Properties

Label 210.3.w.b.47.2
Level 210
Weight 3
Character 210.47
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.2
Character \(\chi\) \(=\) 210.47
Dual form 210.3.w.b.143.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.86273 + 0.897104i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-4.37317 - 2.42391i) q^{5} +(2.27330 + 3.58219i) q^{6} +(-6.90309 - 1.16075i) q^{7} +(2.00000 + 2.00000i) q^{8} +(7.39041 - 5.13633i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.86273 + 0.897104i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-4.37317 - 2.42391i) q^{5} +(2.27330 + 3.58219i) q^{6} +(-6.90309 - 1.16075i) q^{7} +(2.00000 + 2.00000i) q^{8} +(7.39041 - 5.13633i) q^{9} +(-1.71043 + 6.86108i) q^{10} +(7.83418 - 4.52306i) q^{11} +(4.06128 - 4.41656i) q^{12} +(15.3607 + 15.3607i) q^{13} +(0.941098 + 9.85466i) q^{14} +(14.6937 + 3.01581i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-6.74562 + 25.1750i) q^{17} +(-9.72143 - 8.21546i) q^{18} +(0.500582 - 0.867034i) q^{19} +(9.99847 - 0.174832i) q^{20} +(20.8030 - 2.86989i) q^{21} +(-9.04613 - 9.04613i) q^{22} +(12.7861 - 3.42602i) q^{23} +(-7.51966 - 3.93125i) q^{24} +(13.2493 + 21.2004i) q^{25} +(15.3607 - 26.6055i) q^{26} +(-16.5489 + 21.3339i) q^{27} +(13.1173 - 4.89262i) q^{28} -8.69269 q^{29} +(-1.25860 - 21.1758i) q^{30} +(29.5586 - 17.0656i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(-18.3694 + 19.9764i) q^{33} +36.8588 q^{34} +(27.3749 + 21.8086i) q^{35} +(-7.66423 + 16.2868i) q^{36} +(-16.9613 + 4.54478i) q^{37} +(-1.36762 - 0.366452i) q^{38} +(-57.7536 - 30.1933i) q^{39} +(-3.89852 - 13.5942i) q^{40} -18.4160 q^{41} +(-11.5348 - 27.3669i) q^{42} +(24.0320 - 24.0320i) q^{43} +(-9.04613 + 15.6684i) q^{44} +(-44.7695 + 4.54834i) q^{45} +(-9.36005 - 16.2121i) q^{46} +(30.4178 - 8.15043i) q^{47} +(-2.61779 + 11.7110i) q^{48} +(46.3053 + 16.0255i) q^{49} +(24.1107 - 25.8587i) q^{50} +(-3.27373 - 78.1207i) q^{51} +(-41.9662 - 11.2448i) q^{52} +(-12.8616 + 48.0000i) q^{53} +(35.1999 + 14.7975i) q^{54} +(-45.2237 + 0.790777i) q^{55} +(-11.4847 - 16.1277i) q^{56} +(-0.655210 + 2.93115i) q^{57} +(3.18175 + 11.8744i) q^{58} +(-78.7190 + 45.4484i) q^{59} +(-28.4660 + 9.47017i) q^{60} +(56.9490 + 32.8795i) q^{61} +(-34.1313 - 34.1313i) q^{62} +(-56.9786 + 26.8782i) q^{63} +8.00000i q^{64} +(-29.9420 - 104.408i) q^{65} +(34.0119 + 17.7813i) q^{66} +(3.51690 - 13.1252i) q^{67} +(-13.4912 - 50.3500i) q^{68} +(-33.5295 + 21.2782i) q^{69} +(19.7713 - 45.3773i) q^{70} +86.5925i q^{71} +(25.0535 + 4.50816i) q^{72} +(-26.9306 + 100.506i) q^{73} +(12.4166 + 21.5061i) q^{74} +(-56.9480 - 48.8049i) q^{75} +2.00233i q^{76} +(-59.3302 + 22.1296i) q^{77} +(-20.1056 + 89.9444i) q^{78} +(69.3172 + 40.0203i) q^{79} +(-17.1430 + 10.3013i) q^{80} +(28.2363 - 75.9191i) q^{81} +(6.74074 + 25.1568i) q^{82} +(-11.6859 + 11.6859i) q^{83} +(-33.1619 + 25.7738i) q^{84} +(90.5218 - 93.7439i) q^{85} +(-41.6247 - 24.0320i) q^{86} +(24.8848 - 7.79825i) q^{87} +(24.7145 + 6.62222i) q^{88} +(62.2002 + 35.9113i) q^{89} +(22.5999 + 59.4915i) q^{90} +(-88.2064 - 123.866i) q^{91} +(-18.7201 + 18.7201i) q^{92} +(-69.3084 + 75.3714i) q^{93} +(-22.2674 - 38.5682i) q^{94} +(-4.29075 + 2.57832i) q^{95} +(16.9557 - 0.710545i) q^{96} +(-5.41316 + 5.41316i) q^{97} +(4.94228 - 69.1200i) q^{98} +(34.6658 - 73.6662i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −2.86273 + 0.897104i −0.954242 + 0.299035i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −4.37317 2.42391i −0.874635 0.484783i
\(6\) 2.27330 + 3.58219i 0.378883 + 0.597032i
\(7\) −6.90309 1.16075i −0.986156 0.165821i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 7.39041 5.13633i 0.821156 0.570703i
\(10\) −1.71043 + 6.86108i −0.171043 + 0.686108i
\(11\) 7.83418 4.52306i 0.712198 0.411188i −0.0996765 0.995020i \(-0.531781\pi\)
0.811874 + 0.583832i \(0.198447\pi\)
\(12\) 4.06128 4.41656i 0.338440 0.368046i
\(13\) 15.3607 + 15.3607i 1.18159 + 1.18159i 0.979332 + 0.202260i \(0.0648286\pi\)
0.202260 + 0.979332i \(0.435171\pi\)
\(14\) 0.941098 + 9.85466i 0.0672213 + 0.703904i
\(15\) 14.6937 + 3.01581i 0.979580 + 0.201054i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −6.74562 + 25.1750i −0.396801 + 1.48088i 0.421889 + 0.906648i \(0.361367\pi\)
−0.818690 + 0.574235i \(0.805299\pi\)
\(18\) −9.72143 8.21546i −0.540080 0.456414i
\(19\) 0.500582 0.867034i 0.0263464 0.0456333i −0.852552 0.522643i \(-0.824946\pi\)
0.878898 + 0.477010i \(0.158279\pi\)
\(20\) 9.99847 0.174832i 0.499924 0.00874161i
\(21\) 20.8030 2.86989i 0.990618 0.136662i
\(22\) −9.04613 9.04613i −0.411188 0.411188i
\(23\) 12.7861 3.42602i 0.555916 0.148957i 0.0300867 0.999547i \(-0.490422\pi\)
0.525829 + 0.850590i \(0.323755\pi\)
\(24\) −7.51966 3.93125i −0.313319 0.163802i
\(25\) 13.2493 + 21.2004i 0.529972 + 0.848015i
\(26\) 15.3607 26.6055i 0.590796 1.02329i
\(27\) −16.5489 + 21.3339i −0.612922 + 0.790143i
\(28\) 13.1173 4.89262i 0.468473 0.174736i
\(29\) −8.69269 −0.299748 −0.149874 0.988705i \(-0.547887\pi\)
−0.149874 + 0.988705i \(0.547887\pi\)
\(30\) −1.25860 21.1758i −0.0419532 0.705861i
\(31\) 29.5586 17.0656i 0.953502 0.550504i 0.0593347 0.998238i \(-0.481102\pi\)
0.894167 + 0.447734i \(0.147769\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) −18.3694 + 19.9764i −0.556650 + 0.605344i
\(34\) 36.8588 1.08408
\(35\) 27.3749 + 21.8086i 0.782139 + 0.623104i
\(36\) −7.66423 + 16.2868i −0.212895 + 0.452411i
\(37\) −16.9613 + 4.54478i −0.458414 + 0.122832i −0.480634 0.876921i \(-0.659593\pi\)
0.0222195 + 0.999753i \(0.492927\pi\)
\(38\) −1.36762 0.366452i −0.0359899 0.00964346i
\(39\) −57.7536 30.1933i −1.48086 0.774188i
\(40\) −3.89852 13.5942i −0.0974630 0.339854i
\(41\) −18.4160 −0.449172 −0.224586 0.974454i \(-0.572103\pi\)
−0.224586 + 0.974454i \(0.572103\pi\)
\(42\) −11.5348 27.3669i −0.274637 0.651594i
\(43\) 24.0320 24.0320i 0.558885 0.558885i −0.370105 0.928990i \(-0.620678\pi\)
0.928990 + 0.370105i \(0.120678\pi\)
\(44\) −9.04613 + 15.6684i −0.205594 + 0.356099i
