Properties

Label 210.3.w.b.47.1
Level 210
Weight 3
Character 210.47
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.1
Character \(\chi\) \(=\) 210.47
Dual form 210.3.w.b.143.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.99350 + 0.197383i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-3.67935 + 3.38562i) q^{5} +(1.36533 + 4.01695i) q^{6} +(6.78461 - 1.72310i) q^{7} +(2.00000 + 2.00000i) q^{8} +(8.92208 - 1.18173i) q^{9} +O(q^{10})\) \(q+(-0.366025 - 1.36603i) q^{2} +(-2.99350 + 0.197383i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-3.67935 + 3.38562i) q^{5} +(1.36533 + 4.01695i) q^{6} +(6.78461 - 1.72310i) q^{7} +(2.00000 + 2.00000i) q^{8} +(8.92208 - 1.18173i) q^{9} +(5.97157 + 3.78686i) q^{10} +(-5.25762 + 3.03549i) q^{11} +(4.98751 - 3.33538i) q^{12} +(-4.95646 - 4.95646i) q^{13} +(-4.83714 - 8.63725i) q^{14} +(10.3459 - 10.8611i) q^{15} +(2.00000 - 3.46410i) q^{16} +(6.62741 - 24.7338i) q^{17} +(-4.87999 - 11.7552i) q^{18} +(8.47334 - 14.6763i) q^{19} +(2.98720 - 9.54341i) q^{20} +(-19.9696 + 6.49728i) q^{21} +(6.07098 + 6.07098i) q^{22} +(27.7996 - 7.44889i) q^{23} +(-6.38177 - 5.59223i) q^{24} +(2.07519 - 24.9137i) q^{25} +(-4.95646 + 8.58484i) q^{26} +(-26.4750 + 5.29859i) q^{27} +(-10.0282 + 9.76911i) q^{28} +29.7644 q^{29} +(-18.6234 - 10.1573i) q^{30} +(-36.5762 + 21.1173i) q^{31} +(-5.46410 - 1.46410i) q^{32} +(15.1395 - 10.1245i) q^{33} -36.2128 q^{34} +(-19.1292 + 29.3100i) q^{35} +(-14.2718 + 10.9689i) q^{36} +(46.2903 - 12.4034i) q^{37} +(-23.1496 - 6.20292i) q^{38} +(15.8155 + 13.8588i) q^{39} +(-14.1299 - 0.587458i) q^{40} +2.99309 q^{41} +(16.1848 + 24.9008i) q^{42} +(22.2278 - 22.2278i) q^{43} +(6.07098 - 10.5152i) q^{44} +(-28.8265 + 34.5548i) q^{45} +(-20.3508 - 35.2485i) q^{46} +(61.1668 - 16.3896i) q^{47} +(-5.30324 + 10.7646i) q^{48} +(43.0618 - 23.3812i) q^{49} +(-34.7923 + 6.28430i) q^{50} +(-14.9571 + 75.3488i) q^{51} +(13.5413 + 3.62838i) q^{52} +(-0.456319 + 1.70301i) q^{53} +(16.9285 + 34.2261i) q^{54} +(9.06761 - 28.9689i) q^{55} +(17.0154 + 10.1230i) q^{56} +(-22.4681 + 45.6059i) q^{57} +(-10.8945 - 40.6589i) q^{58} +(-72.6479 + 41.9433i) q^{59} +(-7.05847 + 29.1578i) q^{60} +(-18.0258 - 10.4072i) q^{61} +(42.2346 + 42.2346i) q^{62} +(58.4966 - 23.3913i) q^{63} +8.00000i q^{64} +(35.0172 + 1.45586i) q^{65} +(-19.3718 - 16.9752i) q^{66} +(-8.61650 + 32.1572i) q^{67} +(13.2548 + 49.4676i) q^{68} +(-81.7479 + 27.7854i) q^{69} +(47.0399 + 15.4027i) q^{70} -10.6074i q^{71} +(20.2076 + 15.4807i) q^{72} +(25.3348 - 94.5508i) q^{73} +(-33.8869 - 58.6937i) q^{74} +(-1.29451 + 74.9888i) q^{75} +33.8934i q^{76} +(-30.4404 + 29.6540i) q^{77} +(13.1427 - 26.6771i) q^{78} +(-74.6747 - 43.1134i) q^{79} +(4.36943 + 19.5169i) q^{80} +(78.2070 - 21.0871i) q^{81} +(-1.09555 - 4.08863i) q^{82} +(-47.0984 + 47.0984i) q^{83} +(28.0911 - 31.2232i) q^{84} +(59.3547 + 113.442i) q^{85} +(-38.4997 - 22.2278i) q^{86} +(-89.0996 + 5.87499i) q^{87} +(-16.5862 - 4.44427i) q^{88} +(138.660 + 80.0552i) q^{89} +(57.7539 + 26.7298i) q^{90} +(-42.1682 - 25.0872i) q^{91} +(-40.7015 + 40.7015i) q^{92} +(105.323 - 70.4342i) q^{93} +(-44.7772 - 77.5564i) q^{94} +(18.5118 + 82.6865i) q^{95} +(16.6458 + 3.30426i) q^{96} +(81.7792 - 81.7792i) q^{97} +(-47.7010 - 50.2654i) q^{98} +(-43.3218 + 33.2960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.366025 1.36603i −0.183013 0.683013i
\(3\) −2.99350 + 0.197383i −0.997833 + 0.0657945i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) −3.67935 + 3.38562i −0.735869 + 0.677124i
\(6\) 1.36533 + 4.01695i 0.227555 + 0.669492i
\(7\) 6.78461 1.72310i 0.969230 0.246158i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 8.92208 1.18173i 0.991342 0.131304i
\(10\) 5.97157 + 3.78686i 0.597157 + 0.378686i
\(11\) −5.25762 + 3.03549i −0.477966 + 0.275954i −0.719568 0.694422i \(-0.755660\pi\)
0.241603 + 0.970375i \(0.422327\pi\)
\(12\) 4.98751 3.33538i 0.415626 0.277948i
\(13\) −4.95646 4.95646i −0.381266 0.381266i 0.490292 0.871558i \(-0.336890\pi\)
−0.871558 + 0.490292i \(0.836890\pi\)
\(14\) −4.83714 8.63725i −0.345510 0.616946i
\(15\) 10.3459 10.8611i 0.689724 0.724072i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 6.62741 24.7338i 0.389847 1.45493i −0.440534 0.897736i \(-0.645211\pi\)
0.830382 0.557195i \(-0.188122\pi\)
\(18\) −4.87999 11.7552i −0.271110 0.653069i
\(19\) 8.47334 14.6763i 0.445965 0.772435i −0.552154 0.833742i \(-0.686194\pi\)
0.998119 + 0.0613078i \(0.0195271\pi\)
\(20\) 2.98720 9.54341i 0.149360 0.477170i
\(21\) −19.9696 + 6.49728i −0.950934 + 0.309394i
\(22\) 6.07098 + 6.07098i 0.275954 + 0.275954i
\(23\) 27.7996 7.44889i 1.20868 0.323865i 0.402436 0.915448i \(-0.368163\pi\)
0.806244 + 0.591583i \(0.201497\pi\)
\(24\) −6.38177 5.59223i −0.265907 0.233010i
\(25\) 2.07519 24.9137i 0.0830074 0.996549i
\(26\) −4.95646 + 8.58484i −0.190633 + 0.330186i
\(27\) −26.4750 + 5.29859i −0.980555 + 0.196244i
\(28\) −10.0282 + 9.76911i −0.358149 + 0.348897i
\(29\) 29.7644 1.02636 0.513179 0.858282i \(-0.328468\pi\)
0.513179 + 0.858282i \(0.328468\pi\)
\(30\) −18.6234 10.1573i −0.620779 0.338576i
\(31\) −36.5762 + 21.1173i −1.17988 + 0.681203i −0.955986 0.293411i \(-0.905210\pi\)
−0.223892 + 0.974614i \(0.571876\pi\)
\(32\) −5.46410 1.46410i −0.170753 0.0457532i
\(33\) 15.1395 10.1245i 0.458774 0.306803i
\(34\) −36.2128 −1.06508
\(35\) −19.1292 + 29.3100i −0.546547 + 0.837428i
\(36\) −14.2718 + 10.9689i −0.396438 + 0.304692i
\(37\) 46.2903 12.4034i 1.25109 0.335228i 0.428332 0.903621i \(-0.359101\pi\)
0.822757 + 0.568393i \(0.192435\pi\)
\(38\) −23.1496 6.20292i −0.609200 0.163235i
\(39\) 15.8155 + 13.8588i 0.405525 + 0.355355i
\(40\) −14.1299 0.587458i −0.353248 0.0146865i
\(41\) 2.99309 0.0730021 0.0365011 0.999334i \(-0.488379\pi\)
0.0365011 + 0.999334i \(0.488379\pi\)
\(42\) 16.1848 + 24.9008i 0.385353 + 0.592877i
\(43\) 22.2278 22.2278i 0.516926 0.516926i −0.399714 0.916640i \(-0.630891\pi\)
0.916640 + 0.399714i \(0.130891\pi\)
