Properties

Label 210.3.w.b.173.12
Level 210
Weight 3
Character 210.173
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 173.12
Character \(\chi\) \(=\) 210.173
Dual form 210.3.w.b.17.12

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 0.366025i) q^{2} +(2.23964 - 1.99599i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-2.72423 - 4.19268i) q^{5} +(2.32883 - 3.54635i) q^{6} +(-5.35730 + 4.50548i) q^{7} +(2.00000 - 2.00000i) q^{8} +(1.03201 - 8.94064i) q^{9} +O(q^{10})\) \(q+(1.36603 - 0.366025i) q^{2} +(2.23964 - 1.99599i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-2.72423 - 4.19268i) q^{5} +(2.32883 - 3.54635i) q^{6} +(-5.35730 + 4.50548i) q^{7} +(2.00000 - 2.00000i) q^{8} +(1.03201 - 8.94064i) q^{9} +(-5.25600 - 4.73017i) q^{10} +(8.15539 - 4.70851i) q^{11} +(1.88318 - 5.69681i) q^{12} +(16.1515 - 16.1515i) q^{13} +(-5.66909 + 8.11550i) q^{14} +(-14.4699 - 3.95255i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-9.03315 - 2.42042i) q^{17} +(-1.86275 - 12.5909i) q^{18} +(-13.1762 + 22.8218i) q^{19} +(-8.91119 - 4.53770i) q^{20} +(-3.00554 + 20.7838i) q^{21} +(9.41703 - 9.41703i) q^{22} +(6.16910 + 23.0234i) q^{23} +(0.487298 - 8.47128i) q^{24} +(-10.1571 + 22.8437i) q^{25} +(16.1515 - 27.9753i) q^{26} +(-15.5341 - 22.0837i) q^{27} +(-4.77364 + 13.1610i) q^{28} +34.0152 q^{29} +(-21.2130 - 0.102945i) q^{30} +(2.88724 - 1.66695i) q^{31} +(1.46410 - 5.46410i) q^{32} +(8.86699 - 26.8235i) q^{33} -13.2254 q^{34} +(33.4846 + 10.1875i) q^{35} +(-7.15314 - 16.5176i) q^{36} +(12.3909 + 46.2436i) q^{37} +(-9.64561 + 35.9979i) q^{38} +(3.93531 - 68.4121i) q^{39} +(-13.8338 - 2.93689i) q^{40} +3.31953 q^{41} +(3.50176 + 29.4913i) q^{42} +(28.9282 + 28.9282i) q^{43} +(9.41703 - 16.3108i) q^{44} +(-40.2966 + 20.0295i) q^{45} +(16.8543 + 29.1925i) q^{46} +(0.830153 + 3.09817i) q^{47} +(-2.43504 - 11.7503i) q^{48} +(8.40136 - 48.2744i) q^{49} +(-5.51351 + 34.9228i) q^{50} +(-25.0622 + 12.6092i) q^{51} +(11.8238 - 44.1269i) q^{52} +(-56.7679 - 15.2109i) q^{53} +(-29.3032 - 24.4810i) q^{54} +(-41.9585 - 21.3658i) q^{55} +(-1.70365 + 19.7256i) q^{56} +(16.0422 + 77.4122i) q^{57} +(46.4657 - 12.4504i) q^{58} +(33.5947 - 19.3959i) q^{59} +(-29.0151 + 7.62385i) q^{60} +(80.5416 + 46.5007i) q^{61} +(3.33389 - 3.33389i) q^{62} +(34.7530 + 52.5474i) q^{63} -8.00000i q^{64} +(-111.719 - 23.7177i) q^{65} +(2.29445 - 39.8871i) q^{66} +(3.66385 + 0.981726i) q^{67} +(-18.0663 + 4.84085i) q^{68} +(59.7712 + 39.2507i) q^{69} +(49.4696 + 1.66015i) q^{70} +26.4798i q^{71} +(-15.8173 - 19.9453i) q^{72} +(27.3096 + 7.31758i) q^{73} +(33.8527 + 58.6345i) q^{74} +(22.8475 + 71.4352i) q^{75} +52.7046i q^{76} +(-22.4768 + 61.9688i) q^{77} +(-19.6648 - 94.8931i) q^{78} +(38.5758 + 22.2717i) q^{79} +(-19.9723 + 1.05166i) q^{80} +(-78.8699 - 18.4536i) q^{81} +(4.53456 - 