\(45\) −44.7695 + 4.54834i −0.994879 + 0.101074i
\(46\) −9.36005 16.2121i −0.203479 0.352437i
\(47\) 30.4178 8.15043i 0.647188 0.173413i 0.0797306 0.996816i \(-0.474594\pi\)
0.567457 + 0.823403i \(0.307927\pi\)
\(48\) −2.61779 + 11.7110i −0.0545374 + 0.243979i
\(49\) 46.3053 + 16.0255i 0.945007 + 0.327051i
\(50\) 24.1107 25.8587i 0.482214 0.517175i
\(51\) −3.27373 78.1207i −0.0641908 1.53178i
\(52\) −41.9662 11.2448i −0.807042 0.216246i
\(53\) −12.8616 + 48.0000i −0.242671 + 0.905660i 0.731869 + 0.681445i \(0.238648\pi\)
−0.974540 + 0.224214i \(0.928018\pi\)
\(54\) 35.1999 + 14.7975i 0.651850 + 0.274027i
\(55\) −45.2237 + 0.790777i −0.822249 + 0.0143778i
\(56\) −11.4847 16.1277i −0.205084 0.287994i
\(57\) −0.655210 + 2.93115i −0.0114949 + 0.0514238i
\(58\) 3.18175 + 11.8744i 0.0548577 + 0.204732i
\(59\) −78.7190 + 45.4484i −1.33422 + 0.770312i −0.985943 0.167079i \(-0.946566\pi\)
−0.348277 + 0.937392i \(0.613233\pi\)
\(60\) −28.4660 + 9.47017i −0.474434 + 0.157836i
\(61\) 56.9490 + 32.8795i 0.933589 + 0.539008i 0.887945 0.459950i \(-0.152133\pi\)
0.0456445 + 0.998958i \(0.485466\pi\)
\(62\) −34.1313 34.1313i −0.550504 0.550504i
\(63\) −56.9786 + 26.8782i −0.904423 + 0.426637i
\(64\) 8.00000i 0.125000i
\(65\) −29.9420 104.408i −0.460646 1.60628i
\(66\) 34.0119 + 17.7813i 0.515332 + 0.269413i
\(67\) 3.51690 13.1252i 0.0524910 0.195899i −0.934701 0.355434i \(-0.884333\pi\)
0.987192 + 0.159535i \(0.0509996\pi\)
\(68\) −13.4912 50.3500i −0.198401 0.740441i
\(69\) −33.5295 + 21.2782i −0.485935 + 0.308380i
\(70\) 19.7713 45.3773i 0.282447 0.648247i
\(71\) 86.5925i 1.21961i 0.792551 + 0.609806i \(0.208753\pi\)
−0.792551 + 0.609806i \(0.791247\pi\)
\(72\) 25.0535 + 4.50816i 0.347965 + 0.0626133i
\(73\) −26.9306 + 100.506i −0.368913 + 1.37680i 0.493126 + 0.869958i \(0.335854\pi\)
−0.862039 + 0.506843i \(0.830813\pi\)
\(74\) 12.4166 + 21.5061i 0.167791 + 0.290623i
\(75\) −56.9480 48.8049i −0.759307 0.650732i
\(76\) 2.00233i 0.0263464i
\(77\) −59.3302 + 22.1296i −0.770521 + 0.287398i
\(78\) −20.1056 + 89.9444i −0.257764 + 1.15313i
\(79\) 69.3172 + 40.0203i 0.877433 + 0.506586i 0.869811 0.493385i \(-0.164240\pi\)
0.00762204 + 0.999971i \(0.497574\pi\)
\(80\) −17.1430 + 10.3013i −0.214288 + 0.128766i
\(81\) 28.2363 75.9191i 0.348596 0.937273i
\(82\) 6.74074 + 25.1568i 0.0822041 + 0.306790i
\(83\) −11.6859 + 11.6859i −0.140794 + 0.140794i −0.773991 0.633197i \(-0.781742\pi\)
0.633197 + 0.773991i \(0.281742\pi\)
\(84\) −33.1619 + 25.7738i −0.394785 + 0.306831i
\(85\) 90.5218 93.7439i 1.06496 1.10287i
\(86\) −41.6247 24.0320i −0.484008 0.279442i
\(87\) 24.8848 7.79825i 0.286032 0.0896351i
\(88\) 24.7145 + 6.62222i 0.280846 + 0.0752525i
\(89\) 62.2002 + 35.9113i 0.698879 + 0.403498i 0.806930 0.590648i \(-0.201128\pi\)
−0.108051 + 0.994145i \(0.534461\pi\)
\(90\) 22.5999 + 59.4915i 0.251110 + 0.661017i
\(91\) −88.2064 123.866i −0.969301 1.36117i
\(92\) −18.7201 + 18.7201i −0.203479 + 0.203479i
\(93\) −69.3084 + 75.3714i −0.745252 + 0.810445i
\(94\) −22.2674 38.5682i −0.236887 0.410301i
\(95\) −4.29075 + 2.57832i −0.0451658 + 0.0271402i
\(96\) 16.9557 0.710545i 0.176622 0.00740151i
\(97\) −5.41316 + 5.41316i −0.0558058 + 0.0558058i −0.734459 0.678653i \(-0.762564\pi\)
0.678653 + 0.734459i \(0.262564\pi\)
\(98\) 4.94228 69.1200i 0.0504314 0.705306i
\(99\) 34.6658 73.6662i 0.350160 0.744103i
\(100\) −44.1488 23.4709i −0.441488 0.234709i
\(101\) 77.7709 + 134.703i 0.770009 + 1.33370i 0.937557 + 0.347831i \(0.113082\pi\)
−0.167548 + 0.985864i \(0.553585\pi\)
\(102\) −105.517 + 33.0662i −1.03448 + 0.324178i
\(103\) −57.8186 + 15.4924i −0.561345 + 0.150412i −0.528324 0.849043i \(-0.677179\pi\)
−0.0330210 + 0.999455i \(0.510513\pi\)
\(104\) 61.4428i 0.590796i
\(105\) −97.9314 37.8741i −0.932680 0.360705i
\(106\) 70.2768 0.662989
\(107\) −25.1572 93.8880i −0.235114 0.877458i −0.978097 0.208148i \(-0.933256\pi\)
0.742983 0.669310i \(-0.233410\pi\)
\(108\) 7.32966 53.5002i 0.0678673 0.495373i
\(109\) 180.188 104.032i 1.65310 0.954419i 0.677315 0.735693i \(-0.263143\pi\)
0.975786 0.218726i \(-0.0701900\pi\)
\(110\) 17.6333 + 61.4873i 0.160302 + 0.558975i
\(111\) 44.4785 28.2265i 0.400707 0.254293i
\(112\) −17.8271 + 21.5915i −0.159171 + 0.192781i
\(113\) −36.4626 36.4626i −0.322678 0.322678i 0.527115 0.849794i \(-0.323274\pi\)
−0.849794 + 0.527115i \(0.823274\pi\)
\(114\) 4.24386 0.177843i 0.0372268 0.00156003i
\(115\) −64.2201 16.0098i −0.558435 0.139215i
\(116\) 15.0562 8.69269i 0.129795 0.0749370i
\(117\) 192.419 + 34.6242i 1.64461 + 0.295934i
\(118\) 90.8969 + 90.8969i 0.770312 + 0.770312i
\(119\) 75.7874 165.955i 0.636869 1.39458i
\(120\) 23.3558 + 35.4190i 0.194632 + 0.295159i
\(121\) −19.5838 + 33.9201i −0.161850 + 0.280332i
\(122\) 24.0695 89.8285i 0.197291 0.736299i
\(123\) 52.7201 16.5211i 0.428618 0.134318i
\(124\) −34.1313 + 59.1171i −0.275252 + 0.476751i
\(125\) −6.55354 124.828i −0.0524283 0.998625i
\(126\) 57.5719 + 67.9962i 0.456920 + 0.539652i
\(127\) −18.3314 18.3314i −0.144342 0.144342i 0.631243 0.775585i \(-0.282545\pi\)
−0.775585 + 0.631243i \(0.782545\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) −47.2379 + 90.3564i −0.366185 + 0.700437i
\(130\) −131.664 + 79.1175i −1.01280 + 0.608596i
\(131\) 82.2663 142.489i 0.627987 1.08771i −0.359968 0.932965i \(-0.617212\pi\)
0.987955 0.154741i \(-0.0494544\pi\)
\(132\) 11.8404 52.9695i 0.0897003 0.401284i
\(133\) −4.46197 + 5.40416i −0.0335486 + 0.0406328i
\(134\) −19.2167 −0.143408
\(135\) 124.083 53.1836i 0.919131 0.393953i
\(136\) −63.8413 + 36.8588i −0.469421 + 0.271020i
\(137\) 225.051 + 60.3021i 1.64271 + 0.440162i 0.957557 0.288243i \(-0.0930710\pi\)
0.685148 + 0.728404i \(0.259738\pi\)
\(138\) 41.3392 + 38.0138i 0.299559 + 0.275463i
\(139\) −254.372 −1.83002 −0.915008 0.403436i \(-0.867816\pi\)
−0.915008 + 0.403436i \(0.867816\pi\)
\(140\) −69.2233 10.3988i −0.494452 0.0742772i
\(141\) −79.7661 + 50.6204i −0.565717 + 0.359010i
\(142\) 118.288 31.6950i 0.833011 0.223205i