\(44\) 6.07098 10.5152i 0.137977 0.238983i
\(45\) −28.8265 + 34.5548i −0.640589 + 0.767884i
\(46\) −20.3508 35.2485i −0.442408 0.766273i
\(47\) 61.1668 16.3896i 1.30142 0.348715i 0.459434 0.888212i \(-0.348052\pi\)
0.841987 + 0.539498i \(0.181386\pi\)
\(48\) −5.30324 + 10.7646i −0.110484 + 0.224262i
\(49\) 43.0618 23.3812i 0.878813 0.477167i
\(50\) −34.7923 + 6.28430i −0.695847 + 0.125686i
\(51\) −14.9571 + 75.3488i −0.293276 + 1.47743i
\(52\) 13.5413 + 3.62838i 0.260410 + 0.0697766i
\(53\) −0.456319 + 1.70301i −0.00860980 + 0.0321322i −0.970097 0.242717i \(-0.921961\pi\)
0.961487 + 0.274849i \(0.0886280\pi\)
\(54\) 16.9285 + 34.2261i 0.313491 + 0.633816i
\(55\) 9.06761 28.9689i 0.164866 0.526708i
\(56\) 17.0154 + 10.1230i 0.303847 + 0.180768i
\(57\) −22.4681 + 45.6059i −0.394177 + 0.800103i
\(58\) −10.8945 40.6589i −0.187836 0.701015i
\(59\) −72.6479 + 41.9433i −1.23132 + 0.710903i −0.967305 0.253615i \(-0.918380\pi\)
−0.264015 + 0.964519i \(0.585047\pi\)
\(60\) −7.05847 + 29.1578i −0.117641 + 0.485964i
\(61\) −18.0258 10.4072i −0.295505 0.170610i 0.344917 0.938633i \(-0.387907\pi\)
−0.640422 + 0.768023i \(0.721240\pi\)
\(62\) 42.2346 + 42.2346i 0.681203 + 0.681203i
\(63\) 58.4966 23.3913i 0.928517 0.371290i
\(64\) 8.00000i 0.125000i
\(65\) 35.0172 + 1.45586i 0.538727 + 0.0223978i
\(66\) −19.3718 16.9752i −0.293512 0.257199i
\(67\) −8.61650 + 32.1572i −0.128604 + 0.479958i −0.999942 0.0107249i \(-0.996586\pi\)
0.871338 + 0.490683i \(0.163253\pi\)
\(68\) 13.2548 + 49.4676i 0.194924 + 0.727465i
\(69\) −81.7479 + 27.7854i −1.18475 + 0.402688i
\(70\) 47.0399 + 15.4027i 0.671999 + 0.220039i
\(71\) 10.6074i 0.149400i −0.997206 0.0747002i \(-0.976200\pi\)
0.997206 0.0747002i \(-0.0238000\pi\)
\(72\) 20.2076 + 15.4807i 0.280661 + 0.215010i
\(73\) 25.3348 94.5508i 0.347052 1.29522i −0.543145 0.839639i \(-0.682766\pi\)
0.890197 0.455577i \(-0.150567\pi\)
\(74\) −33.8869 58.6937i −0.457930 0.793159i
\(75\) −1.29451 + 74.9888i −0.0172602 + 0.999851i
\(76\) 33.8934i 0.445965i
\(77\) −30.4404 + 29.6540i −0.395330 + 0.385117i
\(78\) 13.1427 26.6771i 0.168496 0.342013i
\(79\) −74.6747 43.1134i −0.945249 0.545740i −0.0536472 0.998560i \(-0.517085\pi\)
−0.891602 + 0.452820i \(0.850418\pi\)
\(80\) 4.36943 + 19.5169i 0.0546179 + 0.243961i
\(81\) 78.2070 21.0871i 0.965519 0.260334i
\(82\) −1.09555 4.08863i −0.0133603 0.0498614i
\(83\) −47.0984 + 47.0984i −0.567450 + 0.567450i −0.931413 0.363963i \(-0.881423\pi\)
0.363963 + 0.931413i \(0.381423\pi\)
\(84\) 28.0911 31.2232i 0.334418 0.371705i
\(85\) 59.3547 + 113.442i 0.698291 + 1.33461i
\(86\) −38.4997 22.2278i −0.447671 0.258463i
\(87\) −89.0996 + 5.87499i −1.02413 + 0.0675286i
\(88\) −16.5862 4.44427i −0.188480 0.0505030i
\(89\) 138.660 + 80.0552i 1.55797 + 0.899496i 0.997451 + 0.0713568i \(0.0227329\pi\)
0.560522 + 0.828139i \(0.310600\pi\)
\(90\) 57.7539 + 26.7298i 0.641710 + 0.296998i
\(91\) −42.1682 25.0872i −0.463386 0.275683i
\(92\) −40.7015 + 40.7015i −0.442408 + 0.442408i
\(93\) 105.323 70.4342i 1.13250 0.757357i
\(94\) −44.7772 77.5564i −0.476353 0.825068i
\(95\) 18.5118 + 82.6865i 0.194861 + 0.870385i
\(96\) 16.6458 + 3.30426i 0.173393 + 0.0344194i
\(97\) 81.7792 81.7792i 0.843085 0.843085i −0.146174 0.989259i \(-0.546696\pi\)
0.989259 + 0.146174i \(0.0466960\pi\)
\(98\) −47.7010 50.2654i −0.486745 0.512913i
\(99\) −43.3218 + 33.2960i −0.437594 + 0.336323i
\(100\) 21.3194 + 45.2270i 0.213194 + 0.452270i
\(101\) −12.5884 21.8038i −0.124638 0.215879i 0.796953 0.604041i \(-0.206444\pi\)
−0.921591 + 0.388162i \(0.873110\pi\)
\(102\) 108.403 7.14781i 1.06278 0.0700766i
\(103\) −141.274 + 37.8541i −1.37159 + 0.367516i −0.868058 0.496462i \(-0.834632\pi\)
−0.503529 + 0.863978i \(0.667965\pi\)
\(104\) 19.8258i 0.190633i
\(105\) 51.4778 91.5152i 0.490265 0.871573i
\(106\) 2.49337 0.0235224
\(107\) −21.2168 79.1821i −0.198288 0.740020i −0.991391 0.130933i \(-0.958203\pi\)
0.793104 0.609087i \(-0.208464\pi\)
\(108\) 40.5574 35.6524i 0.375532 0.330115i
\(109\) 14.2005 8.19866i 0.130280 0.0752171i −0.433444 0.901181i \(-0.642702\pi\)
0.563723 + 0.825964i \(0.309368\pi\)
\(110\) −42.8913 1.78322i −0.389920 0.0162111i
\(111\) −136.122 + 46.2667i −1.22632 + 0.416817i
\(112\) 7.60021 26.9488i 0.0678590 0.240614i
\(113\) −115.892 115.892i −1.02560 1.02560i −0.999664 0.0259326i \(-0.991744\pi\)
−0.0259326 0.999664i \(-0.508256\pi\)
\(114\) 70.5227 + 13.9991i 0.618620 + 0.122799i
\(115\) −77.0654 + 121.526i −0.670134 + 1.05675i
\(116\) −51.5534 + 29.7644i −0.444426 + 0.256589i
\(117\) −50.0792 38.3647i −0.428027 0.327904i
\(118\) 83.8866 + 83.8866i 0.710903 + 0.710903i
\(119\) 2.34542 179.229i 0.0197094 1.50613i
\(120\) 42.4139 1.03046i 0.353449 0.00858715i
\(121\) −42.0716 + 72.8702i −0.347699 + 0.602233i
\(122\) −7.61860 + 28.4330i −0.0624475 + 0.233057i
\(123\) −8.95980 + 0.590786i −0.0728439 + 0.00480314i
\(124\) 42.2346 73.1525i 0.340602 0.589939i
\(125\) 76.7130 + 98.6920i 0.613704 + 0.789536i
\(126\) −53.3643 71.3460i −0.423526 0.566238i
\(127\) 30.6273 + 30.6273i 0.241160 + 0.241160i 0.817330 0.576170i \(-0.195453\pi\)
−0.576170 + 0.817330i \(0.695453\pi\)
\(128\) 10.9282 2.92820i 0.0853766 0.0228766i
\(129\) −62.1516 + 70.9264i −0.481795 + 0.549817i
\(130\) −10.8285 48.3673i −0.0832958 0.372056i
\(131\) 55.8066 96.6599i 0.426005 0.737862i −0.570509 0.821291i \(-0.693254\pi\)
0.996514 + 0.0834295i \(0.0265873\pi\)
\(132\) −16.0979 + 32.6757i −0.121954 + 0.247543i
\(133\) 32.1996 114.173i 0.242102 0.858444i
\(134\) 47.0814 0.351354
\(135\) 79.4717 109.130i 0.588679 0.808367i
\(136\) 62.7225 36.2128i 0.461195 0.266271i
\(137\) −130.347 34.9263i −0.951435 0.254936i −0.250464 0.968126i \(-0.580583\pi\)
−0.700971 + 0.713190i \(0.747250\pi\)
\(138\) 67.8775 + 101.500i 0.491866 + 0.735504i
\(139\) −94.2009 −0.677704 −0.338852 0.940840i \(-0.610039\pi\)
−0.338852 + 0.940840i \(0.610039\pi\)
\(140\) 3.82268 69.8955i 0.0273049 0.499254i
\(141\) −179.868 + 61.1355i −1.27566 + 0.433585i
\(142\) −14.4900 + 3.88259i −0.102042 + 0.0273422i
