Properties

Label 210.3.w.b.173.6
Level 210
Weight 3
Character 210.173
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 173.6
Character \(\chi\) \(=\) 210.173
Dual form 210.3.w.b.17.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.66769 + 2.49375i) q^{3} +(1.73205 - 1.00000i) q^{4} +(1.09236 - 4.87922i) q^{5} +(-1.36533 + 4.01695i) q^{6} +(-1.72310 - 6.78461i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-3.43763 - 8.31761i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(-1.66769 + 2.49375i) q^{3} +(1.73205 - 1.00000i) q^{4} +(1.09236 - 4.87922i) q^{5} +(-1.36533 + 4.01695i) q^{6} +(-1.72310 - 6.78461i) q^{7} +(2.00000 - 2.00000i) q^{8} +(-3.43763 - 8.31761i) q^{9} +(-0.293729 - 7.06496i) q^{10} +(5.25762 - 3.03549i) q^{11} +(-0.394767 + 5.98700i) q^{12} +(4.95646 - 4.95646i) q^{13} +(-4.83714 - 8.63725i) q^{14} +(10.3459 + 10.8611i) q^{15} +(2.00000 - 3.46410i) q^{16} +(24.7338 + 6.62741i) q^{17} +(-7.74035 - 10.1038i) q^{18} +(-8.47334 + 14.6763i) q^{19} +(-2.98720 - 9.54341i) q^{20} +(19.7928 + 7.01762i) q^{21} +(6.07098 - 6.07098i) q^{22} +(-7.44889 - 27.7996i) q^{23} +(1.65213 + 8.32289i) q^{24} +(-22.6135 - 10.6597i) q^{25} +(4.95646 - 8.58484i) q^{26} +(26.4750 + 5.29859i) q^{27} +(-9.76911 - 10.0282i) q^{28} +29.7644 q^{29} +(18.1081 + 11.0497i) q^{30} +(-36.5762 + 21.1173i) q^{31} +(1.46410 - 5.46410i) q^{32} +(-1.19831 + 18.1735i) q^{33} +36.2128 q^{34} +(-34.9858 + 0.996180i) q^{35} +(-14.2718 - 10.9689i) q^{36} +(-12.4034 - 46.2903i) q^{37} +(-6.20292 + 23.1496i) q^{38} +(4.09437 + 20.6260i) q^{39} +(-7.57372 - 11.9431i) q^{40} -2.99309 q^{41} +(29.6060 + 2.34159i) q^{42} +(22.2278 + 22.2278i) q^{43} +(6.07098 - 10.5152i) q^{44} +(-44.3386 + 7.68712i) q^{45} +(-20.3508 - 35.2485i) q^{46} +(16.3896 + 61.1668i) q^{47} +(5.30324 + 10.7646i) q^{48} +(-43.0618 + 23.3812i) q^{49} +(-34.7923 - 6.28430i) q^{50} +(-57.7754 + 50.6276i) q^{51} +(3.62838 - 13.5413i) q^{52} +(1.70301 + 0.456319i) q^{53} +(38.1049 - 2.45251i) q^{54} +(-9.06761 - 28.9689i) q^{55} +(-17.0154 - 10.1230i) q^{56} +(-22.4681 - 45.6059i) q^{57} +(40.6589 - 10.8945i) q^{58} +(-72.6479 + 41.9433i) q^{59} +(28.7806 + 8.46610i) q^{60} +(-18.0258 - 10.4072i) q^{61} +(-42.2346 + 42.2346i) q^{62} +(-50.5084 + 37.6551i) q^{63} -8.00000i q^{64} +(-18.7694 - 29.5979i) q^{65} +(5.01503 + 25.2640i) q^{66} +(32.1572 + 8.61650i) q^{67} +(49.4676 - 13.2548i) q^{68} +(81.7479 + 27.7854i) q^{69} +(-47.4269 + 14.1665i) q^{70} +10.6074i q^{71} +(-23.5105 - 9.75997i) q^{72} +(94.5508 + 25.3348i) q^{73} +(-33.8869 - 58.6937i) q^{74} +(64.2950 - 38.6155i) q^{75} +33.8934i q^{76} +(-29.6540 - 30.4404i) q^{77} +(13.1427 + 26.6771i) q^{78} +(74.6747 + 43.1134i) q^{79} +(-14.7174 - 13.5425i) q^{80} +(-57.3654 + 57.1857i) q^{81} +(-4.08863 + 1.09555i) q^{82} +(47.0984 + 47.0984i) q^{83} +(41.2997 - 7.63788i) q^{84} +(59.3547 - 113.442i) q^{85} +(38.4997 + 22.2278i) q^{86} +(-49.6377 + 74.2250i) q^{87} +(4.44427 - 16.5862i) q^{88} +(138.660 + 80.0552i) q^{89} +(-57.7539 + 26.7298i) q^{90} +(-42.1682 - 25.0872i) q^{91} +(-40.7015 - 40.7015i) q^{92} +(8.33641 - 126.429i) q^{93} +(44.7772 + 77.5564i) q^{94} +(62.3527 + 57.3750i) q^{95} +(11.1845 + 12.7635i) q^{96} +(-81.7792 - 81.7792i) q^{97} +(-50.2654 + 47.7010i) q^{98} +(-43.3218 - 33.2960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) −1.66769 + 2.49375i −0.555896 + 0.831252i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 1.09236 4.87922i 0.218472 0.975843i
\(6\) −1.36533 + 4.01695i −0.227555 + 0.669492i
\(7\) −1.72310 6.78461i −0.246158 0.969230i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) −3.43763 8.31761i −0.381959 0.924179i
\(10\) −0.293729 7.06496i −0.0293729 0.706496i
\(11\) 5.25762 3.03549i 0.477966 0.275954i −0.241603 0.970375i \(-0.577673\pi\)
0.719568 + 0.694422i \(0.244340\pi\)
\(12\) −0.394767 + 5.98700i −0.0328972 + 0.498917i
\(13\) 4.95646 4.95646i 0.381266 0.381266i −0.490292 0.871558i \(-0.663110\pi\)
0.871558 + 0.490292i \(0.163110\pi\)
\(14\) −4.83714 8.63725i −0.345510 0.616946i
\(15\) 10.3459 + 10.8611i 0.689724 + 0.724072i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 24.7338 + 6.62741i 1.45493 + 0.389847i 0.897736 0.440534i \(-0.145211\pi\)
0.557195 + 0.830382i \(0.311878\pi\)
\(18\) −7.74035 10.1038i −0.430019 0.561323i
\(19\) −8.47334 + 14.6763i −0.445965 + 0.772435i −0.998119 0.0613078i \(-0.980473\pi\)
0.552154 + 0.833742i \(0.313806\pi\)
\(20\) −2.98720 9.54341i −0.149360 0.477170i
\(21\) 19.7928 + 7.01762i 0.942512 + 0.334172i
\(22\) 6.07098 6.07098i 0.275954 0.275954i
\(23\) −7.44889 27.7996i −0.323865 1.20868i −0.915448 0.402436i \(-0.868163\pi\)
0.591583 0.806244i \(-0.298503\pi\)
\(24\) 1.65213 + 8.32289i 0.0688388 + 0.346787i
\(25\) −22.6135 10.6597i −0.904540 0.426388i
\(26\) 4.95646 8.58484i 0.190633 0.330186i
\(27\) 26.4750 + 5.29859i 0.980555 + 0.196244i
\(28\) −9.76911 10.0282i −0.348897 0.358149i
\(29\) 29.7644 1.02636 0.513179 0.858282i \(-0.328468\pi\)
0.513179 + 0.858282i \(0.328468\pi\)
\(30\) 18.1081 + 11.0497i 0.603605 + 0.368322i
\(31\) −36.5762 + 21.1173i −1.17988 + 0.681203i −0.955986 0.293411i \(-0.905210\pi\)
−0.223892 + 0.974614i \(0.571876\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) −1.19831 + 18.1735i −0.0363124 + 0.550711i
\(34\) 36.2128 1.06508
\(35\) −34.9858 + 0.996180i −0.999595 + 0.0284623i
\(36\) −14.2718 10.9689i −0.396438 0.304692i
\(37\) −12.4034 46.2903i −0.335228 1.25109i −0.903621 0.428332i \(-0.859101\pi\)
0.568393 0.822757i \(-0.307565\pi\)
\(38\) −6.20292 + 23.1496i −0.163235 + 0.609200i
\(39\) 4.09437 + 20.6260i 0.104984 + 0.528873i
\(40\) −7.57372 11.9431i −0.189343 0.298579i
\(41\) −2.99309 −0.0730021 −0.0365011 0.999334i \(-0.511621\pi\)
−0.0365011 + 0.999334i \(0.511621\pi\)
\(42\) 29.6060 + 2.34159i 0.704905 + 0.0557522i
\(43\) 22.2278 + 22.2278i 0.516926 + 0.516926i 0.916640 0.399714i \(-0.130891\pi\)
−0.399714 + 0.916640i \(0.630891\pi\)
\(44\) 6.07098 10.5152i 0.137977 0.238983i