\(143\) 189.816 + 50.8610i 1.32738 + 0.355671i
\(144\) −3.01194 35.8738i −0.0209163 0.249123i
\(145\) 38.0147 + 21.0703i 0.262170 + 0.145313i
\(146\) 147.152 1.00789
\(147\) −146.936 4.33585i −0.999565 0.0294956i
\(148\) 24.8331 24.8331i 0.167791 0.167791i
\(149\) −56.7486 + 98.2914i −0.380863 + 0.659674i −0.991186 0.132479i \(-0.957706\pi\)
0.610323 + 0.792153i \(0.291040\pi\)
\(150\) −45.8243 + 95.6563i −0.305496 + 0.637709i
\(151\) 52.1826 + 90.3830i 0.345580 + 0.598563i 0.985459 0.169913i \(-0.0543488\pi\)
−0.639879 + 0.768476i \(0.721015\pi\)
\(152\) 2.73523 0.732903i 0.0179949 0.00482173i
\(153\) 79.4542 + 220.701i 0.519308 + 1.44249i
\(154\) 51.9460 + 72.9465i 0.337312 + 0.473679i
\(155\) −170.630 + 2.98362i −1.10084 + 0.0192492i
\(156\) 130.226 5.45723i 0.834779 0.0349823i
\(157\) −194.155 52.0236i −1.23666 0.331361i −0.419488 0.907761i \(-0.637790\pi\)
−0.817168 + 0.576400i \(0.804457\pi\)
\(158\) 29.2969 109.338i 0.185423 0.692010i
\(159\) −6.24186 148.949i −0.0392570 0.936786i
\(160\) 20.3466 + 19.6473i 0.127166 + 0.122795i
\(161\) −92.2402 + 8.80873i −0.572920 + 0.0547126i
\(162\) −114.043 10.7831i −0.703967 0.0665626i
\(163\) −29.0052 108.249i −0.177946 0.664103i −0.996031 0.0890058i \(-0.971631\pi\)
0.818085 0.575097i \(-0.195036\pi\)
\(164\) 31.8975 18.4160i 0.194497 0.112293i
\(165\) 128.754 42.8342i 0.780326 0.259601i
\(166\) 20.2405 + 11.6859i 0.121931 + 0.0703968i
\(167\) 226.123 + 226.123i 1.35403 + 1.35403i 0.881103 + 0.472925i \(0.156802\pi\)
0.472925 + 0.881103i \(0.343198\pi\)
\(168\) 47.3457 + 35.8662i 0.281820 + 0.213489i
\(169\) 302.902i 1.79232i
\(170\) −161.190 89.3425i −0.948175 0.525544i
\(171\) −0.753863 8.97889i −0.00440855 0.0525081i
\(172\) −17.5927 + 65.6568i −0.102283 + 0.381725i
\(173\) −28.7313 107.227i −0.166077 0.619808i −0.997900 0.0647675i \(-0.979369\pi\)
0.831823 0.555040i \(-0.187297\pi\)
\(174\) −19.7611 31.1389i −0.113569 0.178959i
\(175\) −66.8528 161.727i −0.382016 0.924156i
\(176\) 36.1845i 0.205594i
\(177\) 184.579 200.726i 1.04282 1.13404i
\(178\) 26.2889 98.1115i 0.147690 0.551188i
\(179\) 97.3690 + 168.648i 0.543961 + 0.942168i 0.998672 + 0.0515286i \(0.0164093\pi\)
−0.454711 + 0.890639i \(0.650257\pi\)
\(180\) 72.9948 52.6475i 0.405527 0.292486i
\(181\) 252.910i 1.39729i −0.715468 0.698645i \(-0.753787\pi\)
0.715468 0.698645i \(-0.246213\pi\)
\(182\) −136.919 + 165.830i −0.752299 + 0.911156i
\(183\) −192.526 43.0359i −1.05205 0.235169i
\(184\) 32.4242 + 18.7201i 0.176218 + 0.101740i
\(185\) 85.1910 + 21.2377i 0.460492 + 0.114798i
\(186\) 128.328 + 67.0892i 0.689935 + 0.360695i
\(187\) 61.0218 + 227.736i 0.326320 + 1.21784i
\(188\) −44.5348 + 44.5348i −0.236887 + 0.236887i
\(189\) 139.002 128.061i 0.735459 0.677569i
\(190\) 5.09257 + 4.91754i 0.0268030 + 0.0258818i
\(191\) 34.4963 + 19.9164i 0.180609 + 0.104274i 0.587579 0.809167i \(-0.300081\pi\)
−0.406970 + 0.913442i \(0.633415\pi\)
\(192\) −7.17683 22.9018i −0.0373793 0.119280i
\(193\) −1.56040 0.418109i −0.00808500 0.00216637i 0.254774 0.967001i \(-0.417999\pi\)
−0.262859 + 0.964834i \(0.584665\pi\)
\(194\) 9.37587 + 5.41316i 0.0483292 + 0.0279029i
\(195\) 179.381 + 272.030i 0.919900 + 1.39503i
\(196\) −96.2287 + 18.5484i −0.490963 + 0.0946347i
\(197\) −61.6336 + 61.6336i −0.312861 + 0.312861i −0.846017 0.533156i \(-0.821006\pi\)
0.533156 + 0.846017i \(0.321006\pi\)
\(198\) −113.318 20.3907i −0.572315 0.102983i
\(199\) 95.7953 + 165.922i 0.481383 + 0.833781i 0.999772 0.0213648i \(-0.00680114\pi\)
−0.518388 + 0.855145i \(0.673468\pi\)
\(200\) −15.9022 + 68.8993i −0.0795110 + 0.344497i
\(201\) 1.70679 + 40.7290i 0.00849150 + 0.202632i
\(202\) 155.542 155.542i 0.770009 0.770009i
\(203\) 60.0065 + 10.0900i 0.295598 + 0.0497045i
\(204\) 83.7910 + 132.035i 0.410740 + 0.647232i
\(205\) 80.5365 + 44.6389i 0.392861 + 0.217751i
\(206\) 42.3261 + 73.3110i 0.205467 + 0.355879i
\(207\) 76.8971 90.9931i 0.371484 0.439580i
\(208\) 83.9324 22.4896i 0.403521 0.108123i
\(209\) 9.05666i 0.0433333i
\(210\) −15.8916 + 147.640i −0.0756741 + 0.703046i
\(211\) −339.969 −1.61123 −0.805614 0.592441i \(-0.798164\pi\)
−0.805614 + 0.592441i \(0.798164\pi\)
\(212\) −25.7231 95.9999i −0.121335 0.452830i
\(213\) −77.6825 247.891i −0.364706 1.16381i
\(214\) −119.045 + 68.7308i −0.556286 + 0.321172i
\(215\) −163.348 + 46.8447i −0.759758 + 0.217882i
\(216\) −75.7655 + 9.56994i −0.350766 + 0.0443053i
\(217\) −223.854 + 83.4957i −1.03159 + 0.384773i
\(218\) −208.063 208.063i −0.954419 0.954419i
\(219\) −13.0697 311.882i −0.0596792 1.42412i
\(220\) 77.5390 46.5934i 0.352450 0.211788i
\(221\) −490.323 + 283.088i −2.21866 + 1.28094i
\(222\) −54.8384 50.4272i −0.247020 0.227149i
\(223\) −214.803 214.803i −0.963244 0.963244i 0.0361038 0.999348i \(-0.488505\pi\)
−0.999348 + 0.0361038i \(0.988505\pi\)
\(224\) 36.0197 + 16.4493i 0.160802 + 0.0734342i
\(225\) 206.810 + 88.6268i 0.919155 + 0.393897i
\(226\) −36.4626 + 63.1551i −0.161339 + 0.279448i
\(227\) 31.0382 115.836i 0.136732 0.510292i −0.863252 0.504772i \(-0.831576\pi\)
0.999985 0.00551960i \(-0.00175695\pi\)
\(228\) −1.79630 5.73212i −0.00787850 0.0251409i
\(229\) −3.87396 + 6.70989i −0.0169168 + 0.0293008i −0.874360 0.485278i \(-0.838718\pi\)
0.857443 + 0.514579i \(0.172052\pi\)
\(230\) 1.63644 + 93.5862i 0.00711495 + 0.406897i
\(231\) 149.993 116.576i 0.649322 0.504660i
\(232\) −17.3854 17.3854i −0.0749370 0.0749370i
\(233\) −92.5053 + 24.7867i −0.397018 + 0.106381i −0.451804 0.892117i \(-0.649219\pi\)
0.0547853 + 0.998498i \(0.482553\pi\)
\(234\) −23.1328 275.523i −0.0988580 1.17745i
\(235\) −152.778 38.0869i −0.650121 0.162072i
\(236\) 90.8969 157.438i 0.385156 0.667110i
\(237\) −234.339 52.3825i −0.988771 0.221023i
\(238\) −254.439 42.7837i −1.06907 0.179763i
\(239\) 22.0230 0.0921463 0.0460732 0.998938i \(-0.485329\pi\)
0.0460732 + 0.998938i \(0.485329\pi\)
\(240\) 39.8345 44.8689i 0.165977 0.186954i
\(241\) 245.178 141.553i 1.01733 0.587358i 0.104004 0.994577i \(-0.466835\pi\)