\(143\) 41.1045 + 11.0139i 0.287444 + 0.0770204i
\(144\) 13.7505 33.2705i 0.0954897 0.231045i
\(145\) −109.513 + 100.771i −0.755265 + 0.694971i
\(146\) −138.432 −0.948164
\(147\) −124.290 + 78.4912i −0.845514 + 0.533954i
\(148\) −67.7737 + 67.7737i −0.457930 + 0.457930i
\(149\) 100.290 173.707i 0.673085 1.16582i −0.303939 0.952691i \(-0.598302\pi\)
0.977025 0.213126i \(-0.0683646\pi\)
\(150\) 102.910 25.6795i 0.686070 0.171197i
\(151\) 132.934 + 230.249i 0.880361 + 1.52483i 0.850940 + 0.525263i \(0.176033\pi\)
0.0294207 + 0.999567i \(0.490634\pi\)
\(152\) 46.2992 12.4058i 0.304600 0.0816173i
\(153\) 29.9014 228.509i 0.195434 1.49352i
\(154\) 51.6501 + 30.7283i 0.335391 + 0.199534i
\(155\) 63.0815 201.531i 0.406978 1.30020i
\(156\) −41.2521 8.18873i −0.264436 0.0524919i
\(157\) 17.9129 + 4.79975i 0.114095 + 0.0305717i 0.315415 0.948954i \(-0.397856\pi\)
−0.201320 + 0.979526i \(0.564523\pi\)
\(158\) −31.5612 + 117.788i −0.199755 + 0.745494i
\(159\) 1.02985 5.18802i 0.00647702 0.0326291i
\(160\) 25.0612 13.1124i 0.156633 0.0819526i
\(161\) 175.775 98.4395i 1.09177 0.611426i
\(162\) −57.4312 99.1144i −0.354514 0.611817i
\(163\) 21.6717 + 80.8800i 0.132955 + 0.496196i 0.999998 0.00203783i \(-0.000648661\pi\)
−0.867043 + 0.498234i \(0.833982\pi\)
\(164\) −5.18418 + 2.99309i −0.0316108 + 0.0182505i
\(165\) −21.4259 + 88.5082i −0.129854 + 0.536414i
\(166\) 81.5768 + 47.0984i 0.491427 + 0.283725i
\(167\) −146.343 146.343i −0.876304 0.876304i 0.116846 0.993150i \(-0.462722\pi\)
−0.993150 + 0.116846i \(0.962722\pi\)
\(168\) −52.9338 26.9447i −0.315082 0.160385i
\(169\) 119.867i 0.709272i
\(170\) 133.240 122.603i 0.783762 0.721193i
\(171\) 58.2564 140.956i 0.340681 0.824304i
\(172\) −16.2719 + 60.7275i −0.0946040 + 0.353067i
\(173\) 64.1188 + 239.295i 0.370629 + 1.38321i 0.859627 + 0.510922i \(0.170696\pi\)
−0.488998 + 0.872285i \(0.662638\pi\)
\(174\) 40.6381 + 119.562i 0.233552 + 0.687138i
\(175\) −28.8496 172.606i −0.164855 0.986318i
\(176\) 24.2839i 0.137977i
\(177\) 209.193 139.897i 1.18188 0.790377i
\(178\) 58.6044 218.715i 0.329238 1.22873i
\(179\) 20.0007 + 34.6423i 0.111736 + 0.193532i 0.916470 0.400103i \(-0.131026\pi\)
−0.804734 + 0.593635i \(0.797692\pi\)
\(180\) 15.3742 88.6771i 0.0854125 0.492651i
\(181\) 210.145i 1.16102i −0.814253 0.580510i \(-0.802853\pi\)
0.814253 0.580510i \(-0.197147\pi\)
\(182\) −18.8351 + 66.7853i −0.103489 + 0.366952i
\(183\) 56.0144 + 27.5959i 0.306090 + 0.150798i
\(184\) 70.4971 + 40.7015i 0.383136 + 0.221204i
\(185\) −128.325 + 202.358i −0.693647 + 1.09383i
\(186\) −134.766 118.093i −0.724546 0.634908i
\(187\) 40.2349 + 150.159i 0.215160 + 0.802987i
\(188\) −89.5544 + 89.5544i −0.476353 + 0.476353i
\(189\) −170.492 + 81.5680i −0.902076 + 0.431577i
\(190\) 106.176 55.5530i 0.558822 0.292384i
\(191\) 161.722 + 93.3702i 0.846712 + 0.488849i 0.859540 0.511068i \(-0.170750\pi\)
−0.0128282 + 0.999918i \(0.504083\pi\)
\(192\) −1.57907 23.9480i −0.00822431 0.124729i
\(193\) 169.098 + 45.3096i 0.876155 + 0.234765i 0.668747 0.743490i \(-0.266831\pi\)
0.207407 + 0.978255i \(0.433497\pi\)
\(194\) −141.646 81.7792i −0.730133 0.421542i
\(195\) −105.111 + 2.55371i −0.539033 + 0.0130960i
\(196\) −51.2041 + 83.5592i −0.261245 + 0.426322i
\(197\) −32.6753 + 32.6753i −0.165865 + 0.165865i −0.785159 0.619294i \(-0.787419\pi\)
0.619294 + 0.785159i \(0.287419\pi\)
\(198\) 61.3400 + 46.9915i 0.309798 + 0.237331i
\(199\) −19.7740 34.2496i −0.0993670 0.172109i 0.812056 0.583580i \(-0.198348\pi\)
−0.911423 + 0.411471i \(0.865015\pi\)
\(200\) 53.9778 45.6771i 0.269889 0.228385i
\(201\) 19.4462 97.9633i 0.0967472 0.487380i
\(202\) −25.1768 + 25.1768i −0.124638 + 0.124638i
\(203\) 201.940 51.2871i 0.994776 0.252646i
\(204\) −49.4424 145.465i −0.242365 0.713064i
\(205\) −11.0126 + 10.1334i −0.0537200 + 0.0494315i
\(206\) 103.419 + 179.128i 0.502036 + 0.869552i
\(207\) 239.228 99.3114i 1.15569 0.479765i
\(208\) −27.0826 + 7.25676i −0.130205 + 0.0348883i
\(209\) 102.883i 0.492263i
\(210\) −143.854 36.8231i −0.685020 0.175348i
\(211\) −145.662 −0.690341 −0.345170 0.938540i \(-0.612179\pi\)
−0.345170 + 0.938540i \(0.612179\pi\)
\(212\) −0.912638 3.40601i −0.00430490 0.0160661i
\(213\) 2.09373 + 31.7533i 0.00982972 + 0.149077i
\(214\) −100.399 + 57.9653i −0.469154 + 0.270866i
\(215\) −6.52896 + 157.039i −0.0303672 + 0.730413i
\(216\) −63.5472 42.3528i −0.294200 0.196078i
\(217\) −211.768 + 206.297i −0.975890 + 0.950679i
\(218\) −16.3973 16.3973i −0.0752171 0.0752171i
\(219\) −57.1770 + 288.038i −0.261082 + 1.31524i
\(220\) 13.2634 + 59.2432i 0.0602880 + 0.269287i
\(221\) −155.441 + 89.7438i −0.703352 + 0.406080i
\(222\) 113.025 + 169.011i 0.509124 + 0.761311i
\(223\) 202.781 + 202.781i 0.909331 + 0.909331i 0.996218 0.0868873i \(-0.0276920\pi\)
−0.0868873 + 0.996218i \(0.527692\pi\)
\(224\) −39.5946 0.518140i −0.176762 0.00231313i
\(225\) −10.9264 224.735i −0.0485619 0.998820i
\(226\) −115.892 + 200.731i −0.512798 + 0.888192i
\(227\) 14.8179 55.3013i 0.0652773 0.243618i −0.925576 0.378562i \(-0.876419\pi\)
0.990853 + 0.134944i \(0.0430854\pi\)
\(228\) −6.68999 101.460i −0.0293421 0.444999i
\(229\) −33.1909 + 57.4883i −0.144938 + 0.251041i −0.929350 0.369200i \(-0.879632\pi\)
0.784412 + 0.620241i \(0.212965\pi\)
\(230\) 194.216 + 60.7917i 0.844416 + 0.264312i
\(231\) 85.2702 94.7778i 0.369135 0.410293i
\(232\) 59.5287 + 59.5287i 0.256589 + 0.256589i
\(233\) −345.921 + 92.6893i −1.48464 + 0.397808i −0.907924 0.419135i \(-0.862333\pi\)
−0.576717 + 0.816944i \(0.695667\pi\)
\(234\) −34.0769 + 82.4519i −0.145628 + 0.352359i
\(235\) −169.565 + 267.390i −0.721553 + 1.13783i
\(236\) 83.8866 145.296i 0.355452 0.615660i
\(237\) 232.049 + 114.321i 0.979108 + 0.482365i
\(238\) −245.690 + 62.3985i −1.03231 + 0.262178i
\(239\) 97.3879 0.407481 0.203740 0.979025i \(-0.434690\pi\)
0.203740 + 0.979025i \(0.434690\pi\)
\(240\) −16.9322 57.5613i −0.0705508 0.239839i
\(241\) 44.6777 25.7947i 0.185385 0.107032i −0.404436 0.914567i \(-0.632532\pi\)