\(45\) −44.3386 + 7.68712i −0.985301 + 0.170825i
\(46\) −20.3508 35.2485i −0.442408 0.766273i
\(47\) 16.3896 + 61.1668i 0.348715 + 1.30142i 0.888212 + 0.459434i \(0.151948\pi\)
−0.539498 + 0.841987i \(0.681386\pi\)
\(48\) 5.30324 + 10.7646i 0.110484 + 0.224262i
\(49\) −43.0618 + 23.3812i −0.878813 + 0.477167i
\(50\) −34.7923 6.28430i −0.695847 0.125686i
\(51\) −57.7754 + 50.6276i −1.13285 + 0.992699i
\(52\) 3.62838 13.5413i 0.0697766 0.260410i
\(53\) 1.70301 + 0.456319i 0.0321322 + 0.00860980i 0.274849 0.961487i \(-0.411372\pi\)
−0.242717 + 0.970097i \(0.578039\pi\)
\(54\) 38.1049 2.45251i 0.705647 0.0454168i
\(55\) −9.06761 28.9689i −0.164866 0.526708i
\(56\) −17.0154 10.1230i −0.303847 0.180768i
\(57\) −22.4681 45.6059i −0.394177 0.800103i
\(58\) 40.6589 10.8945i 0.701015 0.187836i
\(59\) −72.6479 + 41.9433i −1.23132 + 0.710903i −0.967305 0.253615i \(-0.918380\pi\)
−0.264015 + 0.964519i \(0.585047\pi\)
\(60\) 28.7806 + 8.46610i 0.479677 + 0.141102i
\(61\) −18.0258 10.4072i −0.295505 0.170610i 0.344917 0.938633i \(-0.387907\pi\)
−0.640422 + 0.768023i \(0.721240\pi\)
\(62\) −42.2346 + 42.2346i −0.681203 + 0.681203i
\(63\) −50.5084 + 37.6551i −0.801720 + 0.597700i
\(64\) 8.00000i 0.125000i
\(65\) −18.7694 29.5979i −0.288760 0.455352i
\(66\) 5.01503 + 25.2640i 0.0759853 + 0.382788i
\(67\) 32.1572 + 8.61650i 0.479958 + 0.128604i 0.490683 0.871338i \(-0.336747\pi\)
−0.0107249 + 0.999942i \(0.503414\pi\)
\(68\) 49.4676 13.2548i 0.727465 0.194924i
\(69\) 81.7479 + 27.7854i 1.18475 + 0.402688i
\(70\) −47.4269 + 14.1665i −0.677527 + 0.202379i
\(71\) 10.6074i 0.149400i 0.997206 + 0.0747002i \(0.0238000\pi\)
−0.997206 + 0.0747002i \(0.976200\pi\)
\(72\) −23.5105 9.75997i −0.326535 0.135555i
\(73\) 94.5508 + 25.3348i 1.29522 + 0.347052i 0.839639 0.543145i \(-0.182766\pi\)
0.455577 + 0.890197i \(0.349433\pi\)
\(74\) −33.8869 58.6937i −0.457930 0.793159i
\(75\) 64.2950 38.6155i 0.857266 0.514873i
\(76\) 33.8934i 0.445965i
\(77\) −29.6540 30.4404i −0.385117 0.395330i
\(78\) 13.1427 + 26.6771i 0.168496 + 0.342013i
\(79\) 74.6747 + 43.1134i 0.945249 + 0.545740i 0.891602 0.452820i \(-0.149582\pi\)
0.0536472 + 0.998560i \(0.482915\pi\)
\(80\) −14.7174 13.5425i −0.183967 0.169281i
\(81\) −57.3654 + 57.1857i −0.708215 + 0.705997i
\(82\) −4.08863 + 1.09555i −0.0498614 + 0.0133603i
\(83\) 47.0984 + 47.0984i 0.567450 + 0.567450i 0.931413 0.363963i \(-0.118577\pi\)
−0.363963 + 0.931413i \(0.618577\pi\)
\(84\) 41.2997 7.63788i 0.491663 0.0909272i
\(85\) 59.3547 113.442i 0.698291 1.33461i
\(86\) 38.4997 + 22.2278i 0.447671 + 0.258463i
\(87\) −49.6377 + 74.2250i −0.570548 + 0.853161i
\(88\) 4.44427 16.5862i 0.0505030 0.188480i
\(89\) 138.660 + 80.0552i 1.55797 + 0.899496i 0.997451 + 0.0713568i \(0.0227329\pi\)
0.560522 + 0.828139i \(0.310600\pi\)
\(90\) −57.7539 + 26.7298i −0.641710 + 0.296998i
\(91\) −42.1682 25.0872i −0.463386 0.275683i
\(92\) −40.7015 40.7015i −0.442408 0.442408i
\(93\) 8.33641 126.429i 0.0896388 1.35945i
\(94\) 44.7772 + 77.5564i 0.476353 + 0.825068i
\(95\) 62.3527 + 57.3750i 0.656344 + 0.603947i
\(96\) 11.1845 + 12.7635i 0.116505 + 0.132953i
\(97\) −81.7792 81.7792i −0.843085 0.843085i 0.146174 0.989259i \(-0.453304\pi\)
−0.989259 + 0.146174i \(0.953304\pi\)
\(98\) −50.2654 + 47.7010i −0.512913 + 0.486745i
\(99\) −43.3218 33.2960i −0.437594 0.336323i
\(100\) −49.8274 + 4.15037i −0.498274 + 0.0415037i
\(101\) 12.5884 + 21.8038i 0.124638 + 0.215879i 0.921591 0.388162i \(-0.126890\pi\)
−0.796953 + 0.604041i \(0.793556\pi\)
\(102\) −60.3917 + 90.3059i −0.592076 + 0.885352i
\(103\) −37.8541 141.274i −0.367516 1.37159i −0.863978 0.503529i \(-0.832035\pi\)
0.496462 0.868058i \(-0.334632\pi\)
\(104\) 19.8258i 0.190633i
\(105\) 55.8612 88.9074i 0.532012 0.846737i
\(106\) 2.49337 0.0235224
\(107\) 79.1821 21.2168i 0.740020 0.198288i 0.130933 0.991391i \(-0.458203\pi\)
0.609087 + 0.793104i \(0.291536\pi\)
\(108\) 51.1546 17.2976i 0.473654 0.160163i
\(109\) −14.2005 + 8.19866i −0.130280 + 0.0752171i −0.563723 0.825964i \(-0.690632\pi\)
0.433444 + 0.901181i \(0.357298\pi\)
\(110\) −22.9899 36.2533i −0.208999 0.329575i
\(111\) 136.122 + 46.2667i 1.22632 + 0.416817i
\(112\) −26.9488 7.60021i −0.240614 0.0678590i
\(113\) −115.892 + 115.892i −1.02560 + 1.02560i −0.0259326 + 0.999664i \(0.508256\pi\)
−0.999664 + 0.0259326i \(0.991744\pi\)
\(114\) −47.3849 54.0749i −0.415657 0.474341i
\(115\) −143.777 + 5.97761i −1.25024 + 0.0519792i
\(116\) 51.5534 29.7644i 0.444426 0.256589i
\(117\) −58.2644 24.1875i −0.497986 0.206731i
\(118\) −83.8866 + 83.8866i −0.710903 + 0.710903i
\(119\) 2.34542 179.229i 0.0197094 1.50613i
\(120\) 42.4139 + 1.03046i 0.353449 + 0.00858715i
\(121\) −42.0716 + 72.8702i −0.347699 + 0.602233i
\(122\) −28.4330 7.61860i −0.233057 0.0624475i
\(123\) 4.99154 7.46403i 0.0405816 0.0606831i
\(124\) −42.2346 + 73.1525i −0.340602 + 0.589939i
\(125\) −76.7130 + 98.6920i −0.613704 + 0.789536i
\(126\) −55.2130 + 69.9251i −0.438198 + 0.554961i
\(127\) 30.6273 30.6273i 0.241160 0.241160i −0.576170 0.817330i \(-0.695453\pi\)
0.817330 + 0.576170i \(0.195453\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) −92.4998 + 18.3616i −0.717053 + 0.142338i
\(130\) −36.4731 33.5614i −0.280562 0.258164i
\(131\) −55.8066 + 96.6599i −0.426005 + 0.737862i −0.996514 0.0834295i \(-0.973413\pi\)
0.570509 + 0.821291i \(0.306746\pi\)
\(132\) 16.0979 + 32.6757i 0.121954 + 0.247543i
\(133\) 114.173 + 32.1996i 0.858444 + 0.242102i
\(134\) 47.0814 0.351354
\(135\) 54.7731 123.389i 0.405727 0.913994i
\(136\) 62.7225 36.2128i 0.461195 0.266271i
\(137\) 34.9263 130.347i 0.254936 0.951435i −0.713190 0.700971i \(-0.752750\pi\)
0.968126 0.250464i \(-0.0805832\pi\)
\(138\) 121.840 + 8.03380i 0.882898 + 0.0582160i
\(139\) 94.2009 0.677704 0.338852 0.940840i \(-0.389961\pi\)
0.338852 + 0.940840i \(0.389961\pi\)
\(140\) −59.6010 + 36.7113i −0.425722 + 0.262223i
\(141\) −179.868 61.1355i −1.27566 0.433585i
\(142\) 3.88259 + 14.4900i 0.0273422 + 0.102042i
\(143\) 11.0139 41.1045i 0.0770204 0.287444i