0.913331 + 0.407218i \(0.133501\pi\)
\(242\) 53.5039 + 14.3363i 0.221091 + 0.0592411i
\(243\) −12.7254 + 242.667i −0.0523678 + 0.998628i
\(244\) −131.518 −0.539008
\(245\) −163.657 182.322i −0.667987 0.744173i
\(246\) −41.8651 65.9698i −0.170183 0.268170i
\(247\) 21.0075 5.62895i 0.0850507 0.0227893i
\(248\) 93.2484 + 24.9858i 0.376002 + 0.100749i
\(249\) 22.9700 43.9369i 0.0922491 0.176453i
\(250\) −168.120 + 54.6426i −0.672478 + 0.218570i
\(251\) −457.677 −1.82341 −0.911707 0.410841i \(-0.865235\pi\)
−0.911707 + 0.410841i \(0.865235\pi\)
\(252\) 71.8117 103.533i 0.284967 0.410845i
\(253\) 84.6722 84.6722i 0.334673 0.334673i
\(254\) −18.3314 + 31.7510i −0.0721710 + 0.125004i
\(255\) −175.041 + 349.571i −0.686436 + 1.37086i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 16.6627 4.46476i 0.0648355 0.0173726i −0.226256 0.974068i \(-0.572648\pi\)
0.291091 + 0.956695i \(0.405982\pi\)
\(258\) 140.719 + 31.4555i 0.545424 + 0.121920i
\(259\) 122.361 11.6852i 0.472436 0.0451166i
\(260\) 156.269 + 150.898i 0.601035 + 0.580377i
\(261\) −64.2426 + 44.6485i −0.246140 + 0.171067i
\(262\) −224.756 60.2231i −0.857847 0.229859i
\(263\) 20.8662 77.8737i 0.0793392 0.296098i −0.914843 0.403810i \(-0.867686\pi\)
0.994182 + 0.107712i \(0.0343524\pi\)
\(264\) −76.6916 + 3.21384i −0.290499 + 0.0121736i
\(265\) 172.594 178.737i 0.651296 0.674479i
\(266\) 9.01542 + 4.11710i 0.0338926 + 0.0154778i
\(267\) −210.278 47.0042i −0.787560 0.176046i
\(268\) 7.03380 + 26.2505i 0.0262455 + 0.0979496i
\(269\) −324.065 + 187.099i −1.20470 + 0.695534i −0.961597 0.274466i \(-0.911499\pi\)
−0.243104 + 0.970000i \(0.578166\pi\)
\(270\) −118.068 150.033i −0.437287 0.555680i
\(271\) 360.726 + 208.265i 1.33109 + 0.768506i 0.985467 0.169867i \(-0.0543339\pi\)
0.345624 + 0.938373i \(0.387667\pi\)
\(272\) 73.7175 + 73.7175i 0.271020 + 0.271020i
\(273\) 363.632 + 275.465i 1.33198 + 1.00903i
\(274\) 329.497i 1.20254i
\(275\) 199.688 + 106.160i 0.726138 + 0.386037i
\(276\) 36.7967 70.3844i 0.133321 0.255016i
\(277\) 36.9022 137.721i 0.133221 0.497187i −0.866778 0.498694i \(-0.833813\pi\)
0.999999 + 0.00150717i \(0.000479747\pi\)
\(278\) 93.1067 + 347.479i 0.334916 + 1.24992i
\(279\) 130.795 277.944i 0.468799 0.996217i
\(280\) 11.1325 + 98.3670i 0.0397588 + 0.351311i
\(281\) 62.0801i 0.220926i −0.993880 0.110463i \(-0.964767\pi\)
0.993880 0.110463i \(-0.0352333\pi\)
\(282\) 98.3452 + 90.4342i 0.348742 + 0.320689i
\(283\) 10.6104 39.5986i 0.0374926 0.139924i −0.944642 0.328101i \(-0.893591\pi\)
0.982135 + 0.188177i \(0.0602579\pi\)
\(284\) −86.5925 149.983i −0.304903 0.528108i
\(285\) 9.97021 11.2303i 0.0349832 0.0394045i
\(286\) 277.910i 0.971712i
\(287\) 127.128 + 21.3763i 0.442953 + 0.0744820i
\(288\) −47.9020 + 17.2451i −0.166327 + 0.0598788i
\(289\) −337.996 195.142i −1.16954 0.675233i
\(290\) 14.8683 59.6413i 0.0512700 0.205660i
\(291\) 10.6402 20.3526i 0.0365644 0.0699401i
\(292\) −53.8612 201.013i −0.184456 0.688400i
\(293\) 368.013 368.013i 1.25602 1.25602i 0.303038 0.952978i \(-0.401999\pi\)
0.952978 0.303038i \(-0.0980009\pi\)
\(294\) 47.8594 + 202.305i 0.162787 + 0.688114i
\(295\) 454.415 7.94585i 1.54039 0.0269351i
\(296\) −43.0122 24.8331i −0.145312 0.0838957i
\(297\) −33.1525 + 241.985i −0.111625 + 0.814764i
\(298\) 155.040 + 41.5428i 0.520268 + 0.139406i
\(299\) 249.029 + 143.777i 0.832873 + 0.480859i
\(300\) 147.442 + 27.5846i 0.491473 + 0.0919485i
\(301\) −193.790 + 138.000i −0.643822 + 0.458473i
\(302\) 104.365 104.365i 0.345580 0.345580i
\(303\) −343.480 315.850i −1.13360 1.04241i
\(304\) −2.00233 3.46813i −0.00658661 0.0114083i
\(305\) −169.351 281.827i −0.555248 0.924023i
\(306\) 272.401 189.319i 0.890201 0.618689i
\(307\) 50.8387 50.8387i 0.165598 0.165598i −0.619443 0.785042i \(-0.712642\pi\)
0.785042 + 0.619443i \(0.212642\pi\)
\(308\) 80.6332 97.6598i 0.261796 0.317077i
\(309\) 151.620 96.2199i 0.490681 0.311391i
\(310\) 66.5307 + 231.993i 0.214615 + 0.748365i
\(311\) −49.3893 85.5448i −0.158808 0.275064i 0.775631 0.631187i \(-0.217432\pi\)
−0.934439 + 0.356123i \(0.884098\pi\)
\(312\) −55.1206 175.894i −0.176668 0.563762i
\(313\) −367.777 + 98.5456i −1.17501 + 0.314842i −0.792944 0.609294i \(-0.791453\pi\)
−0.382063 + 0.924136i \(0.624786\pi\)
\(314\) 284.262i 0.905295i
\(315\) 314.328 + 20.5685i 0.997866 + 0.0652967i
\(316\) −160.081 −0.506586
\(317\) 52.4421 + 195.717i 0.165432 + 0.617402i 0.997985 + 0.0634558i \(0.0202122\pi\)
−0.832552 + 0.553947i \(0.813121\pi\)
\(318\) −201.183 + 63.0456i −0.632652 + 0.198257i
\(319\) −68.1001 + 39.3176i −0.213480 + 0.123253i
\(320\) 19.3913 34.9854i 0.0605978 0.109329i
\(321\) 156.246 + 246.207i 0.486746 + 0.767000i
\(322\) 45.7952 + 122.778i 0.142221 + 0.381299i
\(323\) 18.4508 + 18.4508i 0.0571233 + 0.0571233i
\(324\) 27.0125 + 159.732i 0.0833718 + 0.493000i
\(325\) −122.134 + 529.171i −0.375798 + 1.62822i
\(326\) −137.254 + 79.2436i −0.421024 + 0.243078i
\(327\) −422.502 + 459.462i −1.29206 + 1.40508i
\(328\) −36.8321 36.8321i −0.112293 0.112293i
\(329\) −219.438 + 20.9558i −0.666983 + 0.0636954i
\(330\) −105.640 160.202i −0.320120 0.485462i
\(331\) −260.425 + 451.069i −0.786782 + 1.36275i 0.141147 + 0.989989i \(0.454921\pi\)
−0.927929 + 0.372758i \(0.878412\pi\)
\(332\) 8.55465 31.9264i 0.0257670 0.0961639i
\(333\) −102.008 + 120.707i −0.306330 + 0.362483i
\(334\) 226.123 391.656i 0.677014 1.17262i
\(335\) −47.1945 + 48.8743i −0.140879 + 0.145893i
\(336\) 31.6643 77.8034i 0.0942391 0.231558i
\(337\) 319.919 + 319.919i 0.949314 + 0.949314i 0.998776 0.0494620i \(-0.0157507\pi\)
−0.0494620 + 0.998776i \(0.515751\pi\)
\(338\) 413.772 110.870i 1.22418 0.328017i
\(339\) 137.093 + 71.6718i 0.404405 + 0.211421i
\(340\) −63.0445 + 252.891i −0.185425 + 0.743797i
\(341\) 154.378 267.390i 0.452721 0.784136i
\(342\) −11.9895 + 4.31630i −0.0350569 + 0.0126207i
\(343\) −301.048 164.374i −0.877692 0.479225i
\(344\) 96.1282 0.279442
\(345\) 198.207 11.7805i 0.574513 0.0341465i
\(346\) −135.958 + 78.4955i −0.392943 + 0.226865i