1.21503i) q^{82} +(-70.6898 - 70.6898i) q^{83} +(15.5781 + 39.0042i) q^{84} +(14.4603 + 44.4669i) q^{85} +(50.1051 + 28.9282i) q^{86} +(76.1820 - 67.8943i) q^{87} +(6.89374 - 25.7278i) q^{88} +(-118.139 - 68.2077i) q^{89} +(-47.7149 + 42.1104i) q^{90} +(-13.7583 + 159.299i) q^{91} +(33.7086 + 33.7086i) q^{92} +(3.13916 - 9.49627i) q^{93} +(2.26802 + 3.92833i) q^{94} +(131.579 - 6.92843i) q^{95} +(-7.62725 - 15.1600i) q^{96} +(-118.552 - 118.552i) q^{97} +(-6.19318 - 69.0192i) q^{98} +(-33.6807 - 77.7736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 0.366025i 0.683013 0.183013i
\(3\) 2.23964 1.99599i 0.746548 0.665332i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −2.72423 4.19268i −0.544847 0.838536i
\(6\) 2.32883 3.54635i 0.388138 0.591058i
\(7\) −5.35730 + 4.50548i −0.765329 + 0.643640i
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 1.03201 8.94064i 0.114668 0.993404i
\(10\) −5.25600 4.73017i −0.525600 0.473017i
\(11\) 8.15539 4.70851i 0.741399 0.428047i −0.0811789 0.996700i \(-0.525869\pi\)
0.822578 + 0.568653i \(0.192535\pi\)
\(12\) 1.88318 5.69681i 0.156932 0.474734i
\(13\) 16.1515 16.1515i 1.24243 1.24243i 0.283436 0.958991i \(-0.408526\pi\)
0.958991 0.283436i \(-0.0914742\pi\)
\(14\) −5.66909 + 8.11550i −0.404935 + 0.579679i
\(15\) −14.4699 3.95255i −0.964658 0.263504i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −9.03315 2.42042i −0.531362 0.142378i −0.0168447 0.999858i \(-0.505362\pi\)
−0.514517 + 0.857480i \(0.672029\pi\)
\(18\) −1.86275 12.5909i −0.103486 0.699493i
\(19\) −13.1762 + 22.8218i −0.693482 + 1.20115i 0.277208 + 0.960810i \(0.410591\pi\)
−0.970690 + 0.240336i \(0.922742\pi\)
\(20\) −8.91119 4.53770i −0.445559 0.226885i
\(21\) −3.00554 + 20.7838i −0.143121 + 0.989705i
\(22\) 9.41703 9.41703i 0.428047 0.428047i
\(23\) 6.16910 + 23.0234i 0.268222 + 1.00102i 0.960249 + 0.279146i \(0.0900513\pi\)
−0.692027 + 0.721872i \(0.743282\pi\)
\(24\) 0.487298 8.47128i 0.0203041 0.352970i
\(25\) −10.1571 + 22.8437i −0.406284 + 0.913747i
\(26\) 16.1515 27.9753i 0.621213 1.07597i
\(27\) −15.5341 22.0837i −0.575338 0.817916i
\(28\) −4.77364 + 13.1610i −0.170487 + 0.470036i
\(29\) 34.0152 1.17294 0.586470 0.809971i \(-0.300517\pi\)
0.586470 + 0.809971i \(0.300517\pi\)
\(30\) −21.2130 0.102945i −0.707098 0.00343150i
\(31\) 2.88724 1.66695i 0.0931366 0.0537724i −0.452708 0.891659i \(-0.649542\pi\)
0.545845 + 0.837886i \(0.316209\pi\)
\(32\) 1.46410 5.46410i 0.0457532 0.170753i
\(33\) 8.86699 26.8235i 0.268697 0.812834i
\(34\) −13.2254 −0.388984
\(35\) 33.4846 + 10.1875i 0.956702 + 0.291071i
\(36\) −7.15314 16.5176i −0.198698 0.458823i
\(37\) 12.3909 + 46.2436i 0.334890 + 1.24983i 0.903988 + 0.427557i \(0.140626\pi\)
−0.569098 + 0.822270i \(0.692708\pi\)
\(38\) −9.64561 + 35.9979i −0.253832 + 0.947314i
\(39\) 3.93531 68.4121i 0.100905 1.75416i
