.283827 + 0.958876i \(0.591604\pi\)
\(548\) −72.6680 + 19.4713i −0.132606 + 0.0355316i
\(549\) 337.990 + 993.669i 0.615647 + 1.80996i
\(550\) −358.335 125.593i −0.651517 0.228351i
\(551\) 22.8765 39.6233i 0.0415182 0.0719117i
\(552\) 70.8252 + 86.2464i 0.128306 + 0.156243i
\(553\) −107.641 + 194.891i −0.194650 + 0.352425i
\(554\) −653.544 −1.17968
\(555\) −628.088 + 79.7374i −1.13169 + 0.143671i
\(556\) 290.919 167.962i 0.523235 0.302090i
\(557\) −226.252 60.6241i −0.406198 0.108840i 0.0499341 0.998753i \(-0.484099\pi\)
−0.456132 + 0.889912i \(0.650766\pi\)
\(558\) −39.1893 592.306i −0.0702318 1.06148i
\(559\) −213.351 −0.381666
\(560\) 134.529 + 38.7539i 0.240231 + 0.0692034i
\(561\) −52.2271 + 531.955i −0.0930964 + 0.948227i
\(562\) 137.916 36.9546i 0.245403 0.0657555i
\(563\) 49.9008 + 13.3709i 0.0886338 + 0.0237494i 0.302863 0.953034i \(-0.402057\pi\)
−0.214230 + 0.976783i \(0.568724\pi\)
\(564\) −380.980 + 172.762i −0.675496 + 0.306315i
\(565\) 91.4015 + 57.4641i 0.161773 + 0.101706i
\(566\) −544.337 −0.961727
\(567\) −560.538 + 85.3563i −0.988604 + 0.150540i
\(568\) −165.331 + 165.331i −0.291075 + 0.291075i
\(569\) −79.3283 + 137.401i −0.139417 + 0.241477i −0.927276 0.374378i \(-0.877856\pi\)
0.787859 + 0.615856i \(0.211189\pi\)
\(570\) 40.9241 + 17.1734i 0.0717966 + 0.0301287i
\(571\) 396.116 + 686.092i 0.693723 + 1.20156i 0.970609 + 0.240660i \(0.0773640\pi\)
−0.276887 + 0.960903i \(0.589303\pi\)
\(572\) −96.3933 + 25.8285i −0.168520 + 0.0451547i
\(573\) −200.374 244.002i −0.349692 0.425833i
\(574\) 397.553 114.653i 0.692601 0.199745i
\(575\) −249.335 + 214.348i −0.433627 + 0.372779i
\(576\) −47.4394 + 54.1618i −0.0823601 + 0.0940309i
\(577\) −815.540 218.523i −1.41341 0.378723i −0.530271 0.847828i \(-0.677910\pi\)
−0.883142 + 0.469105i \(0.844577\pi\)
\(578\) 5.04222 18.8178i 0.00872357 0.0325568i
\(579\) 285.800 + 204.668i 0.493610 + 0.353485i
\(580\) −160.348 + 148.705i −0.276462 + 0.256388i
\(581\) 264.462 + 254.609i 0.455184 + 0.438225i
\(582\) 159.492 + 194.219i 0.274040 + 0.333709i
\(583\) 89.8495 + 335.323i 0.154116 + 0.575168i
\(584\) 225.857 130.399i 0.386742 0.223285i
\(585\) 59.8263 + 200.328i 0.102267 + 0.342440i
\(586\) 449.038 + 259.252i 0.766276 + 0.442410i
\(587\) 395.180 + 395.180i 0.673220 + 0.673220i 0.958457 0.285237i \(-0.0920724\pi\)
−0.285237 + 0.958457i \(0.592072\pi\)
\(588\) −288.029 + 58.9538i −0.489844 + 0.100262i
\(589\) 97.5734i 0.165659i
\(590\) −56.7930 35.7057i −0.0962593 0.0605182i
\(591\) 878.096 398.187i 1.48578 0.673751i
\(592\) 43.6976 163.081i 0.0738134 0.275475i
\(593\) 31.1428 + 116.227i 0.0525174 + 0.195998i 0.987200 0.159485i \(-0.0509833\pi\)
−0.934683 + 0.355482i \(0.884317\pi\)
\(594\) −118.677 + 392.536i −0.199793 + 0.660834i
\(595\) 580.545 + 10.8442i 0.975706 + 0.0182256i
\(596\) 551.423i 0.925207i
\(597\) −52.6334 318.184i −0.0881631 0.532972i
\(598\) −22.3661 + 83.4714i −0.0374015 + 0.139584i
\(599\) 598.910 + 1037.34i 0.999850 + 1.73179i 0.514930 + 0.857232i \(0.327818\pi\)
0.484920 + 0.874558i \(0.338849\pi\)
\(600\) −162.687 136.136i −0.271145 0.226893i