\(347\) 211.839 + 56.7622i 0.610488 + 0.163580i 0.550800 0.834637i \(-0.314323\pi\)
0.0596883 + 0.998217i \(0.480989\pi\)
\(348\) −35.3035 + 38.3918i −0.101447 + 0.110321i
\(349\) −236.118 −0.676555 −0.338277 0.941046i \(-0.609844\pi\)
−0.338277 + 0.941046i \(0.609844\pi\)
\(350\) −196.454 + 150.519i −0.561296 + 0.430054i
\(351\) −581.906 + 73.5005i −1.65785 + 0.209403i
\(352\) −49.4290 + 13.2444i −0.140423 + 0.0376263i
\(353\) 261.390 + 70.0392i 0.740481 + 0.198411i 0.609292 0.792946i \(-0.291454\pi\)
0.131189 + 0.991357i \(0.458121\pi\)
\(354\) −341.757 178.669i −0.965415 0.504715i
\(355\) 209.893 378.684i 0.591247 1.06672i
\(356\) −143.645 −0.403498
\(357\) −68.0795 + 543.074i −0.190699 + 1.52122i
\(358\) 194.738 194.738i 0.543961 0.543961i
\(359\) −25.7908 + 44.6709i −0.0718405 + 0.124431i −0.899708 0.436492i \(-0.856221\pi\)
0.827867 + 0.560924i \(0.189554\pi\)
\(360\) −98.6358 80.4424i −0.273988 0.223451i
\(361\) 179.999 + 311.767i 0.498612 + 0.863621i
\(362\) −345.481 + 92.5713i −0.954367 + 0.255722i
\(363\) 25.6332 114.673i 0.0706148 0.315903i
\(364\) 276.644 + 126.336i 0.760011 + 0.347077i
\(365\) 361.391 374.255i 0.990113 1.02535i
\(366\) 11.6812 + 278.747i 0.0319158 + 0.761604i
\(367\) 665.106 + 178.215i 1.81228 + 0.485598i 0.995782 0.0917533i \(-0.0292471\pi\)
0.816496 + 0.577352i \(0.195914\pi\)
\(368\) 13.7041 51.1443i 0.0372393 0.138979i
\(369\) −136.102 + 94.5908i −0.368840 + 0.256344i
\(370\) −2.17082 124.147i −0.00586707 0.335531i
\(371\) 144.500 316.419i 0.389489 0.852882i
\(372\) 44.6743 199.855i 0.120092 0.537246i
\(373\) 144.478 + 539.199i 0.387340 + 1.44557i 0.834445 + 0.551091i \(0.185788\pi\)
−0.447105 + 0.894482i \(0.647545\pi\)
\(374\) 288.758 166.715i 0.772080 0.445761i
\(375\) 130.745 + 351.469i 0.348653 + 0.937252i
\(376\) 77.1365 + 44.5348i 0.205150 + 0.118444i
\(377\) −133.526 133.526i −0.354180 0.354180i
\(378\) −225.812 143.007i −0.597387 0.378324i
\(379\) 205.024i 0.540962i −0.962725 0.270481i \(-0.912817\pi\)
0.962725 0.270481i \(-0.0871827\pi\)
\(380\) 4.85347 8.75653i 0.0127723 0.0230435i
\(381\) 68.9231 + 36.0327i 0.180900 + 0.0945739i
\(382\) 14.5798 54.4127i 0.0381671 0.142442i
\(383\) 3.80025 + 14.1827i 0.00992232 + 0.0370306i 0.970710 0.240256i \(-0.0772315\pi\)
−0.960787 + 0.277287i \(0.910565\pi\)
\(384\) −28.6576 + 18.1864i −0.0746291 + 0.0473604i
\(385\) 313.101 + 47.0345i 0.813250 + 0.122167i
\(386\) 2.28459i 0.00591863i
\(387\) 54.1702 301.043i 0.139975 0.777889i
\(388\) 3.96271 14.7890i 0.0102132 0.0381161i
\(389\) −106.806 184.994i −0.274567 0.475563i 0.695459 0.718566i \(-0.255201\pi\)
−0.970026 + 0.243002i \(0.921868\pi\)
\(390\) 305.943 344.608i 0.784468 0.883611i
\(391\) 345.000i 0.882353i
\(392\) 60.5597 + 124.662i 0.154489 + 0.318014i
\(393\) −107.678 + 481.710i −0.273990 + 1.22572i
\(394\) 106.753 + 61.6336i 0.270946 + 0.156430i
\(395\) −206.130 343.035i −0.521849 0.868442i
\(396\) 13.6232 + 162.259i 0.0344021 + 0.409746i
\(397\) −133.489 498.188i −0.336245 1.25488i −0.902514 0.430661i \(-0.858280\pi\)
0.566269 0.824220i \(-0.308386\pi\)
\(398\) 191.591 191.591i 0.481383 0.481383i
\(399\) 7.92530 19.4735i 0.0198629 0.0488057i
\(400\) 99.9389 3.49611i 0.249847 0.00874028i
\(401\) −37.5169 21.6604i −0.0935583 0.0540159i 0.452491 0.891769i \(-0.350536\pi\)
−0.546049 + 0.837753i \(0.683869\pi\)
\(402\) 55.0121 17.2394i 0.136846 0.0428840i
\(403\) 716.180 + 191.900i 1.77712 + 0.476178i
\(404\) −269.406 155.542i −0.666848 0.385005i
\(405\) −307.503 + 263.565i −0.759268 + 0.650778i
\(406\) −8.18068 85.6636i −0.0201494 0.210994i
\(407\) −112.322 + 112.322i −0.275975 + 0.275975i
\(408\) 149.694 162.789i 0.366897 0.398992i
\(409\) −179.671 311.199i −0.439293 0.760877i 0.558342 0.829611i \(-0.311438\pi\)
−0.997635 + 0.0687334i \(0.978104\pi\)
\(410\) 31.4994 126.354i 0.0768279 0.308180i
\(411\) −698.356 + 29.2653i −1.69916 + 0.0712051i
\(412\) 84.6523 84.6523i 0.205467 0.205467i
\(413\) 596.159 222.362i 1.44348 0.538407i
\(414\) −152.445 71.7377i −0.368225 0.173279i
\(415\) 79.4299 22.7788i 0.191397 0.0548887i
\(416\) −61.4428 106.422i −0.147699 0.255822i
\(417\) 728.198 228.198i 1.74628 0.547238i
\(418\) −12.3716 + 3.31497i −0.0295972 + 0.00793054i
\(419\) 281.779i 0.672504i −0.941772 0.336252i \(-0.890841\pi\)
0.941772 0.336252i \(-0.109159\pi\)
\(420\) 207.496 32.3316i 0.494039 0.0769799i
\(421\) 577.752 1.37233 0.686166 0.727445i \(-0.259292\pi\)
0.686166 + 0.727445i \(0.259292\pi\)
\(422\) 124.437 + 464.406i 0.294875 + 1.10049i
\(423\) 182.937 216.471i 0.432475 0.511752i
\(424\) −121.723 + 70.2768i −0.287083 + 0.165747i
\(425\) −623.095 + 190.541i −1.46610 + 0.448332i
\(426\) −310.191 + 196.851i −0.728148 + 0.462090i
\(427\) −354.959 293.073i −0.831286 0.686355i
\(428\) 137.462 + 137.462i 0.321172 + 0.321172i
\(429\) −589.018 + 24.6834i −1.37300 + 0.0575371i
\(430\) 123.781 + 205.991i 0.287862 + 0.479049i
\(431\) −102.754 + 59.3253i −0.238409 + 0.137646i −0.614445 0.788959i \(-0.710620\pi\)
0.376036 + 0.926605i \(0.377287\pi\)
\(432\) 40.8049 + 99.9948i 0.0944558 + 0.231469i
\(433\) −26.5938 26.5938i −0.0614175 0.0614175i 0.675731 0.737148i \(-0.263828\pi\)
−0.737148 + 0.675731i \(0.763828\pi\)
\(434\) 195.994 + 275.229i 0.451598 + 0.634168i
\(435\) −127.728 26.2155i −0.293627 0.0602655i
\(436\) −208.063 + 360.376i −0.477209 + 0.826551i
\(437\) 3.43001 12.8010i 0.00784898 0.0292928i
\(438\) −421.255 + 132.010i −0.961769 + 0.301393i
\(439\) 130.238 225.578i 0.296669 0.513845i −0.678703 0.734413i \(-0.737458\pi\)
0.975372 + 0.220568i \(0.0707909\pi\)
\(440\) −92.0290 88.8659i −0.209157 0.201968i
\(441\) 424.527 119.405i 0.962647 0.270759i
\(442\) 566.176 + 566.176i 1.28094 + 1.28094i
\(443\) −234.647 + 62.8734i −0.529676 + 0.141926i −0.513739 0.857947i \(-0.671740\pi\)
−0.0159375 + 0.999873i \(0.505073\pi\)
\(444\) −48.8125 + 93.3683i −0.109938 + 0.210289i
\(445\) −184.966 307.814i −0.415655 0.691718i
\(446\) −214.803 + 372.051i −0.481622 + 0.834194i
\(447\) 74.2780 332.291i 0.166170 0.743380i