0.589820 + 0.807535i \(0.299199\pi\)
\(242\) 114.942 + 30.7986i 0.474966 + 0.127267i
\(243\) −229.950 + 78.5609i −0.946298 + 0.323296i
\(244\) 41.6288 0.170610
\(245\) −79.2797 + 231.818i −0.323591 + 0.946197i
\(246\) 4.08654 + 12.0231i 0.0166120 + 0.0488743i
\(247\) −114.740 + 30.7445i −0.464535 + 0.124472i
\(248\) −115.387 30.9179i −0.465270 0.124669i
\(249\) 131.693 150.285i 0.528886 0.603556i
\(250\) 106.737 140.916i 0.426948 0.563663i
\(251\) 328.831 1.31009 0.655043 0.755592i \(-0.272651\pi\)
0.655043 + 0.755592i \(0.272651\pi\)
\(252\) −77.9277 + 99.0114i −0.309237 + 0.392903i
\(253\) −123.549 + 123.549i −0.488336 + 0.488336i
\(254\) 30.6273 53.0481i 0.120580 0.208851i
\(255\) −200.070 327.873i −0.784588 1.28578i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 27.0223 7.24061i 0.105145 0.0281736i −0.205863 0.978581i \(-0.566000\pi\)
0.311008 + 0.950407i \(0.399333\pi\)
\(258\) 119.636 + 58.9398i 0.463706 + 0.228449i
\(259\) 292.689 163.916i 1.13007 0.632879i
\(260\) −62.1075 + 32.4956i −0.238875 + 0.124983i
\(261\) 265.560 35.1736i 1.01747 0.134765i
\(262\) −152.467 40.8533i −0.581933 0.155929i
\(263\) 15.6660 58.4662i 0.0595664 0.222305i −0.929726 0.368252i \(-0.879956\pi\)
0.989292 + 0.145947i \(0.0466230\pi\)
\(264\) 50.5281 + 10.0301i 0.191394 + 0.0379927i
\(265\) −4.08677 7.81087i −0.0154218 0.0294750i
\(266\) −167.749 2.19519i −0.630636 0.00825260i
\(267\) −430.879 212.276i −1.61378 0.795041i
\(268\) −17.2330 64.3144i −0.0643022 0.239979i
\(269\) −223.312 + 128.929i −0.830154 + 0.479290i −0.853906 0.520428i \(-0.825772\pi\)
0.0237511 + 0.999718i \(0.492439\pi\)
\(270\) −178.162 68.6161i −0.659861 0.254134i
\(271\) 163.182 + 94.2131i 0.602147 + 0.347650i 0.769886 0.638182i \(-0.220313\pi\)
−0.167739 + 0.985831i \(0.553647\pi\)
\(272\) −72.4257 72.4257i −0.266271 0.266271i
\(273\) 131.182 + 66.7751i 0.480521 + 0.244597i
\(274\) 190.841i 0.696499i
\(275\) 64.7148 + 137.286i 0.235327 + 0.499222i
\(276\) 113.806 129.874i 0.412341 0.470557i
\(277\) 70.2296 262.100i 0.253536 0.946211i −0.715362 0.698754i \(-0.753738\pi\)
0.968899 0.247457i \(-0.0795949\pi\)
\(278\) 34.4799 + 128.681i 0.124029 + 0.462881i
\(279\) −301.381 + 231.634i −1.08022 + 0.830228i
\(280\) −96.8783 + 20.3617i −0.345994 + 0.0727202i
\(281\) 265.329i 0.944230i 0.881537 + 0.472115i \(0.156509\pi\)
−0.881537 + 0.472115i \(0.843491\pi\)
\(282\) 149.349 + 223.327i 0.529606 + 0.791939i
\(283\) −107.646 + 401.740i −0.380374 + 1.41958i 0.464956 + 0.885334i \(0.346070\pi\)
−0.845331 + 0.534243i \(0.820597\pi\)
\(284\) 10.6074 + 18.3726i 0.0373501 + 0.0646923i
\(285\) −71.7361 243.868i −0.251706 0.855678i
\(286\) 60.1812i 0.210424i
\(287\) 20.3069 5.15740i 0.0707558 0.0179700i
\(288\) −50.4813 6.60571i −0.175282 0.0229365i
\(289\) −317.558 183.342i −1.09882 0.634402i
\(290\) 177.740 + 112.713i 0.612897 + 0.388667i
\(291\) −228.664 + 260.948i −0.785788 + 0.896728i
\(292\) 50.6696 + 189.102i 0.173526 + 0.647608i
\(293\) 15.6606 15.6606i 0.0534491 0.0534491i −0.679877 0.733326i \(-0.737967\pi\)
0.733326 + 0.679877i \(0.237967\pi\)
\(294\) 152.714 + 141.054i 0.519437 + 0.479776i
\(295\) 125.293 400.282i 0.424722 1.35689i
\(296\) 117.387 + 67.7737i 0.396579 + 0.228965i
\(297\) 123.112 108.223i 0.414517 0.364386i
\(298\) −273.997 73.4172i −0.919452 0.246366i
\(299\) −174.708 100.868i −0.584308 0.337350i
\(300\) −72.7467 131.179i −0.242489 0.437263i
\(301\) 112.506 189.108i 0.373775 0.628265i
\(302\) 265.869 265.869i 0.880361 0.880361i
\(303\) 41.9871 + 62.7849i 0.138571 + 0.207211i
\(304\) −33.8934 58.7050i −0.111491 0.193109i
\(305\) 101.558 22.7368i 0.332977 0.0745467i
\(306\) −323.094 + 42.7939i −1.05586 + 0.139849i
\(307\) 222.516 222.516i 0.724809 0.724809i −0.244772 0.969581i \(-0.578713\pi\)
0.969581 + 0.244772i \(0.0787129\pi\)
\(308\) 23.0704 81.8027i 0.0749038 0.265593i
\(309\) 415.431 141.201i 1.34444 0.456962i
\(310\) −298.386 12.4055i −0.962535 0.0400178i
\(311\) 92.6420 + 160.461i 0.297884 + 0.515951i 0.975652 0.219326i \(-0.0703857\pi\)
−0.677767 + 0.735276i \(0.737052\pi\)
\(312\) 3.91329 + 59.3487i 0.0125426 + 0.190220i
\(313\) 87.4513 23.4325i 0.279397 0.0748642i −0.116399 0.993202i \(-0.537135\pi\)
0.395796 + 0.918338i \(0.370469\pi\)
\(314\) 26.2263i 0.0835234i
\(315\) −136.035 + 284.112i −0.431858 + 0.901942i
\(316\) 172.454 0.545740
\(317\) −120.835 450.963i −0.381183 1.42260i −0.844096 0.536192i \(-0.819862\pi\)
0.462913 0.886404i \(-0.346804\pi\)
\(318\) −7.46392 + 0.492151i −0.0234714 + 0.00154764i
\(319\) −156.490 + 90.3494i −0.490564 + 0.283227i
\(320\) −27.0849 29.4348i −0.0846404 0.0919837i
\(321\) 79.1417 + 232.844i 0.246547 + 0.725370i
\(322\) −198.809 204.081i −0.617419 0.633792i
\(323\) −306.844 306.844i −0.949980 0.949980i
\(324\) −114.371 + 114.731i −0.352998 + 0.354108i
\(325\) −133.770 + 113.198i −0.411599 + 0.348303i
\(326\) 102.552 59.2083i 0.314576 0.181620i
\(327\) −40.8909 + 27.3456i −0.125049 + 0.0836258i
\(328\) 5.98617 + 5.98617i 0.0182505 + 0.0182505i
\(329\) 386.752 216.594i 1.17554 0.658339i
\(330\) 128.747 3.12794i 0.390142 0.00947862i
\(331\) 184.281 319.184i 0.556740 0.964302i −0.441026 0.897494i \(-0.645385\pi\)
0.997766 0.0668078i \(-0.0212814\pi\)
\(332\) 34.4784 128.675i 0.103851 0.387576i
\(333\) 398.348 165.367i 1.19624 0.496599i
\(334\) −146.343 + 253.473i −0.438152 + 0.758902i
\(335\) −77.1689 147.490i −0.230355 0.440268i
\(336\) −17.4320 + 82.1713i −0.0518809 + 0.244558i
\(337\) 424.870 + 424.870i 1.26074 + 1.26074i 0.950734 + 0.310009i \(0.100332\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(338\) −163.741 + 43.8744i −0.484442 + 0.129806i
\(339\) 369.799 + 324.049i 1.09085 + 0.955895i
\(340\) −216.248 137.133i −0.636022 0.403332i
\(341\) 128.203 222.054i 0.375961 0.651183i
\(342\) −213.873 27.9862i −0.625359 0.0818311i
\(343\) 251.869 232.832i 0.734313 0.678811i
\(344\) 88.9113 0.258463
\(345\) 206.708 379.000i 0.599154 1.09855i
\(346\) 303.413 175.176i 0.876918 0.506289i