\(40\) −13.8338 2.93689i −0.345846 0.0734223i
\(41\) 3.31953 0.0809641 0.0404820 0.999180i \(-0.487111\pi\)
0.0404820 + 0.999180i \(0.487111\pi\)
\(42\) 3.50176 + 29.4913i 0.0833752 + 0.702174i
\(43\) 28.9282 + 28.9282i 0.672749 + 0.672749i 0.958349 0.285600i \(-0.0921928\pi\)
−0.285600 + 0.958349i \(0.592193\pi\)
\(44\) 9.41703 16.3108i 0.214023 0.370699i
\(45\) −40.2966 + 20.0295i −0.895481 + 0.445100i
\(46\) 16.8543 + 29.1925i 0.366398 + 0.634620i
\(47\) 0.830153 + 3.09817i 0.0176628 + 0.0659186i 0.974195 0.225709i \(-0.0724699\pi\)
−0.956532 + 0.291628i \(0.905803\pi\)
\(48\) −2.43504 11.7503i −0.0507300 0.244799i
\(49\) 8.40136 48.2744i 0.171456 0.985192i
\(50\) −5.51351 + 34.9228i −0.110270 + 0.698456i
\(51\) −25.0622 + 12.6092i −0.491416 + 0.247240i
\(52\) 11.8238 44.1269i 0.227380 0.848593i
\(53\) −56.7679 15.2109i −1.07109 0.286998i −0.320151 0.947367i \(-0.603734\pi\)
−0.750942 + 0.660368i \(0.770400\pi\)
\(54\) −29.3032 24.4810i −0.542652 0.453353i
\(55\) −41.9585 21.3658i −0.762881 0.388470i
\(56\) −1.70365 + 19.7256i −0.0304223 + 0.352242i
\(57\) 16.0422 + 77.4122i 0.281443 + 1.35811i
\(58\) 46.4657 12.4504i 0.801133 0.214663i
\(59\) 33.5947 19.3959i 0.569402 0.328744i −0.187508 0.982263i \(-0.560041\pi\)
0.756910 + 0.653519i \(0.226708\pi\)
\(60\) −29.0151 + 7.62385i −0.483585 + 0.127064i
\(61\) 80.5416 + 46.5007i 1.32035 + 0.762307i 0.983785 0.179352i \(-0.0574002\pi\)
0.336569 + 0.941659i \(0.390733\pi\)
\(62\) 3.33389 3.33389i 0.0537724 0.0537724i
\(63\) 34.7530 + 52.5474i 0.551635 + 0.834085i
\(64\) 8.00000i 0.125000i
\(65\) −111.719 23.7177i −1.71875 0.364887i
\(66\) 2.29445 39.8871i 0.0347644 0.604351i
\(67\) 3.66385 + 0.981726i 0.0546844 + 0.0146526i 0.286058 0.958212i \(-0.407655\pi\)
−0.231373 + 0.972865i \(0.574322\pi\)
\(68\) −18.0663 + 4.84085i −0.265681 + 0.0711890i
\(69\) 59.7712 + 39.2507i 0.866249 + 0.568851i
\(70\) 49.4696 + 1.66015i 0.706709 + 0.0237165i
\(71\) 26.4798i 0.372956i 0.982459 + 0.186478i \(0.0597072\pi\)
−0.982459 + 0.186478i \(0.940293\pi\)
\(72\) −15.8173 19.9453i −0.219684 0.277018i
\(73\) 27.3096 + 7.31758i 0.374104 + 0.100241i 0.440972 0.897521i \(-0.354634\pi\)
−0.0668679 + 0.997762i \(0.521301\pi\)
\(74\) 33.8527 + 58.6345i 0.457468 + 0.792358i
\(75\) 22.8475 + 71.4352i 0.304634 + 0.952470i
\(76\) 52.7046i 0.693482i
\(77\) −22.4768 + 61.9688i −0.291906 + 0.804790i
\(78\) −19.6648 94.8931i −0.252113 1.21658i
\(79\) 38.5758 + 22.2717i 0.488301 + 0.281921i 0.723869 0.689937i \(-0.242362\pi\)
−0.235568 + 0.971858i \(0.575695\pi\)
\(80\) −19.9723 + 1.05166i −0.249654 + 0.0131458i
\(81\) −78.8699 18.4536i −0.973703 0.227823i
\(82\) 4.53456 1.21503i 0.0552995 0.0148175i
\(83\) −70.6898 70.6898i −0.851684 0.851684i 0.138656 0.990341i \(-0.455722\pi\)
−0.990341 + 0.138656i \(0.955722\pi\)
\(84\) 15.5781 + 39.0042i 0.185453 + 0.464335i