\(448\) 9.28597 55.2247i 0.0207276 0.123269i
\(449\) 50.5826 0.112656 0.0563280 0.998412i \(-0.482061\pi\)
0.0563280 + 0.998412i \(0.482061\pi\)
\(450\) 45.3688 314.947i 0.100820 0.699882i
\(451\) −144.274 + 83.2969i −0.319899 + 0.184694i
\(452\) 99.6178 + 26.6925i 0.220393 + 0.0590542i
\(453\) −230.468 211.928i −0.508758 0.467833i
\(454\) −169.596 −0.373560
\(455\) 85.5011 + 755.493i 0.187915 + 1.66042i
\(456\) −7.17273 + 4.55189i −0.0157297 + 0.00998221i
\(457\) −124.709 + 33.4156i −0.272885 + 0.0731194i −0.392667 0.919681i \(-0.628447\pi\)
0.119781 + 0.992800i \(0.461781\pi\)
\(458\) 10.5838 + 2.83593i 0.0231088 + 0.00619199i
\(459\) −425.448 560.529i −0.926901 1.22120i
\(460\) 127.242 36.4904i 0.276613 0.0793269i
\(461\) 320.833 0.695951 0.347975 0.937504i \(-0.386869\pi\)
0.347975 + 0.937504i \(0.386869\pi\)
\(462\) −214.148 162.225i −0.463523 0.351136i
\(463\) 47.6951 47.6951i 0.103013 0.103013i −0.653722 0.756735i \(-0.726793\pi\)
0.756735 + 0.653722i \(0.226793\pi\)
\(464\) −17.3854 + 30.1124i −0.0374685 + 0.0648974i
\(465\) 485.791 161.614i 1.04471 0.347558i
\(466\) 67.7186 + 117.292i 0.145319 + 0.251700i
\(467\) 180.754 48.4328i 0.387053 0.103711i −0.0600447 0.998196i \(-0.519124\pi\)
0.447098 + 0.894485i \(0.352458\pi\)
\(468\) −367.904 + 132.448i −0.786120 + 0.283009i
\(469\) −39.5126 + 86.5225i −0.0842485 + 0.184483i
\(470\) 3.89306 + 222.640i 0.00828310 + 0.473702i
\(471\) 602.483 25.2477i 1.27916 0.0536044i
\(472\) −248.335 66.5411i −0.526133 0.140977i
\(473\) 79.5728 296.970i 0.168230 0.627843i
\(474\) 14.2181 + 339.286i 0.0299960 + 0.715793i
\(475\) 25.0138 0.875045i 0.0526606 0.00184220i
\(476\) 34.6877 + 363.231i 0.0728733 + 0.763090i
\(477\) 151.491 + 420.801i 0.317592 + 0.882181i
\(478\) −8.06097 30.0839i −0.0168639 0.0629371i
\(479\) −9.08244 + 5.24375i −0.0189613 + 0.0109473i −0.509451 0.860500i \(-0.670151\pi\)
0.490489 + 0.871447i \(0.336818\pi\)
\(480\) −75.8724 37.9918i −0.158068 0.0791495i
\(481\) −330.349 190.727i −0.686796 0.396522i
\(482\) −283.107 283.107i −0.587358 0.587358i
\(483\) 256.156 107.966i 0.530344 0.223532i
\(484\) 78.3352i 0.161850i
\(485\) 36.7937 10.5517i 0.0758633 0.0217560i
\(486\) 336.147 71.4389i 0.691659 0.146994i
\(487\) 171.820 641.241i 0.352813 1.31672i −0.530401 0.847747i \(-0.677959\pi\)
0.883214 0.468970i \(-0.155375\pi\)
\(488\) 48.1389 + 179.657i 0.0986453 + 0.368149i
\(489\) 180.144 + 283.866i 0.368393 + 0.580503i
\(490\) −189.154 + 290.294i −0.386029 + 0.592437i
\(491\) 141.943i 0.289089i −0.989498 0.144544i \(-0.953828\pi\)
0.989498 0.144544i \(-0.0461717\pi\)
\(492\) −74.7927 + 81.3354i −0.152018 + 0.165316i
\(493\) 58.6376 218.839i 0.118940 0.443892i
\(494\) −15.3786 26.6365i −0.0311307 0.0539200i
\(495\) −330.160 + 238.128i −0.666990 + 0.481067i
\(496\) 136.525i 0.275252i
\(497\) 100.512 597.756i 0.202237 1.20273i
\(498\) −68.4265 15.2956i −0.137403 0.0307141i
\(499\) −230.967 133.349i −0.462860 0.267232i 0.250386 0.968146i \(-0.419442\pi\)
−0.713246 + 0.700914i \(0.752776\pi\)
\(500\) 136.179 + 209.655i 0.272358 + 0.419310i
\(501\) −850.183 444.472i −1.69697 0.887169i
\(502\) 167.521 + 625.198i 0.333708 + 1.24542i
\(503\) −554.413 + 554.413i −1.10221 + 1.10221i −0.108070 + 0.994143i \(0.534467\pi\)
−0.994143 + 0.108070i \(0.965533\pi\)
\(504\) −167.714 60.2010i −0.332765 0.119446i
\(505\) −13.5969 777.590i −0.0269245 1.53978i
\(506\) −146.657 84.6722i −0.289835 0.167336i
\(507\) −271.734 867.125i −0.535965 1.71031i
\(508\) 50.0824 + 13.4195i 0.0985874 + 0.0264164i
\(509\) 136.350 + 78.7219i 0.267879 + 0.154660i 0.627923 0.778275i \(-0.283905\pi\)
−0.360044 + 0.932935i \(0.617238\pi\)
\(510\) 541.592 + 111.159i 1.06194 + 0.217959i
\(511\) 302.567 662.545i 0.592108 1.29657i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 10.2131 + 25.0278i 0.0199086 + 0.0487871i
\(514\) −12.1980 21.1275i −0.0237314 0.0411040i
\(515\) 290.403 + 72.3961i 0.563889 + 0.140575i
\(516\) −8.53793 203.740i −0.0165464 0.394845i
\(517\) 201.434 201.434i 0.389620 0.389620i
\(518\) −60.7495 162.871i −0.117277 0.314423i
\(519\) 178.444 + 281.186i 0.343822 + 0.541784i
\(520\) 148.932 268.700i 0.286408 0.516731i
\(521\) −204.683 354.522i −0.392866 0.680464i 0.599960 0.800030i \(-0.295183\pi\)
−0.992826 + 0.119566i \(0.961850\pi\)
\(522\) 84.5054 + 71.4145i 0.161888 + 0.136809i
\(523\) −411.024 + 110.134i −0.785897 + 0.210581i −0.629383 0.777095i \(-0.716692\pi\)
−0.156514 + 0.987676i \(0.550026\pi\)
\(524\) 329.065i 0.627987i
\(525\) 336.467 + 403.007i 0.640890 + 0.767632i
\(526\) −114.015 −0.216759
\(527\) 230.237 + 859.255i 0.436882 + 1.63047i
\(528\) 32.4613 + 103.586i 0.0614797 + 0.196186i
\(529\) −306.381 + 176.889i −0.579171 + 0.334384i
\(530\) −307.333 170.345i −0.579873 0.321406i
\(531\) −348.327 + 740.209i −0.655984 + 1.39399i
\(532\) 2.32420 13.8223i 0.00436879 0.0259817i
\(533\) −282.883 282.883i −0.530737 0.530737i
\(534\) 12.7583 + 304.450i 0.0238920 + 0.570132i
\(535\) −117.560 + 471.568i −0.219737 + 0.881435i
\(536\) 33.2843 19.2167i 0.0620976 0.0358520i
\(537\) −430.036 395.443i −0.800811 0.736393i
\(538\) 374.197 + 374.197i 0.695534 + 0.695534i
\(539\) 435.248 83.8956i 0.807511 0.155650i
\(540\) −161.734 + 216.199i −0.299507 + 0.400369i
\(541\) −31.4934 + 54.5481i −0.0582132 + 0.100828i −0.893663 0.448738i \(-0.851874\pi\)
0.835450 + 0.549566i \(0.185207\pi\)
\(542\) 152.461 568.991i 0.281293 1.04980i
\(543\) 226.886 + 724.011i 0.417838 + 1.33335i
\(544\) 73.7175 127.683i 0.135510 0.234711i
\(545\) −1040.16 + 18.1881i −1.90855 + 0.0333726i
\(546\) 243.193 597.557i 0.445409 1.09443i
\(547\) 283.231 + 283.231i 0.517790 + 0.517790i 0.916902 0.399112i \(-0.130682\pi\)
−0.399112 + 0.916902i \(0.630682\pi\)
\(548\) −450.101 + 120.604i −0.821353 + 0.220081i
\(549\) 589.756 49.5156i 1.07424 0.0901924i
\(550\) 71.9266 311.636i 0.130776 0.566611i
\(551\) −4.35141 + 7.53686i −0.00789729 + 0.0136785i
\(552\) −109.615 24.5027i −0.198579 0.0443889i
\(553\) −432.050 356.724i −0.781283 0.645070i