\(144\) −35.6883 4.72694i −0.247836 0.0328260i
\(145\) 32.5133 145.227i 0.224230 1.00156i
\(146\) 138.432 0.948164
\(147\) 13.5068 146.378i 0.0918830 0.995770i
\(148\) −67.7737 67.7737i −0.457930 0.457930i
\(149\) 100.290 173.707i 0.673085 1.16582i −0.303939 0.952691i \(-0.598302\pi\)
0.977025 0.213126i \(-0.0683646\pi\)
\(150\) 73.6943 76.2833i 0.491295 0.508556i
\(151\) 132.934 + 230.249i 0.880361 + 1.52483i 0.850940 + 0.525263i \(0.176033\pi\)
0.0294207 + 0.999567i \(0.490634\pi\)
\(152\) 12.4058 + 46.2992i 0.0816173 + 0.304600i
\(153\) −29.9014 228.509i −0.195434 1.49352i
\(154\) −51.6501 30.7283i −0.335391 0.199534i
\(155\) 63.0815 + 201.531i 0.406978 + 1.30020i
\(156\) 27.7177 + 31.6310i 0.177677 + 0.202763i
\(157\) 4.79975 17.9129i 0.0305717 0.114095i −0.948954 0.315415i \(-0.897856\pi\)
0.979526 + 0.201320i \(0.0645230\pi\)
\(158\) 117.788 + 31.5612i 0.745494 + 0.199755i
\(159\) −3.97803 + 3.48588i −0.0250191 + 0.0219238i
\(160\) −25.0612 13.1124i −0.156633 0.0819526i
\(161\) −175.775 + 98.4395i −1.09177 + 0.611426i
\(162\) −57.4312 + 99.1144i −0.354514 + 0.611817i
\(163\) −80.8800 + 21.6717i −0.496196 + 0.132955i −0.498234 0.867043i \(-0.666018\pi\)
0.00203783 + 0.999998i \(0.499351\pi\)
\(164\) −5.18418 + 2.99309i −0.0316108 + 0.0182505i
\(165\) 87.3633 + 25.6987i 0.529475 + 0.155750i
\(166\) 81.5768 + 47.0984i 0.491427 + 0.283725i
\(167\) 146.343 146.343i 0.876304 0.876304i −0.116846 0.993150i \(-0.537278\pi\)
0.993150 + 0.116846i \(0.0372784\pi\)
\(168\) 53.6207 25.5503i 0.319171 0.152085i
\(169\) 119.867i 0.709272i
\(170\) 39.5574 176.690i 0.232690 1.03935i
\(171\) 151.200 + 20.0265i 0.884208 + 0.117114i
\(172\) 60.7275 + 16.2719i 0.353067 + 0.0946040i
\(173\) 239.295 64.1188i 1.38321 0.370629i 0.510922 0.859627i \(-0.329304\pi\)
0.872285 + 0.488998i \(0.162638\pi\)
\(174\) −40.6381 + 119.562i −0.233552 + 0.687138i
\(175\) −33.3564 + 171.792i −0.190608 + 0.981666i
\(176\) 24.2839i 0.137977i
\(177\) 16.5578 251.114i 0.0935470 1.41873i
\(178\) 218.715 + 58.6044i 1.22873 + 0.329238i
\(179\) 20.0007 + 34.6423i 0.111736 + 0.193532i 0.916470 0.400103i \(-0.131026\pi\)
−0.804734 + 0.593635i \(0.797692\pi\)
\(180\) −69.1095 + 57.6530i −0.383942 + 0.320295i
\(181\) 210.145i 1.16102i −0.814253 0.580510i \(-0.802853\pi\)
0.814253 0.580510i \(-0.197147\pi\)
\(182\) −66.7853 18.8351i −0.366952 0.103489i
\(183\) 56.0144 27.5959i 0.306090 0.150798i
\(184\) −70.4971 40.7015i −0.383136 0.221204i
\(185\) −239.409 + 9.95356i −1.29410 + 0.0538030i
\(186\) −34.8886 175.757i −0.187573 0.944929i
\(187\) 150.159 40.2349i 0.802987 0.215160i
\(188\) 89.5544 + 89.5544i 0.476353 + 0.476353i
\(189\) −9.67029 188.752i −0.0511655 0.998690i
\(190\) 106.176 + 55.5530i 0.558822 + 0.292384i
\(191\) −161.722 93.3702i −0.846712 0.488849i 0.0128282 0.999918i \(-0.495917\pi\)
−0.859540 + 0.511068i \(0.829250\pi\)
\(192\) 19.9500 + 13.3415i 0.103906 + 0.0694870i
\(193\) −45.3096 + 169.098i −0.234765 + 0.876155i 0.743490 + 0.668747i \(0.233169\pi\)
−0.978255 + 0.207407i \(0.933497\pi\)
\(194\) −141.646 81.7792i −0.730133 0.421542i
\(195\) 105.111 + 2.55371i 0.539033 + 0.0130960i
\(196\) −51.2041 + 83.5592i −0.261245 + 0.426322i
\(197\) −32.6753 32.6753i −0.165865 0.165865i 0.619294 0.785159i \(-0.287419\pi\)
−0.785159 + 0.619294i \(0.787419\pi\)
\(198\) −71.3658 29.6263i −0.360433 0.149628i
\(199\) 19.7740 + 34.2496i 0.0993670 + 0.172109i 0.911423 0.411471i \(-0.134985\pi\)
−0.812056 + 0.583580i \(0.801652\pi\)
\(200\) −66.5464 + 23.9076i −0.332732 + 0.119538i
\(201\) −75.1156 + 65.8225i −0.373710 + 0.327475i
\(202\) 25.1768 + 25.1768i 0.124638 + 0.124638i
\(203\) −51.2871 201.940i −0.252646 0.994776i
\(204\) −49.4424 + 145.465i −0.242365 + 0.713064i
\(205\) −3.26952 + 14.6039i −0.0159489 + 0.0712386i
\(206\) −103.419 179.128i −0.502036 0.869552i
\(207\) −205.620 + 157.522i −0.993334 + 0.760975i
\(208\) −7.25676 27.0826i −0.0348883 0.130205i
\(209\) 102.883i 0.492263i
\(210\) 43.7655 141.896i 0.208407 0.675697i
\(211\) −145.662 −0.690341 −0.345170 0.938540i \(-0.612179\pi\)
−0.345170 + 0.938540i \(0.612179\pi\)
\(212\) 3.40601 0.912638i 0.0160661 0.00430490i
\(213\) −26.4523 17.6899i −0.124189 0.0830511i
\(214\) 100.399 57.9653i 0.469154 0.270866i
\(215\) 132.735 84.1736i 0.617372 0.391505i
\(216\) 63.5472 42.3528i 0.294200 0.196078i
\(217\) 206.297 + 211.768i 0.950679 + 0.975890i
\(218\) −16.3973 + 16.3973i −0.0752171 + 0.0752171i
\(219\) −220.860 + 193.536i −1.00849 + 0.883725i
\(220\) −44.6745 41.1080i −0.203066 0.186855i
\(221\) 155.441 89.7438i 0.703352 0.406080i
\(222\) 202.881 + 13.3774i 0.913876 + 0.0602586i
\(223\) −202.781 + 202.781i −0.909331 + 0.909331i −0.996218 0.0868873i \(-0.972308\pi\)
0.0868873 + 0.996218i \(0.472308\pi\)
\(224\) −39.5946 0.518140i −0.176762 0.00231313i
\(225\) −10.9264 + 224.735i −0.0485619 + 0.998820i
\(226\) −115.892 + 200.731i −0.512798 + 0.888192i
\(227\) 55.3013 + 14.8179i 0.243618 + 0.0652773i 0.378562 0.925576i \(-0.376419\pi\)
−0.134944 + 0.990853i \(0.543085\pi\)
\(228\) −84.5217 56.5236i −0.370709 0.247910i
\(229\) 33.1909 57.4883i 0.144938 0.251041i −0.784412 0.620241i \(-0.787035\pi\)
0.929350 + 0.369200i \(0.120368\pi\)
\(230\) −194.216 + 60.7917i −0.844416 + 0.264312i
\(231\) 125.365 23.1847i 0.542704 0.100367i
\(232\) 59.5287 59.5287i 0.256589 0.256589i
\(233\) 92.6893 + 345.921i 0.397808 + 1.48464i 0.816944 + 0.576717i \(0.195667\pi\)
−0.419135 + 0.907924i \(0.637667\pi\)
\(234\) −88.4439 11.7144i −0.377965 0.0500617i
\(235\) 316.349 13.1524i 1.34617 0.0559675i
\(236\) −83.8866 + 145.296i −0.355452 + 0.615660i
\(237\) −232.049 + 114.321i −0.979108 + 0.482365i
\(238\) −62.3985 245.690i −0.262178 1.03231i
\(239\) 97.3879 0.407481 0.203740 0.979025i \(-0.434690\pi\)
0.203740 + 0.979025i \(0.434690\pi\)
\(240\) 58.3156 14.1169i 0.242982 0.0588205i
\(241\) 44.6777 25.7947i 0.185385 0.107032i −0.404436 0.914567i \(-0.632532\pi\)
0.589820 + 0.807535i \(0.299199\pi\)
\(242\) −30.7986 + 114.942i −0.127267 + 0.474966i