\(85\) 14.4603 + 44.4669i 0.170122 + 0.523140i
\(86\) 50.1051 + 28.9282i 0.582618 + 0.336375i
\(87\) 76.1820 67.8943i 0.875656 0.780394i
\(88\) 6.89374 25.7278i 0.0783380 0.292361i
\(89\) −118.139 68.2077i −1.32741 0.766378i −0.342509 0.939515i \(-0.611277\pi\)
−0.984898 + 0.173136i \(0.944610\pi\)
\(90\) −47.7149 + 42.1104i −0.530166 + 0.467893i
\(91\) −13.7583 + 159.299i −0.151190 + 1.75054i
\(92\) 33.7086 + 33.7086i 0.366398 + 0.366398i
\(93\) 3.13916 9.49627i 0.0337544 0.102110i
\(94\) 2.26802 + 3.92833i 0.0241279 + 0.0417907i
\(95\) 131.579 6.92843i 1.38504 0.0729309i
\(96\) −7.62725 15.1600i −0.0794505 0.157916i
\(97\) −118.552 118.552i −1.22219 1.22219i −0.966853 0.255332i \(-0.917815\pi\)
−0.255332 0.966853i \(-0.582185\pi\)
\(98\) −6.19318 69.0192i −0.0631958 0.704277i
\(99\) −33.6807 77.7736i −0.340209 0.785592i
\(100\) 5.25104 + 49.7235i 0.0525104 + 0.497235i
\(101\) 18.5919 + 32.2022i 0.184078 + 0.318833i 0.943266 0.332039i \(-0.107737\pi\)
−0.759187 + 0.650872i \(0.774403\pi\)
\(102\) −29.6203 + 26.3979i −0.290395 + 0.258803i
\(103\) 8.29623 + 30.9619i 0.0805459 + 0.300601i 0.994434 0.105366i \(-0.0336014\pi\)
−0.913888 + 0.405967i \(0.866935\pi\)
\(104\) 64.6062i 0.621213i
\(105\) 95.3276 44.0187i 0.907882 0.419225i
\(106\) −83.1140 −0.784094
\(107\) −172.109 + 46.1165i −1.60850 + 0.430995i −0.947594 0.319477i \(-0.896493\pi\)
−0.660902 + 0.750472i \(0.729826\pi\)
\(108\) −48.9896 22.7160i −0.453608 0.210333i
\(109\) 8.16589 4.71458i 0.0749165 0.0432530i −0.462074 0.886841i \(-0.652894\pi\)
0.536990 + 0.843588i \(0.319561\pi\)
\(110\) −65.1368 13.8284i −0.592152 0.125713i
\(111\) 120.053 + 78.8369i 1.08156 + 0.710243i
\(112\) 4.89283 + 27.5692i 0.0436859 + 0.246153i
\(113\) −89.8897 + 89.8897i −0.795485 + 0.795485i −0.982380 0.186895i \(-0.940157\pi\)
0.186895 + 0.982380i \(0.440157\pi\)
\(114\) 50.2489 + 99.8751i 0.440780 + 0.876097i
\(115\) 79.7237 88.5862i 0.693249 0.770315i
\(116\) 58.9161 34.0152i 0.507898 0.293235i
\(117\) −127.737 161.074i −1.09177 1.37670i
\(118\) 38.7918 38.7918i 0.328744 0.328744i
\(119\) 59.2985 27.7317i 0.498306 0.233039i
\(120\) −36.8449 + 21.0346i −0.307040 + 0.175289i
\(121\) −16.1598 + 27.9896i −0.133552 + 0.231319i
\(122\) 127.042 + 34.0409i 1.04133 + 0.279024i
\(123\) 7.43456 6.62576i 0.0604436 0.0538680i
\(124\) 3.33389 5.77447i 0.0268862 0.0465683i
\(125\) 123.446 19.6460i 0.987572 0.157168i
\(126\) 66.7072 + 59.0606i 0.529422 + 0.468735i
\(127\) −25.5424 + 25.5424i −0.201122 + 0.201122i −0.800480 0.599359i \(-0.795422\pi\)
0.599359 + 0.800480i \(0.295422\pi\)
\(128\) −2.92820 10.9282i −0.0228766 0.0853766i
\(129\) 122.529 + 7.04834i 0.949841 + 0.0546383i
\(130\) −161.292 + 8.49299i −1.24071 + 0.0653307i
\(131\) 73.8696 127.946i 0.563890 0.976686i −0.433262 0.901268i \(-0.642637\pi\)