\(554\) −201.637 −0.363966
\(555\) −262.931 + 15.6274i −0.473750 + 0.0281575i
\(556\) 440.585 254.372i 0.792420 0.457504i
\(557\) −202.338 54.2162i −0.363263 0.0973361i 0.0725705 0.997363i \(-0.476880\pi\)
−0.435834 + 0.900027i \(0.643546\pi\)
\(558\) −427.553 76.9346i −0.766225 0.137876i
\(559\) 738.298 1.32075
\(560\) 130.297 51.2120i 0.232673 0.0914501i
\(561\) −378.992 597.204i −0.675565 1.06453i
\(562\) −84.8031 + 22.7229i −0.150895 + 0.0404322i
\(563\) −706.397 189.279i −1.25470 0.336196i −0.430551 0.902566i \(-0.641681\pi\)
−0.824151 + 0.566370i \(0.808347\pi\)
\(564\) 87.5386 167.443i 0.155210 0.296885i
\(565\) 71.0752 + 247.840i 0.125797 + 0.438654i
\(566\) −57.9764 −0.102432
\(567\) −283.040 + 491.301i −0.499189 + 0.866493i
\(568\) −173.185 + 173.185i −0.304903 + 0.304903i
\(569\) 37.1577 64.3590i 0.0653035 0.113109i −0.831525 0.555487i \(-0.812532\pi\)
0.896829 + 0.442378i \(0.145865\pi\)
\(570\) −18.9902 9.50900i −0.0333161 0.0166825i
\(571\) 320.383 + 554.920i 0.561092 + 0.971839i 0.997402 + 0.0720429i \(0.0229519\pi\)
−0.436310 + 0.899797i \(0.643715\pi\)
\(572\) −379.632 + 101.722i −0.663691 + 0.177836i
\(573\) −116.620 26.0685i −0.203526 0.0454948i
\(574\) −17.3313 181.484i −0.0301939 0.316174i
\(575\) 242.039 + 225.677i 0.420938 + 0.392482i
\(576\) 41.0906 + 59.1233i 0.0713379 + 0.102645i
\(577\) −802.797 215.109i −1.39133 0.372805i −0.516106 0.856525i \(-0.672619\pi\)
−0.875223 + 0.483719i \(0.839286\pi\)
\(578\) −142.854 + 533.139i −0.247152 + 0.922385i
\(579\) 4.84210 0.202913i 0.00836287 0.000350455i
\(580\) −86.9137 + 1.51976i −0.149851 + 0.00262028i
\(581\) 94.2330 67.1043i 0.162191 0.115498i
\(582\) −31.6967 7.08527i −0.0544617 0.0121740i
\(583\) 116.347 + 434.214i 0.199566 + 0.744792i
\(584\) −254.874 + 147.152i −0.436428 + 0.251972i
\(585\) −757.557 617.826i −1.29497 1.05611i
\(586\) −637.417 368.013i −1.08774 0.628008i
\(587\) 62.0401 + 62.0401i 0.105690 + 0.105690i 0.757974 0.652284i \(-0.226189\pi\)
−0.652284 + 0.757974i \(0.726189\pi\)
\(588\) 258.837 139.426i 0.440198 0.237119i
\(589\) 34.1710i 0.0580153i
\(590\) −177.182 617.834i −0.300308 1.04718i
\(591\) 121.148 231.732i 0.204989 0.392101i
\(592\) −18.1791 + 67.8453i −0.0307079 + 0.114604i
\(593\) −118.402 441.882i −0.199666 0.745164i −0.991009 0.133792i \(-0.957285\pi\)
0.791343 0.611372i \(-0.209382\pi\)
\(594\) 342.692 43.2854i 0.576923 0.0728711i
\(595\) −733.693 + 542.050i −1.23310 + 0.911008i
\(596\) 226.994i 0.380863i
\(597\) −423.085 389.052i −0.708686 0.651678i
\(598\) 105.252 392.806i 0.176007 0.656866i
\(599\) 369.179 + 639.437i 0.616326 + 1.06751i 0.990150 + 0.140008i \(0.0447130\pi\)
−0.373824 + 0.927500i \(0.621954\pi\)
\(600\) −16.2863 211.506i −0.0271438 0.352510i
\(601\) 975.970i 1.62391i −0.583720 0.811955i \(-0.698403\pi\)
0.583720 0.811955i \(-0.301597\pi\)
\(602\) 259.444 + 214.211i 0.430970 + 0.355832i
\(603\) −41.4242 115.065i −0.0686969 0.190821i
\(604\) −180.766 104.365i −0.299281 0.172790i
\(605\) 167.863 100.869i 0.277459 0.166726i
\(606\) −305.737 + 584.811i −0.504516 + 0.965035i
\(607\) −84.9286 316.958i −0.139915 0.522171i −0.999929 0.0119003i \(-0.996212\pi\)
0.860014 0.510271i \(-0.170455\pi\)
\(608\) −4.00466 + 4.00466i −0.00658661 + 0.00658661i
\(609\) −180.834 + 24.9471i −0.296936 + 0.0409640i
\(610\) −322.996 + 334.493i −0.529502 + 0.548349i
\(611\) 592.435 + 342.043i 0.969615 + 0.559808i
\(612\) −358.320 302.812i −0.585490 0.494790i
\(613\) −48.2499 12.9285i −0.0787110 0.0210906i 0.219249 0.975669i \(-0.429639\pi\)
−0.297960 + 0.954578i \(0.596306\pi\)
\(614\) −88.0552 50.8387i −0.143412 0.0827992i
\(615\) −270.600 55.5392i −0.439999 0.0903077i
\(616\) −162.920 74.4011i −0.264480 0.120781i
\(617\) −788.450 + 788.450i −1.27788 + 1.27788i −0.336022 + 0.941854i \(0.609082\pi\)
−0.941854 + 0.336022i \(0.890918\pi\)
\(618\) −186.936 171.898i −0.302485 0.278153i
\(619\) 428.784 + 742.675i 0.692704 + 1.19980i 0.970949 + 0.239288i \(0.0769140\pi\)
−0.278245 + 0.960510i \(0.589753\pi\)
\(620\) 292.557 175.798i 0.471866 0.283545i
\(621\) −138.505 + 329.473i −0.223036 + 0.530553i
\(622\) −98.7787 + 98.7787i −0.158808 + 0.158808i
\(623\) −387.690 320.098i −0.622295 0.513800i
\(624\) −220.100 + 139.678i −0.352724 + 0.223842i
\(625\) −273.913 + 561.780i −0.438260 + 0.898848i
\(626\) 269.232 + 466.323i 0.430082 + 0.744925i
\(627\) 8.12476 + 25.9267i 0.0129582 + 0.0413505i
\(628\) 388.310 104.047i 0.618328 0.165680i
\(629\) 457.659i 0.727598i
\(630\) −86.9549 436.908i −0.138024 0.693505i
\(631\) 373.933 0.592604 0.296302 0.955094i \(-0.404246\pi\)
0.296302 + 0.955094i \(0.404246\pi\)
\(632\) 58.5938 + 218.675i 0.0927117 + 0.346005i
\(633\) 973.238 304.988i 1.53750 0.481813i
\(634\) 248.159 143.274i 0.391417 0.225985i
\(635\) 35.7327 + 124.600i 0.0562720 + 0.196221i
\(636\) 159.760 + 251.745i 0.251195 + 0.395826i
\(637\) 465.120 + 957.444i 0.730172 + 1.50305i
\(638\) 78.6352 + 78.6352i 0.123253 + 0.123253i
\(639\) 444.767 + 639.954i 0.696037 + 1.00149i
\(640\) −54.8886 13.6835i −0.0857635 0.0213804i
\(641\) 18.2627 10.5440i 0.0284909 0.0164492i −0.485687 0.874133i \(-0.661430\pi\)
0.514178 + 0.857684i \(0.328097\pi\)
\(642\) 279.135 303.554i 0.434790 0.472825i
\(643\) 114.721 + 114.721i 0.178416 + 0.178416i 0.790665 0.612249i \(-0.209735\pi\)
−0.612249 + 0.790665i \(0.709735\pi\)
\(644\) 150.956 107.497i 0.234404 0.166921i
\(645\) 425.596 280.644i 0.659838 0.435106i
\(646\) 18.4508 31.9578i 0.0285617 0.0494703i
\(647\) 195.244 728.662i 0.301769 1.12622i −0.633923 0.773396i \(-0.718556\pi\)
0.935691 0.352819i \(-0.114777\pi\)
\(648\) 208.311 95.3657i 0.321467 0.147169i
\(649\) −411.132 + 712.102i −0.633486 + 1.09723i
\(650\) 767.565 26.8513i 1.18087 0.0413098i
\(651\) 565.929 439.846i 0.869323 0.675646i
\(652\) 158.487 + 158.487i 0.243078 + 0.243078i
\(653\) 542.173 145.275i 0.830280 0.222473i 0.181444 0.983401i \(-0.441923\pi\)
0.648836 + 0.760928i \(0.275256\pi\)
\(654\) 782.283 + 408.974i 1.19615 + 0.625342i