\(601\) 170.669i 0.283975i 0.989868 + 0.141988i \(0.0453493\pi\)
−0.989868 + 0.141988i \(0.954651\pi\)
\(602\) −219.787 + 397.937i −0.365095 + 0.661025i
\(603\) 17.4712 11.6895i 0.0289738 0.0193856i
\(604\) 209.616 + 121.022i 0.347047 + 0.200367i
\(605\) −8.34577 + 27.0317i −0.0137947 + 0.0446805i
\(606\) 718.595 325.859i 1.18580 0.537721i
\(607\) −100.638 375.584i −0.165795 0.618755i −0.997937 0.0641933i \(-0.979553\pi\)
0.832143 0.554562i \(-0.187114\pi\)
\(608\) −8.36863 + 8.36863i −0.0137642 + 0.0137642i
\(609\) 153.450 432.851i 0.251970 0.710757i
\(610\) 31.0452 824.042i 0.0508937 1.35089i
\(611\) −280.523 161.960i −0.459121 0.265074i
\(612\) −131.910 + 267.904i −0.215539 + 0.437751i
\(613\) −266.343 71.3663i −0.434490 0.116421i 0.0349428 0.999389i \(-0.488875\pi\)
−0.469433 + 0.882968i \(0.655542\pi\)
\(614\) 259.846 + 150.022i 0.423202 + 0.244336i
\(615\) −621.186 84.7038i −1.01006 0.137730i
\(616\) −51.1264 + 206.398i −0.0829974 + 0.335062i
\(617\) 140.458 140.458i 0.227647 0.227647i −0.584062 0.811709i \(-0.698538\pi\)
0.811709 + 0.584062i \(0.198538\pi\)
\(618\) −52.4922 317.330i −0.0849388 0.513479i
\(619\) 514.196 + 890.614i 0.830688 + 1.43879i 0.897493 + 0.441028i \(0.145386\pi\)
−0.0668049 + 0.997766i \(0.521281\pi\)
\(620\) −137.581 + 445.622i −0.221905 + 0.718745i
\(621\) 242.991 + 258.957i 0.391289 + 0.417000i
\(622\) −59.6823 + 59.6823i −0.0959523 + 0.0959523i
\(623\) 532.092 963.384i 0.854081 1.54636i
\(624\) −55.4853 5.44752i −0.0889187 0.00872999i
\(625\) 390.182 488.245i 0.624292 0.781191i
\(626\) −89.7410 155.436i −0.143356 0.248300i
\(627\) −23.7248 + 63.0945i −0.0378387 + 0.100629i
\(628\) 174.249 46.6898i 0.277466 0.0743468i
\(629\) 700.236i 1.11325i
\(630\) 435.277 + 94.7841i 0.690916 + 0.150451i
\(631\) −328.983 −0.521367 −0.260684 0.965424i \(-0.583948\pi\)
−0.260684 + 0.965424i \(0.583948\pi\)
\(632\) 23.2836 + 86.8954i 0.0368411 + 0.137493i
\(633\) 835.493 + 314.163i 1.31989 + 0.496307i
\(634\) −342.683 + 197.848i −0.540509 + 0.312063i
\(635\) −362.459 227.878i −0.570802 0.358863i
\(636\) −18.9503 + 193.016i −0.0297960 + 0.303485i
\(637\) −166.969 154.751i −0.262117 0.242937i
\(638\) −234.866 234.866i −0.368128 0.368128i
\(639\) −490.199 + 559.662i −0.767135 + 0.875841i
\(640\) 50.0199 26.4199i 0.0781561 0.0412811i
\(641\) −199.327 + 115.081i −0.310962 + 0.179534i −0.647357 0.762187i \(-0.724126\pi\)
0.336395 + 0.941721i \(0.390792\pi\)
\(642\) −553.881 + 91.6219i −0.862743 + 0.142713i
\(643\) −301.400 301.400i −0.468740 0.468740i 0.432766 0.901506i \(-0.357538\pi\)
−0.901506 + 0.432766i \(0.857538\pi\)
\(644\) 132.648 + 127.706i 0.205975 + 0.198301i
\(645\) 548.412 416.797i 0.850250 0.646198i
\(646\) −24.5427 + 42.5092i −0.0379918 + 0.0658038i
\(647\) 166.965 623.121i 0.258060 0.963092i −0.708303 0.705909i \(-0.750539\pi\)
0.966363 0.257184i \(-0.0827945\pi\)
\(648\) −139.244 + 181.932i −0.214883 + 0.280759i
\(649\) 50.9450 88.2393i 0.0784977 0.135962i
\(650\) 12.3593 163.795i 0.0190143 0.251993i
\(651\) −178.146 963.053i −0.273650 1.47934i
\(652\) −88.2225 88.2225i −0.135311 0.135311i