\(347\) 58.1423 + 15.5792i 0.167557 + 0.0448968i 0.341622 0.939837i \(-0.389024\pi\)
−0.174065 + 0.984734i \(0.555690\pi\)
\(348\) 148.450 99.2754i 0.426581 0.285274i
\(349\) 544.766 1.56093 0.780467 0.625197i \(-0.214981\pi\)
0.780467 + 0.625197i \(0.214981\pi\)
\(350\) −225.224 + 102.587i −0.643497 + 0.293107i
\(351\) 157.485 + 104.960i 0.448674 + 0.299031i
\(352\) 33.1724 8.88853i 0.0942399 0.0252515i
\(353\) −300.336 80.4748i −0.850811 0.227974i −0.193039 0.981191i \(-0.561834\pi\)
−0.657772 + 0.753217i \(0.728501\pi\)
\(354\) −267.672 234.557i −0.756136 0.662589i
\(355\) 35.9127 + 39.0284i 0.101163 + 0.109939i
\(356\) −320.221 −0.899496
\(357\) 28.3558 + 536.985i 0.0794281 + 1.50416i
\(358\) 40.0014 40.0014i 0.111736 0.111736i
\(359\) −184.699 + 319.907i −0.514481 + 0.891106i 0.485378 + 0.874304i \(0.338682\pi\)
−0.999859 + 0.0168022i \(0.994651\pi\)
\(360\) −126.763 + 11.4565i −0.352118 + 0.0318235i
\(361\) 36.9050 + 63.9213i 0.102230 + 0.177067i
\(362\) −287.063 + 76.9183i −0.792992 + 0.212482i
\(363\) 111.558 226.441i 0.307322 0.623804i
\(364\) 98.1245 + 1.28407i 0.269573 + 0.00352767i
\(365\) 226.897 + 433.659i 0.621636 + 1.18811i
\(366\) 17.1941 86.6179i 0.0469783 0.236661i
\(367\) −599.740 160.700i −1.63417 0.437874i −0.679049 0.734093i \(-0.737608\pi\)
−0.955120 + 0.296218i \(0.904274\pi\)
\(368\) 29.7956 111.199i 0.0809662 0.302170i
\(369\) 26.7046 3.53703i 0.0723701 0.00958546i
\(370\) 323.396 + 101.227i 0.874043 + 0.273586i
\(371\) −0.161490 + 12.3405i −0.000435282 + 0.0332629i
\(372\) −111.990 + 227.318i −0.301049 + 0.611071i
\(373\) 37.2257 + 138.928i 0.0998008 + 0.372462i 0.997704 0.0677323i \(-0.0215764\pi\)
−0.897903 + 0.440194i \(0.854910\pi\)
\(374\) 190.393 109.924i 0.509073 0.293914i
\(375\) −249.121 280.293i −0.664321 0.747447i
\(376\) 155.113 + 89.5544i 0.412534 + 0.238177i
\(377\) −147.526 147.526i −0.391315 0.391315i
\(378\) 173.829 + 203.041i 0.459864 + 0.537145i
\(379\) 743.787i 1.96250i 0.192741 + 0.981250i \(0.438262\pi\)
−0.192741 + 0.981250i \(0.561738\pi\)
\(380\) −114.750 124.705i −0.301974 0.328172i
\(381\) −97.7282 85.6375i −0.256504 0.224770i
\(382\) 68.3517 255.092i 0.178931 0.667781i
\(383\) −47.5416 177.428i −0.124130 0.463258i 0.875678 0.482896i \(-0.160415\pi\)
−0.999807 + 0.0196383i \(0.993749\pi\)
\(384\) −32.1356 + 10.9226i −0.0836864 + 0.0284443i
\(385\) 11.6037 212.167i 0.0301395 0.551084i
\(386\) 247.576i 0.641390i
\(387\) 172.051 224.586i 0.444576 0.580325i
\(388\) −59.8665 + 223.425i −0.154295 + 0.575838i
\(389\) −216.669 375.281i −0.556989 0.964734i −0.997746 0.0671069i \(-0.978623\pi\)
0.440757 0.897627i \(-0.354710\pi\)
\(390\) 41.9619 + 142.650i 0.107595 + 0.365770i
\(391\) 736.958i 1.88480i
\(392\) 132.886 + 39.3613i 0.338995 + 0.100411i
\(393\) −147.978 + 300.367i −0.376534 + 0.764292i
\(394\) 56.5953 + 32.6753i 0.143643 + 0.0829323i
\(395\) 420.720 94.1906i 1.06511 0.238457i
\(396\) 41.7395 100.992i 0.105403 0.255031i
\(397\) −97.8793 365.291i −0.246547 0.920128i −0.972599 0.232488i \(-0.925313\pi\)
0.726052 0.687640i \(-0.241353\pi\)
\(398\) −39.5481 + 39.5481i −0.0993670 + 0.0993670i
\(399\) −73.8536 + 348.133i −0.185097 + 0.872513i
\(400\) −82.1533 57.0161i −0.205383 0.142540i
\(401\) −144.925 83.6723i −0.361408 0.208659i 0.308290 0.951292i \(-0.400243\pi\)
−0.669698 + 0.742633i \(0.733577\pi\)
\(402\) −140.938 + 9.29309i −0.350593 + 0.0231171i
\(403\) 285.956 + 76.6216i 0.709568 + 0.190128i
\(404\) 43.6076 + 25.1768i 0.107940 + 0.0623189i
\(405\) −216.358 + 342.366i −0.534217 + 0.845347i
\(406\) −143.974 257.082i −0.354617 0.633207i
\(407\) −205.726 + 205.726i −0.505470 + 0.505470i
\(408\) −180.612 + 120.783i −0.442676 + 0.296038i
\(409\) 282.764 + 489.761i 0.691353 + 1.19746i 0.971395 + 0.237471i \(0.0763185\pi\)
−0.280041 + 0.959988i \(0.590348\pi\)
\(410\) 17.8734 + 11.3344i 0.0435938 + 0.0276449i
\(411\) 397.086 + 78.8235i 0.966147 + 0.191785i
\(412\) 206.839 206.839i 0.502036 0.502036i
\(413\) −420.615 + 409.749i −1.01844 + 0.992127i
\(414\) −223.225 290.441i −0.539192 0.701549i
\(415\) 13.8342 332.748i 0.0333353 0.801803i
\(416\) 19.8258 + 34.3394i 0.0476583 + 0.0825466i
\(417\) 281.990 18.5937i 0.676236 0.0445892i
\(418\) 140.541 37.6578i 0.336222 0.0900904i
\(419\) 431.753i 1.03044i −0.857059 0.515218i \(-0.827711\pi\)
0.857059 0.515218i \(-0.172289\pi\)
\(420\) 2.35302 + 209.987i 0.00560244 + 0.499969i
\(421\) −408.628 −0.970613 −0.485307 0.874344i \(-0.661292\pi\)
−0.485307 + 0.874344i \(0.661292\pi\)
\(422\) 53.3160 + 198.978i 0.126341 + 0.471512i
\(423\) 526.367 218.512i 1.24437 0.516577i
\(424\) −4.31865 + 2.49337i −0.0101855 + 0.00588060i
\(425\) −602.458 216.441i −1.41755 0.509272i
\(426\) 42.6095 14.4826i 0.100022 0.0339968i
\(427\) −140.231 39.5484i −0.328409 0.0926193i
\(428\) 115.931 + 115.931i 0.270866 + 0.270866i
\(429\) −125.220 24.8568i −0.291889 0.0579413i
\(430\) 216.909 48.5614i 0.504439 0.112934i
\(431\) −282.743 + 163.241i −0.656015 + 0.378751i −0.790757 0.612130i \(-0.790313\pi\)
0.134742 + 0.990881i \(0.456980\pi\)
\(432\) −34.5951 + 102.309i −0.0800813 + 0.236827i
\(433\) −135.145 135.145i −0.312114 0.312114i 0.533614 0.845728i \(-0.320833\pi\)
−0.845728 + 0.533614i \(0.820833\pi\)
\(434\) 359.320 + 213.771i 0.827926 + 0.492559i
\(435\) 307.938 323.273i 0.707903 0.743157i
\(436\) −16.3973 + 28.4010i −0.0376085 + 0.0651399i
\(437\) 126.234 471.112i 0.288865 1.07806i
\(438\) 414.396 27.3242i 0.946109 0.0623839i
\(439\) 308.876 534.989i 0.703590 1.21865i −0.263608 0.964630i \(-0.584913\pi\)
0.967198 0.254023i \(-0.0817540\pi\)
\(440\) 76.0731 39.8026i 0.172893 0.0904605i
\(441\) 356.571 259.496i 0.808550 0.588427i
\(442\) 179.488 + 179.488i 0.406080 + 0.406080i
\(443\) −370.322 + 99.2276i −0.835942 + 0.223990i −0.651304 0.758817i \(-0.725778\pi\)
−0.184638 + 0.982807i \(0.559111\pi\)
\(444\) 189.503 216.258i 0.426809 0.487067i
\(445\) −781.213 + 174.898i −1.75553 + 0.393029i
\(446\) 202.781 351.227i 0.454665 0.787504i