\(243\) −46.9395 238.423i −0.193167 0.981166i
\(244\) −41.6288 −0.170610
\(245\) 67.0429 + 235.649i 0.273644 + 0.961831i
\(246\) 4.08654 12.0231i 0.0166120 0.0488743i
\(247\) 30.7445 + 114.740i 0.124472 + 0.464535i
\(248\) −30.9179 + 115.387i −0.124669 + 0.465270i
\(249\) −195.997 + 38.9064i −0.787138 + 0.156251i
\(250\) −68.6681 + 162.895i −0.274673 + 0.651579i
\(251\) −328.831 −1.31009 −0.655043 0.755592i \(-0.727349\pi\)
−0.655043 + 0.755592i \(0.727349\pi\)
\(252\) −49.8280 + 115.729i −0.197730 + 0.459242i
\(253\) −123.549 123.549i −0.488336 0.488336i
\(254\) 30.6273 53.0481i 0.120580 0.208851i
\(255\) 183.912 + 337.202i 0.721223 + 1.32236i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 7.24061 + 27.0223i 0.0281736 + 0.105145i 0.978581 0.205863i \(-0.0660000\pi\)
−0.950407 + 0.311008i \(0.899333\pi\)
\(258\) −119.636 + 58.9398i −0.463706 + 0.228449i
\(259\) −292.689 + 163.916i −1.13007 + 0.632879i
\(260\) −62.1075 32.4956i −0.238875 0.124983i
\(261\) −102.319 247.568i −0.392026 0.948538i
\(262\) −40.8533 + 152.467i −0.155929 + 0.581933i
\(263\) −58.4662 15.6660i −0.222305 0.0595664i 0.145947 0.989292i \(-0.453377\pi\)
−0.368252 + 0.929726i \(0.620044\pi\)
\(264\) 33.9503 + 38.7436i 0.128600 + 0.146756i
\(265\) 4.08677 7.81087i 0.0154218 0.0294750i
\(266\) 167.749 + 2.19519i 0.630636 + 0.00825260i
\(267\) −430.879 + 212.276i −1.61378 + 0.795041i
\(268\) 64.3144 17.2330i 0.239979 0.0643022i
\(269\) −223.312 + 128.929i −0.830154 + 0.479290i −0.853906 0.520428i \(-0.825772\pi\)
0.0237511 + 0.999718i \(0.492439\pi\)
\(270\) 29.6579 188.601i 0.109844 0.698523i
\(271\) 163.182 + 94.2131i 0.602147 + 0.347650i 0.769886 0.638182i \(-0.220313\pi\)
−0.167739 + 0.985831i \(0.553647\pi\)
\(272\) 72.4257 72.4257i 0.266271 0.266271i
\(273\) 132.885 63.3195i 0.486757 0.231939i
\(274\) 190.841i 0.696499i
\(275\) −151.251 + 12.5984i −0.550003 + 0.0458124i
\(276\) 169.377 33.6221i 0.613685 0.121819i
\(277\) −262.100 70.2296i −0.946211 0.253536i −0.247457 0.968899i \(-0.579595\pi\)
−0.698754 + 0.715362i \(0.746262\pi\)
\(278\) 128.681 34.4799i 0.462881 0.124029i
\(279\) 301.381 + 231.634i 1.08022 + 0.830228i
\(280\) −67.9793 + 71.9640i −0.242783 + 0.257014i
\(281\) 265.329i 0.944230i −0.881537 0.472115i \(-0.843491\pi\)
0.881537 0.472115i \(-0.156509\pi\)
\(282\) −268.081 17.6765i −0.950642 0.0626828i
\(283\) −401.740 107.646i −1.41958 0.380374i −0.534243 0.845331i \(-0.679403\pi\)
−0.885334 + 0.464956i \(0.846070\pi\)
\(284\) 10.6074 + 18.3726i 0.0373501 + 0.0646923i
\(285\) −247.064 + 59.8088i −0.866892 + 0.209855i
\(286\) 60.1812i 0.210424i
\(287\) 5.15740 + 20.3069i 0.0179700 + 0.0707558i
\(288\) −50.4813 + 6.60571i −0.175282 + 0.0229365i
\(289\) 317.558 + 183.342i 1.09882 + 0.634402i
\(290\) −8.74266 210.284i −0.0301471 0.725118i
\(291\) 340.320 67.5550i 1.16948 0.232148i
\(292\) 189.102 50.6696i 0.647608 0.173526i
\(293\) −15.6606 15.6606i −0.0534491 0.0534491i 0.679877 0.733326i \(-0.262033\pi\)
−0.733326 + 0.679877i \(0.762033\pi\)
\(294\) −35.1275 204.900i −0.119481 0.696939i
\(295\) 125.293 + 400.282i 0.424722 + 1.35689i
\(296\) −117.387 67.7737i −0.396579 0.228965i
\(297\) 155.279 52.5066i 0.522826 0.176790i
\(298\) 73.4172 273.997i 0.246366 0.919452i
\(299\) −174.708 100.868i −0.584308 0.337350i
\(300\) 72.7467 131.179i 0.242489 0.437263i
\(301\) 112.506 189.108i 0.373775 0.628265i
\(302\) 265.869 + 265.869i 0.880361 + 0.880361i
\(303\) −75.3669 4.96949i −0.248736 0.0164010i
\(304\) 33.8934 + 58.7050i 0.111491 + 0.193109i
\(305\) −70.4696 + 76.5834i −0.231048 + 0.251093i
\(306\) −124.486 301.204i −0.406818 0.984328i
\(307\) −222.516 222.516i −0.724809 0.724809i 0.244772 0.969581i \(-0.421287\pi\)
−0.969581 + 0.244772i \(0.921287\pi\)
\(308\) −81.8027 23.0704i −0.265593 0.0749038i
\(309\) 415.431 + 141.201i 1.34444 + 0.456962i
\(310\) 159.936 + 252.207i 0.515924 + 0.813571i
\(311\) −92.6420 160.461i −0.297884 0.515951i 0.677767 0.735276i \(-0.262948\pi\)
−0.975652 + 0.219326i \(0.929614\pi\)
\(312\) 49.4408 + 33.0633i 0.158464 + 0.105972i
\(313\) 23.4325 + 87.4513i 0.0748642 + 0.279397i 0.993202 0.116399i \(-0.0371352\pi\)
−0.918338 + 0.395796i \(0.870469\pi\)
\(314\) 26.2263i 0.0835234i
\(315\) 128.554 + 287.574i 0.408108 + 0.912934i
\(316\) 172.454 0.545740
\(317\) 450.963 120.835i 1.42260 0.381183i 0.536192 0.844096i \(-0.319862\pi\)
0.886404 + 0.462913i \(0.153196\pi\)
\(318\) −4.15817 + 6.21787i −0.0130760 + 0.0195530i
\(319\) 156.490 90.3494i 0.490564 0.283227i
\(320\) −39.0337 8.73886i −0.121980 0.0273089i
\(321\) −79.1417 + 232.844i −0.246547 + 0.725370i
\(322\) −204.081 + 198.809i −0.633792 + 0.617419i
\(323\) −306.844 + 306.844i −0.949980 + 0.949980i
\(324\) −42.1741 + 156.414i −0.130167 + 0.482759i
\(325\) −164.917 + 59.2486i −0.507438 + 0.182303i
\(326\) −102.552 + 59.2083i −0.314576 + 0.181620i
\(327\) 3.23656 49.0854i 0.00989774 0.150108i
\(328\) −5.98617 + 5.98617i −0.0182505 + 0.0182505i
\(329\) 386.752 216.594i 1.17554 0.658339i
\(330\) 128.747 + 3.12794i 0.390142 + 0.00947862i
\(331\) 184.281 319.184i 0.556740 0.964302i −0.441026 0.897494i \(-0.645385\pi\)
0.997766 0.0668078i \(-0.0212814\pi\)
\(332\) 128.675 + 34.4784i 0.387576 + 0.103851i
\(333\) −342.386 + 262.296i −1.02819 + 0.787675i
\(334\) 146.343 253.473i 0.438152 0.758902i
\(335\) 77.1689 147.490i 0.230355 0.440268i
\(336\) 63.8952 54.5289i 0.190164 0.162288i
\(337\) 424.870 424.870i 1.26074 1.26074i 0.310009 0.950734i \(-0.399668\pi\)
0.950734 0.310009i \(-0.100332\pi\)
\(338\) 43.8744 + 163.741i 0.129806 + 0.484442i
\(339\) −95.7348 482.280i −0.282403 1.42265i
\(340\) −10.6368 255.842i −0.0312846 0.752477i
\(341\) −128.203 + 222.054i −0.375961 + 0.651183i
\(342\) 213.873 27.9862i 0.625359 0.0818311i
\(343\) 232.832 + 251.869i 0.678811 + 0.734313i
\(344\) 88.9113 0.258463
\(345\) 224.869 368.514i 0.651795 1.06816i
\(346\) 303.413 175.176i 0.876918 0.506289i
\(347\) −15.5792 + 58.1423i −0.0448968 + 0.167557i −0.984734 0.174065i \(-0.944310\pi\)