\(653\) 699.151 187.337i 1.07067 0.286886i 0.319905 0.947450i \(-0.396349\pi\)
0.750770 + 0.660563i \(0.229682\pi\)
\(654\) −283.395 624.952i −0.433326 0.955584i
\(655\) 252.267 817.085i 0.385140 1.24746i
\(656\) 83.5913 144.784i 0.127426 0.220708i
\(657\) 689.712 461.467i 1.04979 0.702385i
\(658\) −591.068 + 356.378i −0.898280 + 0.541609i
\(659\) 1009.35 1.53165 0.765823 0.643052i \(-0.222332\pi\)
0.765823 + 0.643052i \(0.222332\pi\)
\(660\) 197.318 254.703i 0.298966 0.385913i
\(661\) −305.298 + 176.264i −0.461873 + 0.266663i −0.712832 0.701335i \(-0.752588\pi\)
0.250958 + 0.967998i \(0.419254\pi\)
\(662\) −204.319 54.7472i −0.308640 0.0826997i
\(663\) −228.130 + 37.7368i −0.344088 + 0.0569183i
\(664\) 148.333 0.223392
\(665\) 70.3641 + 20.2698i 0.105811 + 0.0304809i
\(666\) 104.482 526.970i 0.156880 0.791246i
\(667\) −277.824 + 74.4426i −0.416527 + 0.111608i
\(668\) 14.3086 + 3.83397i 0.0214200 + 0.00573947i
\(669\) −339.966 749.704i −0.508170 1.12063i
\(670\) −16.1026 + 3.67097i −0.0240337 + 0.00547906i
\(671\) 1252.47 1.86657
\(672\) −67.3196 + 97.8779i −0.100178 + 0.145652i
\(673\) −328.459 + 328.459i −0.488052 + 0.488052i −0.907691 0.419639i \(-0.862157\pi\)
0.419639 + 0.907691i \(0.362157\pi\)
\(674\) 217.610 376.912i 0.322864 0.559217i
\(675\) −545.136 398.060i −0.807609 0.589718i
\(676\) 147.415 + 255.330i 0.218069 + 0.377707i
\(677\) −364.214 + 97.5907i −0.537982 + 0.144152i −0.517572 0.855640i \(-0.673164\pi\)
−0.0204101 + 0.999792i \(0.506497\pi\)
\(678\) −70.7983 + 58.1393i −0.104422 + 0.0857511i
\(679\) 298.711 + 287.582i 0.439927 + 0.423537i
\(680\) 172.027 159.536i 0.252981 0.234611i
\(681\) 116.451 162.613i 0.171000 0.238786i
\(682\) −684.210 183.333i −1.00324 0.268817i
\(683\) 52.8679 197.306i 0.0774054 0.288881i −0.916363 0.400349i \(-0.868889\pi\)
0.993768 + 0.111469i \(0.0355554\pi\)
\(684\) −24.8127 + 28.3287i −0.0362759 + 0.0414163i
\(685\) 187.945 + 7.08069i 0.274373 + 0.0103368i
\(686\) −460.643 + 152.007i −0.671491 + 0.221584i
\(687\) −102.194 + 83.9212i −0.148754 + 0.122156i
\(688\) 47.5414 + 177.427i 0.0691008 + 0.257888i
\(689\) −130.058 + 75.0889i −0.188763 + 0.108982i
\(690\) −105.576 258.254i −0.153009 0.374281i
\(691\) −30.3995 17.5512i −0.0439935 0.0253996i 0.477842 0.878446i \(-0.341419\pi\)
−0.521835 + 0.853046i \(0.674752\pi\)
\(692\) −172.374 172.374i −0.249095 0.249095i
\(693\) −118.970 + 666.062i −0.171673 + 0.961128i
\(694\) 101.859i 0.146771i
\(695\) −818.802 + 186.665i −1.17813 + 0.268583i
\(696\) −76.6355 168.999i −0.110109 0.242815i
\(697\) 179.461 669.759i 0.257477 0.960917i
\(698\) −94.3933 352.280i −0.135234 0.504700i
\(699\) −91.2662 8.96047i −0.130567 0.0128190i
\(700\) −292.775 191.789i −0.418250 0.273984i
\(701\) 1035.40i 1.47703i −0.674238 0.738514i \(-0.735528\pi\)
0.674238 0.738514i \(-0.264472\pi\)
\(702\) −177.312 5.64010i −0.252582 0.00803432i
\(703\) 22.8555 85.2980i 0.0325114 0.121334i
\(704\) 42.9589 + 74.4070i 0.0610212 + 0.105692i
\(705\) 1037.47 131.710i 1.47159 0.186823i
\(706\) 184.293i 0.261038i
\(707\) 1114.86 672.192i 1.57689 0.950767i