\(447\) −265.930 + 539.787i −0.594922 + 1.20758i
\(448\) 13.7848 + 54.2769i 0.0307697 + 0.121154i
\(449\) 38.5058 0.0857590 0.0428795 0.999080i \(-0.486347\pi\)
0.0428795 + 0.999080i \(0.486347\pi\)
\(450\) −302.994 + 97.1843i −0.673319 + 0.215965i
\(451\) −15.7365 + 9.08548i −0.0348925 + 0.0201452i
\(452\) 316.624 + 84.8391i 0.700495 + 0.187697i
\(453\) −443.387 663.012i −0.978779 1.46360i
\(454\) −80.9667 −0.178341
\(455\) 240.087 50.4609i 0.527663 0.110903i
\(456\) −136.148 + 46.2755i −0.298570 + 0.101481i
\(457\) −617.544 + 165.470i −1.35130 + 0.362080i −0.860615 0.509257i \(-0.829920\pi\)
−0.490686 + 0.871337i \(0.663254\pi\)
\(458\) 90.6793 + 24.2974i 0.197990 + 0.0530512i
\(459\) −44.4061 + 689.943i −0.0967453 + 1.50314i
\(460\) 11.9552 287.555i 0.0259896 0.625119i
\(461\) −142.328 −0.308737 −0.154369 0.988013i \(-0.549334\pi\)
−0.154369 + 0.988013i \(0.549334\pi\)
\(462\) −160.680 81.7902i −0.347792 0.177035i
\(463\) 62.1843 62.1843i 0.134307 0.134307i −0.636757 0.771064i \(-0.719725\pi\)
0.771064 + 0.636757i \(0.219725\pi\)
\(464\) 59.5287 103.107i 0.128295 0.222213i
\(465\) −149.056 + 615.734i −0.320550 + 1.32416i
\(466\) 253.232 + 438.611i 0.543416 + 0.941225i
\(467\) −537.808 + 144.105i −1.15162 + 0.308577i −0.783616 0.621246i \(-0.786627\pi\)
−0.368008 + 0.929823i \(0.619960\pi\)
\(468\) 125.104 + 16.3705i 0.267317 + 0.0349797i
\(469\) −3.04935 + 233.021i −0.00650181 + 0.496847i
\(470\) 427.327 + 133.758i 0.909206 + 0.284592i
\(471\) −54.5697 10.8323i −0.115859 0.0229986i
\(472\) −229.182 61.4092i −0.485556 0.130104i
\(473\) −49.3932 + 184.338i −0.104425 + 0.389720i
\(474\) 71.2291 358.828i 0.150272 0.757022i
\(475\) −348.056 241.558i −0.732750 0.508544i
\(476\) 175.167 + 312.779i 0.367997 + 0.657099i
\(477\) −2.05881 + 15.7336i −0.00431617 + 0.0329845i
\(478\) −35.6464 133.034i −0.0745741 0.278314i
\(479\) −32.8860 + 18.9867i −0.0686554 + 0.0396382i −0.533935 0.845526i \(-0.679287\pi\)
0.465279 + 0.885164i \(0.345954\pi\)
\(480\) −72.4326 + 44.1987i −0.150901 + 0.0920806i
\(481\) −290.913 167.959i −0.604809 0.349187i
\(482\) −51.5893 51.5893i −0.107032 0.107032i
\(483\) −506.751 + 329.374i −1.04917 + 0.681933i
\(484\) 168.286i 0.347699i
\(485\) −24.0209 + 577.767i −0.0495277 + 1.19127i
\(486\) 191.484 + 285.363i 0.394000 + 0.587166i
\(487\) 125.758 469.334i 0.258230 0.963726i −0.708036 0.706177i \(-0.750418\pi\)
0.966265 0.257549i \(-0.0829149\pi\)
\(488\) −15.2372 56.8660i −0.0312238 0.116529i
\(489\) −80.8387 237.837i −0.165314 0.486373i
\(490\) 345.688 + 23.4467i 0.705486 + 0.0478503i
\(491\) 170.670i 0.347596i 0.984781 + 0.173798i \(0.0556040\pi\)
−0.984781 + 0.173798i \(0.944396\pi\)
\(492\) 14.9281 9.98307i 0.0303416 0.0202908i
\(493\) 197.261 736.186i 0.400123 1.49328i
\(494\) 83.9956 + 145.485i 0.170032 + 0.294503i
\(495\) 46.6684 269.178i 0.0942795 0.543795i
\(496\) 168.938i 0.340602i
\(497\) −18.2777 71.9673i −0.0367761 0.144803i
\(498\) −253.497 124.887i −0.509029 0.250777i
\(499\) −7.72541 4.46027i −0.0154818 0.00893841i 0.492239 0.870460i \(-0.336179\pi\)
−0.507721 + 0.861522i \(0.669512\pi\)
\(500\) −231.563 94.2266i −0.463126 0.188453i
\(501\) 466.963 + 409.191i 0.932061 + 0.816749i
\(502\) −120.361 449.192i −0.239762 0.894805i
\(503\) 256.753 256.753i 0.510443 0.510443i −0.404219 0.914662i \(-0.632457\pi\)
0.914662 + 0.404219i \(0.132457\pi\)
\(504\) 163.776 + 70.2106i 0.324952 + 0.139307i
\(505\) 120.136 + 37.6041i 0.237894 + 0.0744636i
\(506\) 213.993 + 123.549i 0.422911 + 0.244168i
\(507\) 23.6598 + 358.822i 0.0466662 + 0.707735i
\(508\) −83.6754 22.4208i −0.164715 0.0441353i
\(509\) 460.998 + 266.157i 0.905693 + 0.522902i 0.879043 0.476743i \(-0.158183\pi\)
0.0266499 + 0.999645i \(0.491516\pi\)
\(510\) −374.653 + 393.311i −0.734613 + 0.771197i
\(511\) 8.96590 685.144i 0.0175458 1.34079i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −146.568 + 433.451i −0.285708 + 0.844933i
\(514\) −19.7817 34.2630i −0.0384859 0.0666594i
\(515\) 391.635 617.577i 0.760456 1.19918i
\(516\) 36.7233 185.000i 0.0711692 0.358526i
\(517\) −271.841 + 271.841i −0.525805 + 0.525805i
\(518\) −331.044 339.824i −0.639082 0.656030i
\(519\) −239.172 703.673i −0.460833 1.35582i
\(520\) 67.1227 + 72.9462i 0.129082 + 0.140281i
\(521\) 241.082 + 417.566i 0.462730 + 0.801471i 0.999096 0.0425142i \(-0.0135368\pi\)
−0.536366 + 0.843985i \(0.680203\pi\)
\(522\) −145.250 349.887i −0.278256 0.670282i
\(523\) −888.960 + 238.196i −1.69973 + 0.455442i −0.972872 0.231344i \(-0.925688\pi\)
−0.726860 + 0.686786i \(0.759021\pi\)
\(524\) 223.227i 0.426005i
\(525\) 120.431 + 511.000i 0.229392 + 0.973334i
\(526\) −85.6004 −0.162738
\(527\) 279.906 + 1044.62i 0.531131 + 1.98221i
\(528\) −4.79324 72.6939i −0.00907811 0.137678i
\(529\) 259.207 149.653i 0.489994 0.282898i
\(530\) −9.17399 + 8.44161i −0.0173094 + 0.0159276i
\(531\) −598.604 + 460.072i −1.12732 + 0.866425i
\(532\) 58.4018 + 229.953i 0.109778 + 0.432243i
\(533\) −14.8351 14.8351i −0.0278333 0.0278333i
\(534\) −132.262 + 666.290i −0.247681 + 1.24773i
\(535\) 346.144 + 219.507i 0.646999 + 0.410293i
\(536\) −81.5474 + 47.0814i −0.152141 + 0.0878385i
\(537\) −66.7099 99.7538i −0.124227 0.185761i
\(538\) 257.858 + 257.858i 0.479290 + 0.479290i
\(539\) −155.429 + 253.643i −0.288366 + 0.470581i
\(540\) −28.5194 + 268.490i −0.0528137 + 0.497203i
\(541\) −322.337 + 558.305i −0.595818 + 1.03199i 0.397613 + 0.917553i \(0.369839\pi\)
−0.993431 + 0.114433i \(0.963495\pi\)
\(542\) 68.9688 257.395i 0.127249 0.474898i
\(543\) 41.4791 + 629.068i 0.0763887 + 1.15850i
\(544\) −72.4257 + 125.445i −0.133135 + 0.230597i
\(545\) −24.4910 + 78.2432i −0.0449377 + 0.143565i
\(546\) 43.2005 203.640i 0.0791218 0.372966i
\(547\) 753.854 + 753.854i 1.37816 + 1.37816i 0.847725 + 0.530436i \(0.177972\pi\)
0.530436 + 0.847725i \(0.322028\pi\)
\(548\) 260.693 69.8525i 0.475718 0.127468i
\(549\) −173.126 71.5521i −0.315348 0.130332i
\(550\) 163.849 138.652i 0.297907 0.252095i
\(551\) 252.204 436.829i 0.457720 0.792794i