0.939837 + 0.341622i \(0.110976\pi\)
\(348\) −11.7500 + 178.199i −0.0337643 + 0.512067i
\(349\) −544.766 −1.56093 −0.780467 0.625197i \(-0.785019\pi\)
−0.780467 + 0.625197i \(0.785019\pi\)
\(350\) 17.3143 + 246.881i 0.0494695 + 0.705374i
\(351\) 157.485 104.960i 0.448674 0.299031i
\(352\) −8.88853 33.1724i −0.0252515 0.0942399i
\(353\) −80.4748 + 300.336i −0.227974 + 0.850811i 0.753217 + 0.657772i \(0.228501\pi\)
−0.981191 + 0.193039i \(0.938166\pi\)
\(354\) −69.2958 349.089i −0.195751 0.986128i
\(355\) 51.7560 + 11.5871i 0.145791 + 0.0326397i
\(356\) 320.221 0.899496
\(357\) 443.042 + 304.747i 1.24101 + 0.853633i
\(358\) 40.0014 + 40.0014i 0.111736 + 0.111736i
\(359\) −184.699 + 319.907i −0.514481 + 0.891106i 0.485378 + 0.874304i \(0.338682\pi\)
−0.999859 + 0.0168022i \(0.994651\pi\)
\(360\) −73.3029 + 104.051i −0.203619 + 0.289032i
\(361\) 36.9050 + 63.9213i 0.102230 + 0.177067i
\(362\) −76.9183 287.063i −0.212482 0.792992i
\(363\) −111.558 226.441i −0.307322 0.623804i
\(364\) −98.1245 1.28407i −0.269573 0.00352767i
\(365\) 226.897 433.659i 0.621636 1.18811i
\(366\) 66.4163 58.1995i 0.181465 0.159015i
\(367\) −160.700 + 599.740i −0.437874 + 1.63417i 0.296218 + 0.955120i \(0.404274\pi\)
−0.734093 + 0.679049i \(0.762392\pi\)
\(368\) −111.199 29.7956i −0.302170 0.0809662i
\(369\) 10.2891 + 24.8953i 0.0278838 + 0.0674671i
\(370\) −323.396 + 101.227i −0.874043 + 0.273586i
\(371\) 0.161490 12.3405i 0.000435282 0.0332629i
\(372\) −111.990 227.318i −0.301049 0.611071i
\(373\) −138.928 + 37.2257i −0.372462 + 0.0998008i −0.440194 0.897903i \(-0.645090\pi\)
0.0677323 + 0.997704i \(0.478424\pi\)
\(374\) 190.393 109.924i 0.509073 0.293914i
\(375\) −118.180 355.891i −0.315147 0.949043i
\(376\) 155.113 + 89.5544i 0.412534 + 0.238177i
\(377\) 147.526 147.526i 0.391315 0.391315i
\(378\) −82.2980 254.301i −0.217720 0.672754i
\(379\) 743.787i 1.96250i −0.192741 0.981250i \(-0.561738\pi\)
0.192741 0.981250i \(-0.438262\pi\)
\(380\) 165.373 + 37.0237i 0.435192 + 0.0974307i
\(381\) 25.3002 + 127.454i 0.0664047 + 0.334525i
\(382\) −255.092 68.3517i −0.667781 0.178931i
\(383\) −177.428 + 47.5416i −0.463258 + 0.124130i −0.482896 0.875678i \(-0.660415\pi\)
0.0196383 + 0.999807i \(0.493749\pi\)
\(384\) 32.1356 + 10.9226i 0.0836864 + 0.0284443i
\(385\) −180.918 + 111.437i −0.469918 + 0.289446i
\(386\) 247.576i 0.641390i
\(387\) 108.471 261.293i 0.280288 0.675177i
\(388\) −223.425 59.8665i −0.575838 0.154295i
\(389\) −216.669 375.281i −0.556989 0.964734i −0.997746 0.0671069i \(-0.978623\pi\)
0.440757 0.897627i \(-0.354710\pi\)
\(390\) 144.520 34.9850i 0.370563 0.0897052i
\(391\) 736.958i 1.88480i
\(392\) −39.3613 + 132.886i −0.100411 + 0.338995i
\(393\) −147.978 300.367i −0.376534 0.764292i
\(394\) −56.5953 32.6753i −0.143643 0.0829323i
\(395\) 291.931 317.259i 0.739067 0.803186i
\(396\) −108.332 14.3486i −0.273564 0.0362338i
\(397\) −365.291 + 97.8793i −0.920128 + 0.246547i −0.687640 0.726052i \(-0.741353\pi\)
−0.232488 + 0.972599i \(0.574687\pi\)
\(398\) 39.5481 + 39.5481i 0.0993670 + 0.0993670i
\(399\) −270.703 + 231.021i −0.678454 + 0.579000i
\(400\) −82.1533 + 57.0161i −0.205383 + 0.142540i
\(401\) 144.925 + 83.6723i 0.361408 + 0.208659i 0.669698 0.742633i \(-0.266423\pi\)
−0.308290 + 0.951292i \(0.599757\pi\)
\(402\) −78.5171 + 117.410i −0.195316 + 0.292063i
\(403\) −76.6216 + 285.956i −0.190128 + 0.709568i
\(404\) 43.6076 + 25.1768i 0.107940 + 0.0623189i
\(405\) 216.358 + 342.366i 0.534217 + 0.845347i
\(406\) −143.974 257.082i −0.354617 0.633207i
\(407\) −205.726 205.726i −0.505470 0.505470i
\(408\) −14.2956 + 216.806i −0.0350383 + 0.531388i
\(409\) −282.764 489.761i −0.691353 1.19746i −0.971395 0.237471i \(-0.923681\pi\)
0.280041 0.959988i \(-0.409652\pi\)
\(410\) 0.879157 + 21.1461i 0.00214428 + 0.0515757i
\(411\) 266.806 + 304.475i 0.649164 + 0.740816i
\(412\) −206.839 206.839i −0.502036 0.502036i
\(413\) 409.749 + 420.615i 0.992127 + 1.01844i
\(414\) −223.225 + 290.441i −0.539192 + 0.701549i
\(415\) 281.252 178.355i 0.677715 0.429771i
\(416\) −19.8258 34.3394i −0.0476583 0.0825466i
\(417\) −157.098 + 234.914i −0.376733 + 0.563343i
\(418\) 37.6578 + 140.541i 0.0900904 + 0.336222i
\(419\) 431.753i 1.03044i −0.857059 0.515218i \(-0.827711\pi\)
0.857059 0.515218i \(-0.172289\pi\)
\(420\) 7.84711 209.853i 0.0186836 0.499651i
\(421\) −408.628 −0.970613 −0.485307 0.874344i \(-0.661292\pi\)
−0.485307 + 0.874344i \(0.661292\pi\)
\(422\) −198.978 + 53.3160i −0.471512 + 0.126341i
\(423\) 452.420 346.591i 1.06955 0.819364i
\(424\) 4.31865 2.49337i 0.0101855 0.00588060i
\(425\) −488.672 413.524i −1.14982 0.972998i
\(426\) −42.6095 14.4826i −0.100022 0.0339968i
\(427\) −39.5484 + 140.231i −0.0926193 + 0.328409i
\(428\) 115.931 115.931i 0.270866 0.270866i
\(429\) 84.1368 + 96.0155i 0.196123 + 0.223812i
\(430\) 150.510 163.568i 0.350023 0.380390i
\(431\) 282.743 163.241i 0.656015 0.378751i −0.134742 0.990881i \(-0.543020\pi\)
0.790757 + 0.612130i \(0.209687\pi\)
\(432\) 71.3048 81.1149i 0.165057 0.187766i
\(433\) 135.145 135.145i 0.312114 0.312114i −0.533614 0.845728i \(-0.679167\pi\)
0.845728 + 0.533614i \(0.179167\pi\)
\(434\) 359.320 + 213.771i 0.827926 + 0.492559i
\(435\) 307.938 + 323.273i 0.707903 + 0.743157i
\(436\) −16.3973 + 28.4010i −0.0376085 + 0.0651399i
\(437\) 471.112 + 126.234i 1.07806 + 0.288865i
\(438\) −230.861 + 345.215i −0.527081 + 0.788163i
\(439\) −308.876 + 534.989i −0.703590 + 1.21865i 0.263608 + 0.964630i \(0.415087\pi\)
−0.967198 + 0.254023i \(0.918246\pi\)
\(440\) −76.0731 39.8026i −0.172893 0.0904605i
\(441\) 342.506 + 277.796i 0.776658 + 0.629923i
\(442\) 179.488 179.488i 0.406080 0.406080i
\(443\) 99.2276 + 370.322i 0.223990 + 0.835942i 0.982807 + 0.184638i \(0.0591112\pi\)
−0.758817 + 0.651304i \(0.774222\pi\)
\(444\) 282.036 55.9856i 0.635217 0.126094i
\(445\) 542.072 589.101i 1.21814 1.32382i
\(446\) −202.781 + 351.227i −0.454665 + 0.787504i
\(447\) 265.930 + 539.787i 0.594922 + 1.20758i
\(448\) −54.2769 + 13.7848i −0.121154 + 0.0307697i