\(708\) 43.9911 36.1253i 0.0621343 0.0510244i
\(709\) 362.406 + 209.235i 0.511151 + 0.295113i 0.733307 0.679898i \(-0.237976\pi\)
−0.222156 + 0.975011i \(0.571309\pi\)
\(710\) 516.864 273.001i 0.727977 0.384508i
\(711\) 92.1806 + 271.005i 0.129649 + 0.381160i
\(712\) −115.095 429.540i −0.161650 0.603287i
\(713\) −433.732 + 433.732i −0.608320 + 0.608320i
\(714\) −164.626 + 464.377i −0.230568 + 0.650388i
\(715\) 249.307 + 9.39246i 0.348682 + 0.0131363i
\(716\) 111.013 + 64.0933i 0.155046 + 0.0895158i
\(717\) −600.214 225.693i −0.837118 0.314774i
\(718\) −861.678 230.886i −1.20011 0.321568i
\(719\) 393.739 + 227.325i 0.547621 + 0.316169i 0.748162 0.663516i \(-0.230937\pi\)
−0.200541 + 0.979685i \(0.564270\pi\)
\(720\) 153.265 94.3920i 0.212868 0.131100i
\(721\) −147.054 509.902i −0.203959 0.707214i
\(722\) 356.623 356.623i 0.493938 0.493938i
\(723\) −217.430 + 35.9668i −0.300733 + 0.0497466i
\(724\) −305.611 529.333i −0.422114 0.731123i
\(725\) 492.701 236.961i 0.679587 0.326843i
\(726\) −19.5171 13.9766i −0.0268831 0.0192516i
\(727\) 707.691 707.691i 0.973441 0.973441i −0.0262157 0.999656i \(-0.508346\pi\)
0.999656 + 0.0262157i \(0.00834568\pi\)
\(728\) −91.9696 + 1.74572i −0.126332 + 0.00239797i
\(729\) −403.886 + 606.891i −0.554028 + 0.832498i
\(730\) −635.684 + 144.919i −0.870799 + 0.198519i
\(731\) 380.916 + 659.766i 0.521089 + 0.902552i
\(732\) 654.947 + 246.274i 0.894737 + 0.336440i
\(733\) −809.364 + 216.868i −1.10418 + 0.295864i −0.764466 0.644664i \(-0.776997\pi\)
−0.339715 + 0.940529i \(0.610330\pi\)
\(734\) 226.936i 0.309177i
\(735\) 731.505 + 71.5957i 0.995244 + 0.0974091i
\(736\) 74.4002 0.101087
\(737\) −6.49236 24.2298i −0.00880917 0.0328763i
\(738\) 234.990 477.256i 0.318415 0.646689i
\(739\) −605.923 + 349.830i −0.819923 + 0.473383i −0.850390 0.526153i \(-0.823634\pi\)
0.0304668 + 0.999536i \(0.490301\pi\)
\(740\) −224.655 + 357.333i −0.303588 + 0.482882i
\(741\) −29.0210 2.84927i −0.0391646 0.00384516i
\(742\) 6.07283 + 319.934i 0.00818441 + 0.431179i
\(743\) −116.105 116.105i −0.156265 0.156265i 0.624644 0.780910i \(-0.285244\pi\)
−0.780910 + 0.624644i \(0.785244\pi\)
\(744\) −321.742 230.407i −0.432449 0.309687i
\(745\) −406.675 + 1317.21i −0.545873 + 1.76807i
\(746\) 5.02976 2.90393i 0.00674231 0.00389267i
\(747\) 470.962 31.1607i 0.630471 0.0417145i
\(748\) 251.972 + 251.972i 0.336861 + 0.336861i
\(749\) −890.003 + 256.675i −1.18825 + 0.342690i
\(750\) 288.217 + 445.175i 0.384290 + 0.593567i
\(751\) −533.815 + 924.595i −0.710806 + 1.23115i 0.253749 + 0.967270i \(0.418336\pi\)
−0.964555 + 0.263882i \(0.914997\pi\)
\(752\) −72.1796 + 269.378i −0.0959835 + 0.358215i
\(753\) 659.963 + 248.160i 0.876445 + 0.329562i
\(754\) 71.8441 124.438i 0.0952839 0.165037i
\(755\) −411.465 443.682i −0.544987 0.587659i
\(756\) −193.181 + 324.908i −0.255530 + 0.429772i
\(757\) 549.837 + 549.837i 0.726336 + 0.726336i 0.969888 0.243552i \(-0.0783125\pi\)
−0.243552 + 0.969888i \(0.578313\pi\)
\(758\) −385.382 + 103.263i −0.508419 + 0.136230i
\(759\) 385.928 175.006i 0.508470 0.230574i
\(760\) 26.1624