\(552\) −219.067 107.925i −0.396860 0.195516i
\(553\) −580.927 163.836i −1.05050 0.296267i
\(554\) −383.742 −0.692674
\(555\) 344.198 631.087i 0.620176 1.13709i
\(556\) 163.161 94.2009i 0.293455 0.169426i
\(557\) −17.3888 4.65931i −0.0312187 0.00836501i 0.243176 0.969982i \(-0.421811\pi\)
−0.274395 + 0.961617i \(0.588477\pi\)
\(558\) 426.730 + 326.910i 0.764750 + 0.585861i
\(559\) −220.343 −0.394173
\(560\) 63.2745 + 124.885i 0.112990 + 0.223009i
\(561\) −150.082 441.558i −0.267526 0.787090i
\(562\) 362.445 97.1170i 0.644921 0.172806i
\(563\) 793.429 + 212.599i 1.40929 + 0.377617i 0.881671 0.471865i \(-0.156419\pi\)
0.527617 + 0.849483i \(0.323086\pi\)
\(564\) 250.404 285.758i 0.443979 0.506662i
\(565\) 818.776 + 34.0410i 1.44916 + 0.0602495i
\(566\) 588.188 1.03920
\(567\) 494.269 277.826i 0.871726 0.489993i
\(568\) 21.2149 21.2149i 0.0373501 0.0373501i
\(569\) −306.103 + 530.186i −0.537967 + 0.931786i 0.461046 + 0.887376i \(0.347474\pi\)
−0.999013 + 0.0444103i \(0.985859\pi\)
\(570\) −306.873 + 187.255i −0.538373 + 0.328518i
\(571\) −39.0173 67.5799i −0.0683315 0.118354i 0.829835 0.558008i \(-0.188434\pi\)
−0.898167 + 0.439655i \(0.855101\pi\)
\(572\) −82.2090 + 22.0278i −0.143722 + 0.0385102i
\(573\) −502.544 247.582i −0.877041 0.432081i
\(574\) −14.4780 25.8520i −0.0252230 0.0450384i
\(575\) −127.890 708.051i −0.222418 1.23139i
\(576\) 9.45388 + 71.3766i 0.0164130 + 0.123918i
\(577\) −430.705 115.407i −0.746456 0.200012i −0.134510 0.990912i \(-0.542946\pi\)
−0.611946 + 0.790900i \(0.709613\pi\)
\(578\) −134.216 + 500.900i −0.232207 + 0.866609i
\(579\) −515.138 102.257i −0.889703 0.176610i
\(580\) 88.9120 284.053i 0.153297 0.489747i
\(581\) −238.389 + 400.700i −0.410308 + 0.689672i
\(582\) 440.158 + 216.848i 0.756286 + 0.372590i
\(583\) −2.77030 10.3389i −0.00475181 0.0177340i
\(584\) 239.771 138.432i 0.410567 0.237041i
\(585\) 314.147 28.3918i 0.537003 0.0485330i
\(586\) −27.1249 15.6606i −0.0462883 0.0267246i
\(587\) 774.944 + 774.944i 1.32018 + 1.32018i 0.913629 + 0.406549i \(0.133268\pi\)
0.406549 + 0.913629i \(0.366732\pi\)
\(588\) 136.786 260.241i 0.232630 0.442587i
\(589\) 715.736i 1.21517i
\(590\) −592.656 24.6399i −1.00450 0.0417626i
\(591\) 91.3640 104.263i 0.154592 0.176418i
\(592\) 49.6138 185.161i 0.0838071 0.312772i
\(593\) 44.2706 + 165.220i 0.0746554 + 0.278618i 0.993155 0.116804i \(-0.0372650\pi\)
−0.918500 + 0.395422i \(0.870598\pi\)
\(594\) −192.897 128.561i −0.324742 0.216433i
\(595\) 598.171 + 667.386i 1.00533 + 1.12166i
\(596\) 401.159i 0.673085i
\(597\) 65.9539 + 98.6232i 0.110476 + 0.165198i
\(598\) −73.8403 + 275.576i −0.123479 + 0.460829i
\(599\) −291.458 504.819i −0.486574 0.842770i 0.513307 0.858205i \(-0.328420\pi\)
−0.999881 + 0.0154348i \(0.995087\pi\)
\(600\) −152.567 + 147.389i −0.254278 + 0.245648i
\(601\) 831.971i 1.38431i 0.721749 + 0.692155i \(0.243339\pi\)
−0.721749 + 0.692155i \(0.756661\pi\)
\(602\) −299.506 84.4680i −0.497519 0.140312i
\(603\) −38.8758 + 297.092i −0.0644706 + 0.492689i
\(604\) −460.499 265.869i −0.762415 0.440180i
\(605\) −91.9145 410.553i −0.151925 0.678600i
\(606\) 70.3974 80.3364i 0.116167 0.132568i
\(607\) 181.199 + 676.244i 0.298516 + 1.11408i 0.938385 + 0.345592i \(0.112322\pi\)
−0.639869 + 0.768484i \(0.721012\pi\)
\(608\) −67.7867 + 67.7867i −0.111491 + 0.111491i
\(609\) −594.383 + 193.387i −0.975998 + 0.317549i
\(610\) −68.2318 130.408i −0.111855 0.213784i
\(611\) −384.405 221.936i −0.629141 0.363235i
\(612\) 176.718 + 425.691i 0.288755 + 0.695573i
\(613\) 960.706 + 257.420i 1.56722 + 0.419935i 0.934940 0.354805i \(-0.115453\pi\)
0.632279 + 0.774741i \(0.282120\pi\)
\(614\) −385.410 222.516i −0.627703 0.362405i
\(615\) 30.9661 32.5082i 0.0503513 0.0528588i
\(616\) −120.189 1.57281i −0.195112 0.00255326i
\(617\) −78.0872 + 78.0872i −0.126559 + 0.126559i −0.767549 0.640990i \(-0.778524\pi\)
0.640990 + 0.767549i \(0.278524\pi\)
\(618\) −344.943 515.805i −0.558160 0.834637i
\(619\) −232.594 402.865i −0.375758 0.650832i 0.614682 0.788775i \(-0.289284\pi\)
−0.990440 + 0.137943i \(0.955951\pi\)
\(620\) 92.2705 + 412.143i 0.148823 + 0.664747i
\(621\) −696.527 + 344.508i −1.12162 + 0.554764i
\(622\) 185.284 185.284i 0.297884 0.297884i
\(623\) 1078.69 + 304.218i 1.73145 + 0.488311i
\(624\) 79.6394 27.0688i 0.127627 0.0433795i
\(625\) −616.387 103.401i −0.986220 0.165442i
\(626\) −64.0188 110.884i −0.102266 0.177131i
\(627\) −20.3074 307.980i −0.0323882 0.491196i
\(628\) −35.8258 + 9.59950i −0.0570475 + 0.0152858i
\(629\) 1227.14i 1.95094i
\(630\) 437.896 + 81.8355i 0.695073 + 0.129898i
\(631\) −547.403 −0.867516 −0.433758 0.901029i \(-0.642813\pi\)
−0.433758 + 0.901029i \(0.642813\pi\)
\(632\) −63.1225 235.576i −0.0998773 0.372747i
\(633\) 436.039 28.7512i 0.688845 0.0454206i
\(634\) −571.798 + 330.128i −0.901890 + 0.520706i
\(635\) −216.381 8.99614i −0.340757 0.0141671i
\(636\) 3.40427 + 10.0158i 0.00535263 + 0.0157480i
\(637\) −329.322 97.5464i −0.516989 0.153134i
\(638\) 180.699 + 180.699i 0.283227 + 0.283227i
\(639\) −12.5352 94.6403i −0.0196168 0.148107i
\(640\) −30.2949 + 47.7726i −0.0473357 + 0.0746447i
\(641\) −504.465 + 291.253i −0.786996 + 0.454372i −0.838904 0.544279i \(-0.816803\pi\)
0.0519078 + 0.998652i \(0.483470\pi\)
\(642\) 289.103 193.336i 0.450316 0.301147i
\(643\) 111.140 + 111.140i 0.172847 + 0.172847i 0.788229 0.615382i \(-0.210998\pi\)
−0.615382 + 0.788229i \(0.710998\pi\)
\(644\) −206.011 + 346.277i −0.319893 + 0.537697i
\(645\) −11.4524 471.384i −0.0177557 0.730828i
\(646\) −306.844 + 531.469i −0.474990 + 0.822707i
\(647\) 185.427 692.021i 0.286594 1.06958i −0.661072 0.750322i \(-0.729898\pi\)
0.947666 0.319262i \(-0.103435\pi\)
\(648\) 198.588 + 114.240i 0.306463 + 0.176296i
\(649\) 254.637 441.044i 0.392353 0.679575i
\(650\) 203.595 + 141.299i 0.313223 + 0.217383i
\(651\) 593.208 659.350i 0.911226 1.01283i
\(652\) −118.417 118.417i −0.181620 0.181620i
\(653\) −359.084 + 96.2164i −0.549900 + 0.147345i −0.523062 0.852295i \(-0.675210\pi\)