0.997152 0.0754183i \(-0.0240292\pi\)
\(132\) −11.4654 55.3267i −0.0868593 0.419141i
\(133\) −32.2343 181.628i −0.242363 1.36562i
\(134\) 5.36425 0.0400317
\(135\) −50.2714 + 125.291i −0.372381 + 0.928080i
\(136\) −22.9071 + 13.2254i −0.168435 + 0.0972459i
\(137\) 55.4124 206.802i 0.404470 1.50950i −0.400561 0.916270i \(-0.631185\pi\)
0.805031 0.593233i \(-0.202149\pi\)
\(138\) 96.0157 + 31.7397i 0.695766 + 0.229998i
\(139\) 14.1012 0.101447 0.0507237 0.998713i \(-0.483847\pi\)
0.0507237 + 0.998713i \(0.483847\pi\)
\(140\) 68.1844 15.8393i 0.487032 0.113138i
\(141\) 8.04318 + 5.28182i 0.0570439 + 0.0374597i
\(142\) 9.69230 + 36.1721i 0.0682556 + 0.254733i
\(143\) 55.6723 207.772i 0.389317 1.45295i
\(144\) −28.9072 21.4563i −0.200745 0.149002i
\(145\) −92.6655 142.615i −0.639072 0.983552i
\(146\) 39.9840 0.273863
\(147\) −77.5394 124.887i −0.527479 0.849568i
\(148\) 67.7053 + 67.7053i 0.457468 + 0.457468i
\(149\) −49.5021 + 85.7402i −0.332229 + 0.575437i −0.982949 0.183881i \(-0.941134\pi\)
0.650720 + 0.759318i \(0.274467\pi\)
\(150\) 57.3574 + 89.2195i 0.382383 + 0.594797i
\(151\) 82.2460 + 142.454i 0.544675 + 0.943406i 0.998627 + 0.0523793i \(0.0166805\pi\)
−0.453952 + 0.891026i \(0.649986\pi\)
\(152\) 19.2912 + 71.9958i 0.126916 + 0.473657i
\(153\) −30.9624 + 78.2642i −0.202369 + 0.511531i
\(154\) −8.02166 + 92.8781i −0.0520887 + 0.603104i
\(155\) −14.8545 7.56410i −0.0958353 0.0488006i
\(156\) −61.5960 122.429i −0.394846 0.784799i
\(157\) −18.0786 + 67.4702i −0.115150 + 0.429746i −0.999298 0.0374608i \(-0.988073\pi\)
0.884148 + 0.467207i \(0.154740\pi\)
\(158\) 60.8475 + 16.3040i 0.385111 + 0.103190i
\(159\) −157.501 + 79.2414i −0.990571 + 0.498374i
\(160\) −26.8978 + 8.74698i −0.168111 + 0.0546686i
\(161\) −136.781 95.5486i −0.849572 0.593469i
\(162\) −114.493 + 3.66024i −0.706746 + 0.0225941i
\(163\) −149.425 + 40.0383i −0.916719 + 0.245634i −0.686182 0.727430i \(-0.740715\pi\)
−0.230536 + 0.973064i \(0.574048\pi\)
\(164\) 5.74959 3.31953i 0.0350585 0.0202410i
\(165\) −136.618 + 35.8970i −0.827988 + 0.217558i
\(166\) −122.438 70.6898i −0.737580 0.425842i
\(167\) −55.1776 + 55.1776i −0.330405 + 0.330405i −0.852740 0.522336i \(-0.825061\pi\)
0.522336 + 0.852740i \(0.325061\pi\)
\(168\) 35.5565 + 47.5787i 0.211646 + 0.283207i
\(169\) 352.745i 2.08725i
\(170\) 36.0292 + 55.4500i 0.211936 + 0.326177i
\(171\) 190.443 + 141.355i 1.11370 + 0.826640i
\(172\) 79.0334 + 21.1769i 0.459496 + 0.123122i
\(173\) −128.947 + 34.5513i −0.745359 + 0.199718i −0.611459 0.791276i \(-0.709417\pi\)
−0.133901 + 0.990995i \(0.542750\pi\)
\(174\) 79.2156 120.630i 0.455262 0.693275i
\(175\) −48.5069 168.143i −0.277182 0.960817i
\(176\) 37.6681i 0.214023i
\(177\) 36.5261 110.495i 0.206362 0.624265i
\(178\) −186.347 49.9315i −1.04689 0.280514i
\(179\) 127.018 + 220.002i 0.709598 + 1.22906i 0.965006 + 0.262226i \(0.0844567\pi\)