\(449\) 38.5058 0.0857590 0.0428795 0.999080i \(-0.486347\pi\)
0.0428795 + 0.999080i \(0.486347\pi\)
\(450\) 67.3328 + 310.992i 0.149628 + 0.691094i
\(451\) −15.7365 + 9.08548i −0.0348925 + 0.0201452i
\(452\) −84.8391 + 316.624i −0.187697 + 0.700495i
\(453\) −795.879 52.4781i −1.75691 0.115846i
\(454\) 80.9667 0.178341
\(455\) −168.468 + 178.343i −0.370260 + 0.391964i
\(456\) −136.148 46.2755i −0.298570 0.101481i
\(457\) 165.470 + 617.544i 0.362080 + 1.35130i 0.871337 + 0.490686i \(0.163254\pi\)
−0.509257 + 0.860615i \(0.670080\pi\)
\(458\) 24.2974 90.6793i 0.0530512 0.197990i
\(459\) 619.712 + 306.515i 1.35013 + 0.667789i
\(460\) −243.052 + 154.131i −0.528374 + 0.335067i
\(461\) 142.328 0.308737 0.154369 0.988013i \(-0.450666\pi\)
0.154369 + 0.988013i \(0.450666\pi\)
\(462\) 162.765 77.5576i 0.352306 0.167874i
\(463\) 62.1843 + 62.1843i 0.134307 + 0.134307i 0.771064 0.636757i \(-0.219725\pi\)
−0.636757 + 0.771064i \(0.719725\pi\)
\(464\) 59.5287 103.107i 0.128295 0.222213i
\(465\) −607.769 178.781i −1.30703 0.384475i
\(466\) 253.232 + 438.611i 0.543416 + 0.941225i
\(467\) −144.105 537.808i −0.308577 1.15162i −0.929823 0.368008i \(-0.880040\pi\)
0.621246 0.783616i \(-0.286627\pi\)
\(468\) −125.104 + 16.3705i −0.267317 + 0.0349797i
\(469\) 3.04935 233.021i 0.00650181 0.496847i
\(470\) 427.327 133.758i 0.909206 0.284592i
\(471\) 36.6659 + 41.8426i 0.0778470 + 0.0888378i
\(472\) −61.4092 + 229.182i −0.130104 + 0.485556i
\(473\) 184.338 + 49.3932i 0.389720 + 0.104425i
\(474\) −275.140 + 241.100i −0.580464 + 0.508651i
\(475\) 348.056 241.558i 0.732750 0.508544i
\(476\) −175.167 312.779i −0.367997 0.657099i
\(477\) −2.05881 15.7336i −0.00431617 0.0329845i
\(478\) 133.034 35.6464i 0.278314 0.0745741i
\(479\) −32.8860 + 18.9867i −0.0686554 + 0.0396382i −0.533935 0.845526i \(-0.679287\pi\)
0.465279 + 0.885164i \(0.345954\pi\)
\(480\) 74.4935 40.6291i 0.155195 0.0846439i
\(481\) −290.913 167.959i −0.604809 0.349187i
\(482\) 51.5893 51.5893i 0.107032 0.107032i
\(483\) 47.6532 602.505i 0.0986608 1.24742i
\(484\) 168.286i 0.347699i
\(485\) −488.351 + 309.686i −1.00691 + 0.638529i
\(486\) −151.390 308.511i −0.311501 0.634797i
\(487\) −469.334 125.758i −0.963726 0.258230i −0.257549 0.966265i \(-0.582915\pi\)
−0.706177 + 0.708036i \(0.749582\pi\)
\(488\) −56.8660 + 15.2372i −0.116529 + 0.0312238i
\(489\) 80.8387 237.837i 0.165314 0.486373i
\(490\) 177.836 + 297.363i 0.362930 + 0.606862i
\(491\) 170.670i 0.347596i −0.984781 0.173798i \(-0.944396\pi\)
0.984781 0.173798i \(-0.0556040\pi\)
\(492\) 1.18157 17.9196i 0.00240157 0.0364220i
\(493\) 736.186 + 197.261i 1.49328 + 0.400123i
\(494\) 83.9956 + 145.485i 0.170032 + 0.294503i
\(495\) −209.781 + 175.005i −0.423800 + 0.353546i
\(496\) 168.938i 0.340602i
\(497\) 71.9673 18.2777i 0.144803 0.0367761i
\(498\) −253.497 + 124.887i −0.509029 + 0.250777i
\(499\) 7.72541 + 4.46027i 0.0154818 + 0.00893841i 0.507721 0.861522i \(-0.330488\pi\)
−0.492239 + 0.870460i \(0.663821\pi\)
\(500\) −34.1788 + 247.653i −0.0683576 + 0.495305i
\(501\) 120.889 + 608.997i 0.241295 + 1.21556i
\(502\) −449.192 + 120.361i −0.894805 + 0.239762i
\(503\) −256.753 256.753i −0.510443 0.510443i 0.404219 0.914662i \(-0.367543\pi\)
−0.914662 + 0.404219i \(0.867543\pi\)
\(504\) −25.7066 + 176.327i −0.0510051 + 0.349855i
\(505\) 120.136 37.6041i 0.237894 0.0744636i
\(506\) −213.993 123.549i −0.422911 0.244168i
\(507\) −298.919 199.901i −0.589583 0.394282i
\(508\) 22.4208 83.6754i 0.0441353 0.164715i
\(509\) 460.998 + 266.157i 0.905693 + 0.522902i 0.879043 0.476743i \(-0.158183\pi\)
0.0266499 + 0.999645i \(0.491516\pi\)
\(510\) 374.653 + 393.311i 0.734613 + 0.771197i
\(511\) 8.96590 685.144i 0.0175458 1.34079i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) −302.095 + 343.657i −0.588879 + 0.669897i
\(514\) 19.7817 + 34.2630i 0.0384859 + 0.0666594i
\(515\) −730.654 + 30.3773i −1.41875 + 0.0589850i
\(516\) −141.853 + 124.303i −0.274908 + 0.240898i
\(517\) 271.841 + 271.841i 0.525805 + 0.525805i
\(518\) −339.824 + 331.044i −0.656030 + 0.639082i
\(519\) −239.172 + 703.673i −0.460833 + 1.35582i
\(520\) −96.7346 21.6569i −0.186028 0.0416479i
\(521\) −241.082 417.566i −0.462730 0.801471i 0.536366 0.843985i \(-0.319797\pi\)
−0.999096 + 0.0425142i \(0.986463\pi\)
\(522\) −230.386 300.734i −0.441353 0.576118i
\(523\) −238.196 888.960i −0.455442 1.69973i −0.686786 0.726860i \(-0.740979\pi\)
0.231344 0.972872i \(-0.425688\pi\)
\(524\) 223.227i 0.426005i
\(525\) −372.778 369.678i −0.710053 0.704148i
\(526\) −85.6004 −0.162738
\(527\) −1044.62 + 279.906i −1.98221 + 0.531131i
\(528\) 60.5581 + 40.4980i 0.114693 + 0.0767008i
\(529\) −259.207 + 149.653i −0.489994 + 0.282898i
\(530\) 2.72366 12.1657i 0.00513897 0.0229542i
\(531\) 598.604 + 460.072i 1.12732 + 0.866425i
\(532\) 229.953 58.4018i 0.432243 0.109778i
\(533\) −14.8351 + 14.8351i −0.0278333 + 0.0278333i
\(534\) −510.893 + 447.687i −0.956729 + 0.838365i
\(535\) −17.0261 409.523i −0.0318245 0.765463i
\(536\) 81.5474 47.0814i 0.152141 0.0878385i
\(537\) −119.744 7.89562i −0.222987 0.0147032i
\(538\) −257.858 + 257.858i −0.479290 + 0.479290i
\(539\) −155.429 + 253.643i −0.288366 + 0.470581i
\(540\) −28.5194 268.490i −0.0528137 0.497203i
\(541\) −322.337 + 558.305i −0.595818 + 1.03199i 0.397613 + 0.917553i \(0.369839\pi\)
−0.993431 + 0.114433i \(0.963495\pi\)
\(542\) 257.395 + 68.9688i 0.474898 + 0.127249i
\(543\) 524.049 + 350.456i 0.965100 + 0.645407i
\(544\) 72.4257 125.445i 0.133135 0.230597i
\(545\) 24.4910 + 78.2432i 0.0449377 + 0.143565i
\(546\) 158.347 135.135i 0.290013 0.247500i
\(547\) 753.854 753.854i 1.37816 1.37816i 0.530436 0.847725i \(-0.322028\pi\)
0.847725 0.530436i \(-0.177972\pi\)
\(548\) −69.8525 260.693i −0.127468 0.475718i
\(549\) −24.5971 + 185.708i −0.0448034 + 0.338265i
\(550\) −202.001 + 72.5713i −0.367274 + 0.131948i
\(551\) −252.204 + 436.829i −0.457720 + 0.792794i
\(552\) 219.067 107.925i 0.396860 0.195516i
\(553\) 163.836 580.927i 0.296267 1.05050i