−0.0268376 + 0.999640i \(0.508544\pi\)
\(654\) 52.3219 + 45.8488i 0.0800030 + 0.0701052i
\(655\) 121.922 + 544.585i 0.186140 + 0.831428i
\(656\) 5.98617 10.3684i 0.00912526 0.0158054i
\(657\) 114.305 873.528i 0.173981 1.32957i
\(658\) −437.433 449.034i −0.664792 0.682422i
\(659\) −287.718 −0.436598 −0.218299 0.975882i \(-0.570051\pi\)
−0.218299 + 0.975882i \(0.570051\pi\)
\(660\) −51.3975 174.727i −0.0778750 0.264737i
\(661\) 358.917 207.221i 0.542991 0.313496i −0.203299 0.979117i \(-0.565166\pi\)
0.746290 + 0.665621i \(0.231833\pi\)
\(662\) −503.465 134.903i −0.760521 0.203781i
\(663\) 447.598 299.329i 0.675110 0.451477i
\(664\) −188.394 −0.283725
\(665\) 268.073 + 529.098i 0.403117 + 0.795636i
\(666\) −371.702 483.625i −0.558111 0.726164i
\(667\) 827.439 221.712i 1.24054 0.332401i
\(668\) 399.816 + 107.130i 0.598527 + 0.160375i
\(669\) −647.050 566.999i −0.967189 0.847532i
\(670\) −173.229 + 159.400i −0.258551 + 0.237910i
\(671\) 126.364 0.188322
\(672\) 118.629 6.26426i 0.176531 0.00932182i
\(673\) 257.918 257.918i 0.383237 0.383237i −0.489030 0.872267i \(-0.662649\pi\)
0.872267 + 0.489030i \(0.162649\pi\)
\(674\) 424.870 735.897i 0.630371 1.09184i
\(675\) 77.0671 + 670.586i 0.114174 + 0.993461i
\(676\) 119.867 + 207.616i 0.177318 + 0.307124i
\(677\) 563.836 151.079i 0.832845 0.223160i 0.182891 0.983133i \(-0.441455\pi\)
0.649955 + 0.759973i \(0.274788\pi\)
\(678\) 307.303 623.765i 0.453249 0.920007i
\(679\) 413.926 695.754i 0.609611 1.02467i
\(680\) −108.175 + 345.594i −0.159081 + 0.508226i
\(681\) −33.4419 + 168.469i −0.0491071 + 0.247385i
\(682\) −350.256 93.8509i −0.513572 0.137611i
\(683\) 107.093 399.678i 0.156799 0.585180i −0.842146 0.539249i \(-0.818708\pi\)
0.998945 0.0459306i \(-0.0146253\pi\)
\(684\) 40.0530 + 302.399i 0.0585570 + 0.442104i
\(685\) 597.837 312.798i 0.872755 0.456639i
\(686\) −410.245 258.838i −0.598025 0.377314i
\(687\) 88.0097 178.643i 0.128107 0.260033i
\(688\) −32.5438 121.455i −0.0473020 0.176534i
\(689\) 10.7026 6.17916i 0.0155336 0.00896830i
\(690\) −593.383 143.645i −0.859976 0.208181i
\(691\) −446.192 257.609i −0.645720 0.372806i 0.141095 0.989996i \(-0.454938\pi\)
−0.786814 + 0.617190i \(0.788271\pi\)
\(692\) −350.352 350.352i −0.506289 0.506289i
\(693\) −236.549 + 300.548i −0.341340 + 0.433692i
\(694\) 85.1262i 0.122660i
\(695\) 346.598 318.928i 0.498702 0.458890i
\(696\) −189.949 166.449i −0.272916 0.239151i
\(697\) 19.8364 74.0305i 0.0284597 0.106213i
\(698\) −199.398 744.164i −0.285671 1.06614i
\(699\) 1017.22 345.745i 1.45525 0.494628i
\(700\) 222.575 + 270.112i 0.317964 + 0.385874i
\(701\) 733.940i 1.04699i −0.852029 0.523495i \(-0.824628\pi\)
0.852029 0.523495i \(-0.175372\pi\)
\(702\) 85.7347 253.546i 0.122129 0.361177i
\(703\) 210.197 784.467i 0.299000 1.11588i
\(704\) −24.2839 42.0610i −0.0344942 0.0597457i
\(705\) 454.814 833.902i 0.645126 1.18284i
\(706\) 439.723i 0.622837i
\(707\) −122.978 126.239i −0.173943 0.178556i
\(708\) −222.435 + 451.501i −0.314174 + 0.637713i
\(709\) −897.760 518.322i −1.26623 0.731061i −0.291961 0.956430i \(-0.594308\pi\)
−0.974273 + 0.225369i \(0.927641\pi\)
\(710\) 40.1688 63.3431i 0.0565758 0.0892156i
\(711\) −717.202 296.416i −1.00872 0.416900i
\(712\) 117.209 + 437.430i 0.164619 + 0.614367i
\(713\) −859.506 + 859.506i −1.20548 + 1.20548i
\(714\) 723.156 235.285i 1.01282 0.329531i
\(715\) −188.527 + 98.6401i −0.263674 + 0.137958i
\(716\) −69.2845 40.0014i −0.0967661 0.0558679i
\(717\) −291.531 + 19.2228i −0.406598 + 0.0268100i
\(718\) 504.606 + 135.209i 0.702793 + 0.188313i
\(719\) 746.305 + 430.879i 1.03798 + 0.599276i 0.919259 0.393653i \(-0.128789\pi\)
0.118716 + 0.992928i \(0.462122\pi\)
\(720\) 62.0482 + 168.968i 0.0861780 + 0.234677i
\(721\) −893.259 + 500.254i −1.23892 + 0.693834i
\(722\) 73.8100 73.8100i 0.102230 0.102230i
\(723\) −128.651 + 86.0350i −0.177941 + 0.118997i
\(724\) 210.145 + 363.981i 0.290255 + 0.502737i
\(725\) 61.7666 741.541i 0.0851953 1.02282i
\(726\) −350.157 69.5079i −0.482310 0.0957409i
\(727\) 381.491 381.491i 0.524747 0.524747i −0.394255 0.919001i \(-0.628997\pi\)
0.919001 + 0.394255i \(0.128997\pi\)
\(728\) −34.1620 134.511i −0.0469258 0.184767i
\(729\) 672.850 280.560i 0.922976 0.384856i
\(730\) 509.339 468.678i 0.697725 0.642024i
\(731\) −402.466 697.092i −0.550569 0.953614i
\(732\) −124.616 + 8.21683i −0.170240 + 0.0112252i
\(733\) 512.084 137.212i 0.698614 0.187193i 0.108004 0.994150i \(-0.465554\pi\)
0.590610 + 0.806957i \(0.298887\pi\)
\(734\) 878.081i 1.19629i
\(735\) 191.567 709.597i 0.260635 0.965437i
\(736\) −162.806 −0.221204
\(737\) −52.3106 195.226i −0.0709777 0.264892i
\(738\) −14.6062 35.1845i −0.0197916 0.0476754i
\(739\) −607.558 + 350.774i −0.822135 + 0.474660i −0.851152 0.524919i \(-0.824096\pi\)
0.0290169 + 0.999579i \(0.490762\pi\)
\(740\) 19.9071 478.819i 0.0269015 0.647052i
\(741\) 337.406 114.682i 0.455339 0.154766i
\(742\) 16.9166 4.29634i 0.0227986 0.00579022i
\(743\) 701.159 + 701.159i 0.943687 + 0.943687i 0.998497 0.0548100i \(-0.0174553\pi\)
−0.0548100 + 0.998497i \(0.517455\pi\)
\(744\) 351.514 + 69.7771i 0.472465 + 0.0937865i
\(745\) 219.104 + 978.670i 0.294100 + 1.31365i
\(746\) 176.154 101.702i 0.236131 0.136330i
\(747\) −364.558 + 475.873i −0.488029 + 0.637046i
\(748\) −219.847 219.847i −0.293914 0.293914i
\(749\) −280.387 500.661i −0.374348 0.668439i
\(750\) −291.702 + 442.899i −0.388937 + 0.590532i
\(751\) −257.969 + 446.816i −0.343501 + 0.594962i −0.985080 0.172095i \(-0.944946\pi\)
0.641579 + 0.767057i \(0.278280\pi\)
\(752\) 65.5584 244.667i 0.0871787 0.325355i
\(753\) −984.357 + 64.9059i −1.30725 + 0.0861964i
\(754\) −147.526 + 255.522i −0.195658 + 0.338889i
\(755\) −1268.65 397.102i −1.68033 0.525962i
\(756\) 213.733 311.772i 0.282716 0.412397i
\(757\) 787.928 + 787.928i 1.04086 + 1.04086i 0.999129 + 0.0417273i \(0.0132861\pi\)
0.0417273 + 0.999129i \(0.486714\pi\)
\(758\) 1016.03 272.245i 1.34041 0.359162i
\(759\) 345.457 394.230i 0.455148 0.519408i