\(655\) −705.147 + 423.725i −1.07656 + 0.646908i
\(656\) −36.8321 + 63.7950i −0.0561464 + 0.0972485i
\(657\) 317.206 + 881.108i 0.482809 + 1.34111i
\(658\) 108.946 + 292.087i 0.165571 + 0.443901i
\(659\) 69.2421 0.105072 0.0525358 0.998619i \(-0.483270\pi\)
0.0525358 + 0.998619i \(0.483270\pi\)
\(660\) −180.174 + 202.945i −0.272991 + 0.307492i
\(661\) 576.339 332.749i 0.871920 0.503403i 0.00393407 0.999992i \(-0.498748\pi\)
0.867986 + 0.496589i \(0.165414\pi\)
\(662\) 711.494 + 190.644i 1.07476 + 0.287982i
\(663\) 1149.70 1250.27i 1.73409 1.88578i
\(664\) −46.7435 −0.0703968
\(665\) 32.6122 12.8179i 0.0490409 0.0192751i
\(666\) 202.226 + 95.1634i 0.303642 + 0.142888i
\(667\) −111.145 + 29.7813i −0.166635 + 0.0446497i
\(668\) −617.778 165.533i −0.924818 0.247804i
\(669\) 807.625 + 422.223i 1.20721 + 0.631125i
\(670\) 84.0379 + 46.5796i 0.125430 + 0.0695218i
\(671\) 594.864 0.886534
\(672\) −117.871 14.7763i −0.175404 0.0219885i
\(673\) 331.687 331.687i 0.492848 0.492848i −0.416355 0.909202i \(-0.636692\pi\)
0.909202 + 0.416355i \(0.136692\pi\)
\(674\) 319.919 554.116i 0.474657 0.822130i
\(675\) −671.547 68.1844i −0.994885 0.101014i
\(676\) −302.902 524.641i −0.448080 0.776097i
\(677\) −321.864 + 86.2431i −0.475426 + 0.127390i −0.488572 0.872523i \(-0.662482\pi\)
0.0131458 + 0.999914i \(0.495815\pi\)
\(678\) 47.7258 213.507i 0.0703921 0.314907i
\(679\) 43.6508 31.0842i 0.0642870 0.0457794i
\(680\) 368.531 6.44410i 0.541958 0.00947662i
\(681\) 15.0632 + 359.452i 0.0221193 + 0.527830i
\(682\) −421.768 113.012i −0.618429 0.165707i
\(683\) −82.7545 + 308.844i −0.121163 + 0.452188i −0.999674 0.0255353i \(-0.991871\pi\)
0.878511 + 0.477723i \(0.158538\pi\)
\(684\) 10.2846 + 14.7980i 0.0150360 + 0.0216345i
\(685\) −838.018 809.215i −1.22338 1.18134i
\(686\) −114.348 + 471.405i −0.166688 + 0.687179i
\(687\) 5.07061 22.6839i 0.00738080 0.0330188i
\(688\) −35.1854 131.314i −0.0511415 0.190863i
\(689\) −934.875 + 539.750i −1.35686 + 0.783382i
\(690\) −88.6413 266.444i −0.128466 0.386150i
\(691\) 606.389 + 350.099i 0.877553 + 0.506656i 0.869851 0.493315i \(-0.164215\pi\)
0.00770241 + 0.999970i \(0.497548\pi\)
\(692\) 156.991 + 156.991i 0.226865 + 0.226865i
\(693\) −324.809 + 468.286i −0.468700 + 0.675738i
\(694\) 310.155i 0.446909i
\(695\) 1112.41 + 616.576i 1.60059 + 0.887160i
\(696\) 65.3661 + 34.1731i 0.0939168 + 0.0490993i
\(697\) 124.228 463.624i 0.178232 0.665170i
\(698\) 86.4251 + 322.543i 0.123818 + 0.462096i
\(699\) 242.581 153.944i 0.347040 0.220235i
\(700\) 277.520 + 213.267i 0.396457 + 0.304667i
\(701\) 722.146i 1.03017i 0.857141 + 0.515083i \(0.172239\pi\)
−0.857141 + 0.515083i \(0.827761\pi\)
\(702\) 313.396 + 767.995i 0.446433 + 1.09401i
\(703\) −4.55007 + 16.9811i −0.00647236 + 0.0241552i
\(704\) 36.1845 + 62.6734i 0.0513984 + 0.0890247i
\(705\) 471.531 28.0256i 0.668838 0.0397527i
\(706\) 382.701i 0.542070i
\(707\) −380.504 1020.14i −0.538195 1.44291i
\(708\) −118.975 + 532.246i −0.168043 + 0.751760i
\(709\) −185.418 107.051i −0.261520 0.150989i 0.363508 0.931591i \(-0.381579\pi\)
−0.625028 + 0.780603i \(0.714912\pi\)
\(710\) −594.118 148.111i −0.836786 0.208607i
\(711\) 717.840 60.2695i 1.00962 0.0847672i
\(712\) 52.5778 + 196.223i 0.0738452 + 0.275594i
\(713\) 319.471 319.471i 0.448065 0.448065i
\(714\) 766.772 105.781i 1.07391 0.148152i
\(715\) −706.815 682.521i −0.988552 0.954575i
\(716\) −337.296 194.738i −0.471084 0.271980i
\(717\) −63.0457 + 19.7569i −0.0879299 + 0.0275549i
\(718\) 70.4617 + 18.8801i 0.0981360 + 0.0262955i
\(719\) 483.185 + 278.967i 0.672023 + 0.387993i 0.796843 0.604187i \(-0.206502\pi\)
−0.124820 + 0.992179i \(0.539835\pi\)
\(720\) −73.7832 + 164.183i −0.102477 + 0.228032i
\(721\) 417.110 39.8330i 0.578516 0.0552469i
\(722\) 359.998 359.998i 0.498612 0.498612i
\(723\) −574.889 + 625.179i −0.795143 + 0.864701i
\(724\) 252.910 + 438.052i 0.349323 + 0.605044i
\(725\) −115.172 184.288i −0.158858 0.254191i
\(726\) −166.028 + 6.95759i −0.228689 + 0.00958345i
\(727\) −364.579 + 364.579i −0.501484 + 0.501484i −0.911899 0.410415i \(-0.865384\pi\)
0.410415 + 0.911899i \(0.365384\pi\)
\(728\) 71.3195 424.145i 0.0979663 0.582617i
\(729\) −181.268 706.104i −0.248653 0.968593i
\(730\) −643.520 356.683i −0.881534 0.488607i
\(731\) 442.896 + 767.118i 0.605877 + 1.04941i
\(732\) 376.500 117.985i 0.514344 0.161182i
\(733\) −95.8396 + 25.6801i −0.130750 + 0.0350343i −0.323600 0.946194i \(-0.604893\pi\)
0.192851 + 0.981228i \(0.438227\pi\)
\(734\) 973.782i 1.32668i
\(735\) 632.067 + 375.122i 0.859955 + 0.510370i
\(736\) −74.8804 −0.101740
\(737\) −31.8143 118.733i −0.0431673 0.161103i
\(738\) 179.030 + 151.296i 0.242588 + 0.205008i
\(739\) −134.441 + 77.6197i −0.181923 + 0.105033i −0.588196 0.808718i \(-0.700162\pi\)
0.406273 + 0.913752i \(0.366828\pi\)
\(740\) −168.793 + 48.4062i −0.228098 + 0.0654138i
\(741\) −55.0890 + 34.9601i −0.0743442 + 0.0471796i
\(742\) −485.127 81.5736i −0.653810 0.109937i
\(743\) −302.142 302.142i −0.406652 0.406652i 0.473918 0.880569i \(-0.342839\pi\)
−0.880569 + 0.473918i \(0.842839\pi\)
\(744\) −289.360 + 12.1259i −0.388924 + 0.0162983i
\(745\) 486.421 292.292i 0.652914 0.392338i
\(746\) 683.677 394.721i 0.916457 0.529116i
\(747\) −26.3409 + 146.386i −0.0352622 + 0.195965i
\(748\) −333.429 333.429i −0.445761 0.445761i
\(749\) 64.6824 + 677.319i 0.0863584 + 0.904297i
\(750\) 432.260 307.247i 0.576347 0.409663i
\(751\) 159.170 275.691i 0.211944 0.367098i −0.740379 0.672190i \(-0.765354\pi\)
0.952323 + 0.305092i \(0.0986871\pi\)
\(752\) 32.6017 121.671i 0.0433533 0.161797i
\(753\) 1310.20 410.584i 1.73998 0.545264i
\(754\) −133.526 + 231.274i −0.177090 + 0.306729i
\(755\) −9.12321 521.746i −0.0120837 0.691055i
\(756\) −112.698 + 360.809i −0.149071 + 0.477261i
\(757\) 315.962 + 315.962i 0.417387 + 0.417387i 0.884302 0.466915i \(-0.154635\pi\)
−0.466915 + 0.884302i \(0.654635\pi\)
\(758\) −280.069 + 75.0442i −0.369484 + 0.0990028i
\(759\) −166.434 + 318.353i −0.219280 + 0.419438i
\(760\)