\(554\) −383.742 −0.692674
\(555\) 374.439 613.628i 0.674664 1.10564i
\(556\) 163.161 94.2009i 0.293455 0.169426i
\(557\) 4.65931 17.3888i 0.00836501 0.0312187i −0.961617 0.274395i \(-0.911523\pi\)
0.969982 + 0.243176i \(0.0781892\pi\)
\(558\) 496.478 + 206.104i 0.889745 + 0.369362i
\(559\) 220.343 0.394173
\(560\) −66.5208 + 123.187i −0.118787 + 0.219976i
\(561\) −150.082 + 441.558i −0.267526 + 0.787090i
\(562\) −97.1170 362.445i −0.172806 0.644921i
\(563\) 212.599 793.429i 0.377617 1.40929i −0.471865 0.881671i \(-0.656419\pi\)
0.849483 0.527617i \(-0.176914\pi\)
\(564\) −372.675 + 73.9778i −0.660772 + 0.131166i
\(565\) 438.868 + 692.060i 0.776758 + 1.22488i
\(566\) −588.188 −1.03920
\(567\) 486.829 + 290.665i 0.858606 + 0.512637i
\(568\) 21.2149 + 21.2149i 0.0373501 + 0.0373501i
\(569\) −306.103 + 530.186i −0.537967 + 0.931786i 0.461046 + 0.887376i \(0.347474\pi\)
−0.999013 + 0.0444103i \(0.985859\pi\)
\(570\) −315.604 + 172.132i −0.553692 + 0.301986i
\(571\) −39.0173 67.5799i −0.0683315 0.118354i 0.829835 0.558008i \(-0.188434\pi\)
−0.898167 + 0.439655i \(0.855101\pi\)
\(572\) −22.0278 82.2090i −0.0385102 0.143722i
\(573\) 502.544 247.582i 0.877041 0.432081i
\(574\) 14.4780 + 25.8520i 0.0252230 + 0.0450384i
\(575\) −127.890 + 708.051i −0.222418 + 1.23139i
\(576\) −66.5409 + 27.5010i −0.115522 + 0.0477448i
\(577\) −115.407 + 430.705i −0.200012 + 0.746456i 0.790900 + 0.611946i \(0.209613\pi\)
−0.990912 + 0.134510i \(0.957054\pi\)
\(578\) 500.900 + 134.216i 0.866609 + 0.232207i
\(579\) −346.126 394.994i −0.597800 0.682200i
\(580\) −88.9120 284.053i −0.153297 0.489747i
\(581\) 238.389 400.700i 0.410308 0.689672i
\(582\) 440.158 216.848i 0.756286 0.372590i
\(583\) 10.3389 2.77030i 0.0177340 0.00475181i
\(584\) 239.771 138.432i 0.410567 0.237041i
\(585\) −181.661 + 257.863i −0.310532 + 0.440792i
\(586\) −27.1249 15.6606i −0.0462883 0.0267246i
\(587\) −774.944 + 774.944i −1.32018 + 1.32018i −0.406549 + 0.913629i \(0.633268\pi\)
−0.913629 + 0.406549i \(0.866732\pi\)
\(588\) −122.984 267.041i −0.209156 0.454152i
\(589\) 715.736i 1.21517i
\(590\) 317.667 + 500.935i 0.538418 + 0.849042i
\(591\) 135.977 26.9920i 0.230079 0.0456717i
\(592\) −185.161 49.6138i −0.312772 0.0838071i
\(593\) 165.220 44.2706i 0.278618 0.0746554i −0.116804 0.993155i \(-0.537265\pi\)
0.395422 + 0.918500i \(0.370598\pi\)
\(594\) 192.897 128.561i 0.324742 0.216433i
\(595\) −871.935 207.226i −1.46544 0.348279i
\(596\) 401.159i 0.673085i
\(597\) −118.387 7.80613i −0.198303 0.0130756i
\(598\) −275.576 73.8403i −0.460829 0.123479i
\(599\) −291.458 504.819i −0.486574 0.842770i 0.513307 0.858205i \(-0.328420\pi\)
−0.999881 + 0.0154348i \(0.995087\pi\)
\(600\) 51.3590 205.821i 0.0855983 0.343035i
\(601\) 831.971i 1.38431i 0.721749 + 0.692155i \(0.243339\pi\)
−0.721749 + 0.692155i \(0.756661\pi\)
\(602\) 84.4680 299.506i 0.140312 0.497519i
\(603\) −38.8758 297.092i −0.0644706 0.492689i
\(604\) 460.499 + 265.869i 0.762415 + 0.440180i
\(605\) 309.592 + 284.877i 0.511722 + 0.470871i
\(606\) −104.772 + 20.7977i −0.172891 + 0.0343197i
\(607\) 676.244 181.199i 1.11408 0.298516i 0.345592 0.938385i \(-0.387678\pi\)
0.768484 + 0.639869i \(0.221012\pi\)
\(608\) 67.7867 + 67.7867i 0.111491 + 0.111491i
\(609\) 589.119 + 208.875i 0.967354 + 0.342980i
\(610\) −68.2318 + 130.408i −0.111855 + 0.213784i
\(611\) 384.405 + 221.936i 0.629141 + 0.363235i
\(612\) −280.300 365.888i −0.458006 0.597856i
\(613\) −257.420 + 960.706i −0.419935 + 1.56722i 0.354805 + 0.934940i \(0.384547\pi\)
−0.774741 + 0.632279i \(0.782120\pi\)
\(614\) −385.410 222.516i −0.627703 0.362405i
\(615\) −30.9661 32.5082i −0.0503513 0.0528588i
\(616\) −120.189 1.57281i −0.195112 0.00255326i
\(617\) −78.0872 78.0872i −0.126559 0.126559i 0.640990 0.767549i \(-0.278524\pi\)
−0.767549 + 0.640990i \(0.778524\pi\)
\(618\) 619.172 + 40.8266i 1.00190 + 0.0660624i
\(619\) 232.594 + 402.865i 0.375758 + 0.650832i 0.990440 0.137943i \(-0.0440491\pi\)
−0.614682 + 0.788775i \(0.710716\pi\)
\(620\) 310.791 + 285.980i 0.501276 + 0.461259i
\(621\) −49.9104 775.464i −0.0803709 1.24873i
\(622\) −185.284 185.284i −0.297884 0.297884i
\(623\) 304.218 1078.69i 0.488311 1.73145i
\(624\) 79.6394 + 27.0688i 0.127627 + 0.0433795i
\(625\) 397.742 + 482.106i 0.636387 + 0.771370i
\(626\) 64.0188 + 110.884i 0.102266 + 0.177131i
\(627\) −256.565 171.577i −0.409194 0.273647i
\(628\) −9.59950 35.8258i −0.0152858 0.0570475i
\(629\) 1227.14i 1.95094i
\(630\) 280.868 + 345.779i 0.445821 + 0.548856i
\(631\) −547.403 −0.867516 −0.433758 0.901029i \(-0.642813\pi\)
−0.433758 + 0.901029i \(0.642813\pi\)
\(632\) 235.576 63.1225i 0.372747 0.0998773i
\(633\) 242.919 363.245i 0.383758 0.573847i
\(634\) 571.798 330.128i 0.901890 0.520706i
\(635\) −115.981 182.893i −0.182648 0.288021i
\(636\) −3.40427 + 10.0158i −0.00535263 + 0.0157480i
\(637\) −97.5464 + 329.322i −0.153134 + 0.516989i
\(638\) 180.699 180.699i 0.283227 0.283227i
\(639\) 88.2285 36.4644i 0.138073 0.0570648i
\(640\) −56.5197 + 2.34983i −0.0883121 + 0.00367161i
\(641\) 504.465 291.253i 0.786996 0.454372i −0.0519078 0.998652i \(-0.516530\pi\)
0.838904 + 0.544279i \(0.183197\pi\)
\(642\) −22.8828 + 347.038i −0.0356430 + 0.540558i
\(643\) −111.140 + 111.140i −0.172847 + 0.172847i −0.788229 0.615382i \(-0.789002\pi\)
0.615382 + 0.788229i \(0.289002\pi\)
\(644\) −206.011 + 346.277i −0.319893 + 0.537697i
\(645\) −11.4524 + 471.384i −0.0177557 + 0.730828i
\(646\) −306.844 + 531.469i −0.474990 + 0.822707i
\(647\) 692.021 + 185.427i 1.06958 + 0.286594i 0.750322 0.661072i \(-0.229898\pi\)
0.319262 + 0.947666i \(0.396565\pi\)
\(648\) −0.359407 + 229.102i −0.000554640 + 0.353553i
\(649\) −254.637 + 441.044i −0.392353 + 0.679575i
\(650\) −203.595 + 141.299i −0.313223 + 0.217383i
\(651\) −872.137 + 161.291i −1.33969 + 0.247760i
\(652\) −118.417 + 118.417i −0.181620 + 0.181620i
\(653\) 96.2164 + 359.084i 0.147345 + 0.549900i 0.999640 + 0.0268376i \(0.00854371\pi\)
−0.852295 + 0.523062i \(0.824790\pi\)
\(654\) −13.5453 68.2365i −0.0207114 0.104337i
\(655\) 410.664 + 377.880i 0.626968 + 0.576916i
\(656\) −5.98617 + 10.3684i −0.00912526 + 0.0158054i
\(657\) −114.305 873.528i −0.173981 1.32957i
\(658\) 449.034 437.433i 0.682422 0.664792i
\(659\) −287.718 −0.436598 −0.218299 0.975882i \(-0.570051\pi\)
−0.218299 + 0.975882i \(0.570051\pi\)
\(660\) 177.016 42.8518i 0.268207 0.0649270i
\(661\) 358.917 207.221i 0.542991 0.313496i −0.203299 0.979117i \(-0.565166\pi\)
0.746290 + 0.665621i \(0.231833\pi\)
\(662\) 134.903 503.465i 0.203781 0.760521i
\(663\) −35.4279 + 537.296i −0.0534357 + 0.810401i
\(664\) 188.394 0.283725
\(665\) 281.827 521.902i 0.423799 0.784815i
\(666\) −371.702 + 483.625i −0.558111 + 0.726164i
\(667\) −221.712 827.439i −0.332401 1.24054i
\(668\) 107.130 399.816i 0.160375 0.598527i
\(669\) −167.510 843.861i −0.250389 1.26138i
\(670\) 51.4297 229.720i 0.0767608 0.342866i
\(671\) −126.364 −0.188322
\(672\) 67.3236 97.8751i 0.100184 0.145647i
\(673\) 257.918 + 257.918i 0.383237 + 0.383237i 0.872267 0.489030i \(-0.162649\pi\)
−0.489030 + 0.872267i \(0.662649\pi\)
\(674\) 424.870 735.897i 0.630371 1.09184i
\(675\) −542.211 402.035i −0.803276 0.595608i
\(676\) 119.867 + 207.616i 0.177318 + 0.307124i
\(677\) 151.079 + 563.836i 0.223160 + 0.832845i 0.983133 + 0.182891i \(0.0585454\pi\)
−0.759973 + 0.649955i \(0.774788\pi\)
\(678\) −307.303 623.765i −0.453249 0.920007i
\(679\) −413.926 + 695.754i −0.609611 + 1.02467i
\(680\) −108.175 345.594i −0.159081 0.508226i
\(681\) −129.178 + 113.196i −0.189688 + 0.166221i
\(682\) −93.8509 + 350.256i −0.137611 + 0.513572i
\(683\) −399.678 107.093i −0.585180 0.156799i −0.0459306 0.998945i \(-0.514625\pi\)
−0.539249 + 0.842146i \(0.681292\pi\)
\(684\) 281.912 116.513i 0.412152 0.170340i
\(685\) −597.837 312.798i −0.872755 0.456639i
\(686\) 410.245 + 258.838i 0.598025 + 0.377314i
\(687\) 88.0097 + 178.643i 0.128107 + 0.260033i
\(688\) 121.455 32.5438i 0.176534 0.0473020i
\(689\) 10.7026 6.17916i 0.0155336 0.00896830i
\(690\) 172.291 585.708i 0.249698 0.848852i
\(691\) −446.192 257.609i −0.645720 0.372806i 0.141095 0.989996i \(-0.454938\pi\)
−0.786814 + 0.617190i \(0.788271\pi\)
\(692\) 350.352 350.352i 0.506289 0.506289i
\(693\) −151.252 + 351.294i −0.218257 + 0.506917i
\(694\) 85.1262i 0.122660i
\(695\) 102.901 459.627i 0.148059 0.661333i
\(696\) 49.1747 + 247.725i 0.0706533 + 0.355927i
\(697\) −74.0305 19.8364i −0.106213 0.0284597i
\(698\) −744.164 + 199.398i −1.06614 + 0.285671i
\(699\) −1017.22 345.745i −1.45525 0.494628i
\(700\) 114.017 + 330.908i 0.162881 + 0.472726i
\(701\) 733.940i 1.04699i 0.852029 + 0.523495i \(0.175372\pi\)
−0.852029 + 0.523495i \(0.824628\pi\)
\(702\) 176.710 201.021i 0.251723 0.286355i
\(703\) 784.467 + 210.197i 1.11588 + 0.299000i
\(704\) −24.2839 42.0610i −0.0344942 0.0597457i
\(705\) −494.773 + 810.832i −0.701806 + 1.15012i
\(706\) 439.723i 0.622837i
\(707\) 126.239 122.978i 0.178556 0.173943i
\(708\) −222.435 451.501i −0.314174 0.637713i
\(709\) 897.760 + 518.322i 1.26623 + 0.731061i 0.974273 0.225369i \(-0.0723588\pi\)
0.291961 + 0.956430i \(0.405692\pi\)
\(710\) 74.9411 3.11571i 0.105551 0.00438833i
\(711\) 101.897 769.323i 0.143315 1.08203i
\(712\) 437.430 117.209i 0.614367 0.164619i
\(713\) 859.506 + 859.506i 1.20548 + 1.20548i
\(714\) 716.752 + 254.128i 1.00385 + 0.355921i
\(715\) −188.527 98.6401i −0.263674 0.137958i
\(716\) 69.2845 + 40.0014i 0.0967661 + 0.0558679i
\(717\) −162.413 + 242.861i −0.226517 + 0.338719i
\(718\) −135.209 + 504.606i −0.188313 + 0.702793i
\(719\) 746.305 + 430.879i 1.03798 + 0.599276i 0.919259 0.393653i \(-0.128789\pi\)
0.118716 + 0.992928i \(0.462122\pi\)
\(720\) −62.0482 + 168.968i −0.0861780 + 0.234677i
\(721\) −893.259 + 500.254i −1.23892 + 0.693834i
\(722\) 73.8100 + 73.8100i 0.102230 + 0.102230i
\(723\) −10.1829 + 154.433i −0.0140842 + 0.213600i
\(724\) −210.145 363.981i −0.290255 0.502737i
\(725\) −673.077 317.279i −0.928382 0.437626i
\(726\) −235.274 268.491i −0.324069 0.369823i
\(727\) −381.491 381.491i −0.524747 0.524747i 0.394255 0.919001i \(-0.371003\pi\)
−0.919001 + 0.394255i \(0.871003\pi\)
\(728\) −134.511 + 34.1620i −0.184767 + 0.0469258i
\(729\) 672.850 + 280.560i 0.922976 + 0.384856i
\(730\) 151.217 675.439i 0.207147 0.925259i
\(731\) 402.466 + 697.092i 0.550569 + 0.953614i
\(732\) 69.4239 103.812i 0.0948413 0.141820i
\(733\) 137.212 + 512.084i 0.187193 + 0.698614i 0.994150 + 0.108004i \(0.0344460\pi\)
−0.806957 + 0.590610i \(0.798887\pi\)
\(734\) 878.081i 1.19629i
\(735\) −699.456 225.800i −0.951641 0.307211i
\(736\) −162.806 −0.221204
\(737\) 195.226 52.3106i 0.264892 0.0709777i
\(738\) 23.1675 + 30.2416i 0.0313923 + 0.0409778i
\(739\) 607.558 350.774i 0.822135 0.474660i −0.0290169 0.999579i \(-0.509238\pi\)
0.851152 + 0.524919i \(0.175904\pi\)
\(740\) −404.716 + 256.649i −0.546913 + 0.346824i
\(741\) −337.406 114.682i −0.455339 0.154766i
\(742\) −4.29634 16.9166i −0.00579022 0.0227986i
\(743\) 701.159 701.159i 0.943687 0.943687i −0.0548100 0.998497i \(-0.517455\pi\)
0.998497 + 0.0548100i \(0.0174553\pi\)
\(744\) −236.186 269.531i −0.317454 0.362273i
\(745\) −738.001 679.085i −0.990606 0.911524i
\(746\) −176.154 + 101.702i −0.236131 + 0.136330i
\(747\) 229.840 553.653i 0.307683 0.741169i
\(748\) 219.847 219.847i 0.293914 0.293914i
\(749\) −280.387 500.661i −0.374348 0.668439i
\(750\) −291.702 442.899i −0.388937 0.590532i
\(751\) −257.969 + 446.816i −0.343501 + 0.594962i −0.985080 0.172095i \(-0.944946\pi\)
0.641579 + 0.767057i \(0.278280\pi\)
\(752\) 244.667 + 65.5584i 0.325355 + 0.0871787i
\(753\) 548.389 820.025i 0.728272 1.08901i
\(754\) 147.526 255.522i 0.195658 0.338889i
\(755\) 1268.65 397.102i 1.68033 0.525962i
\(756\) −205.502 317.259i −0.271828 0.419654i
\(757\) 787.928 787.928i 1.04086 1.04086i 0.0417273 0.999129i \(-0.486714\pi\)
0.999129 0.0417273i \(-0.0132861\pi\)
\(758\) −272.245 1016.03i −0.359162 1.34041i
\(759\) 514.142 102.060i 0.677394 0.134466i
\(760\) 239.455 9.95547i 0.315073 0.0130993i
\(761\) 365.742 633.485i