−0.255409 + 0.966833i \(0.582210\pi\)
\(180\) −49.7664 + 74.9887i −0.276480 + 0.416604i
\(181\) 307.420i 1.69846i −0.528027 0.849228i \(-0.677068\pi\)
0.528027 0.849228i \(-0.322932\pi\)
\(182\) 39.5134 + 222.643i 0.217106 + 1.22331i
\(183\) 273.200 56.6156i 1.49289 0.309375i
\(184\) 58.3850 + 33.7086i 0.317310 + 0.183199i
\(185\) 160.129 177.930i 0.865561 0.961781i
\(186\) 0.812300 14.1212i 0.00436720 0.0759202i
\(187\) −85.0654 + 22.7932i −0.454895 + 0.121889i
\(188\) 4.53604 + 4.53604i 0.0241279 + 0.0241279i
\(189\) 182.719 + 48.3205i 0.966766 + 0.255664i
\(190\) 177.205 57.6258i 0.932656 0.303293i
\(191\) 124.117 + 71.6590i 0.649828 + 0.375178i 0.788390 0.615176i \(-0.210915\pi\)
−0.138563 + 0.990354i \(0.544248\pi\)
\(192\) −15.9680 17.9172i −0.0831664 0.0933185i
\(193\) 73.6622 274.911i 0.381670 1.42441i −0.461681 0.887046i \(-0.652753\pi\)
0.843350 0.537364i \(-0.180580\pi\)
\(194\) −205.338 118.552i −1.05844 0.611093i
\(195\) −297.551 + 169.871i −1.52590 + 0.871134i
\(196\) −33.7228 92.0151i −0.172055 0.469465i
\(197\) −126.936 126.936i −0.644345 0.644345i 0.307276 0.951621i \(-0.400583\pi\)
−0.951621 + 0.307276i \(0.900583\pi\)
\(198\) −74.4758 93.9127i −0.376140 0.474307i
\(199\) 43.5943 + 75.5075i 0.219067 + 0.379435i 0.954523 0.298137i \(-0.0963654\pi\)
−0.735456 + 0.677572i \(0.763032\pi\)
\(200\) 25.3731 + 66.0016i 0.126866 + 0.330008i
\(201\) 10.1652 5.11431i 0.0505734 0.0254443i
\(202\) 37.1839 + 37.1839i 0.184078 + 0.184078i
\(203\) −182.230 + 153.255i −0.897684 + 0.754950i
\(204\) −30.7998 + 46.9020i −0.150979 + 0.229912i
\(205\) −9.04316 13.9177i −0.0441130 0.0678913i
\(206\) 22.6657 + 39.2582i 0.110028 + 0.190574i
\(207\) 212.210 31.3953i 1.02517 0.151668i
\(208\) −23.6475 88.2537i −0.113690 0.424297i
\(209\) 248.160i 1.18737i
\(210\) 114.108 95.0230i 0.543371 0.452490i
\(211\) 285.530 1.35322 0.676612 0.736340i \(-0.263448\pi\)
0.676612 + 0.736340i \(0.263448\pi\)
\(212\) −113.536 + 30.4218i −0.535546 + 0.143499i
\(213\) 52.8536 + 59.3054i 0.248139 + 0.278429i
\(214\) −218.226 + 125.993i −1.01975 + 0.588750i
\(215\) 42.4795 200.094i 0.197579 0.930669i
\(216\) −75.2357 13.0992i −0.348313 0.0606444i
\(217\) −7.95740 + 21.9387i −0.0366701 + 0.101100i
\(218\) 9.42916 9.42916i 0.0432530 0.0432530i
\(219\) 75.7696 38.1210i 0.345980 0.174068i
\(220\) −94.0400 + 4.95177i −0.427455 + 0.0225080i
\(221\) −184.993 + 106.806i −0.837072 + 0.483284i
\(222\) 192.852 + 63.7507i 0.868703 + 0.287165i
\(223\) −92.5468 + 92.5468i −0.415008 + 0.415008i −0.883479 0.468471i \(-0.844805\pi\)
0.468471 + 0.883479i \(0.344805\pi\)
\(224\) 16.7747 + 35.8693i 0.0748873 + 0.160131i
\(225\) 193.755 + 114.386i 0.861132 + 0.508382i
\(226\) −89.8897 + 155.694i −0.397742 + 0.688910i
\(227\) 20.2708 + 5.43155i 0.0892988 + 0.0239275i 0.303192 0.952930i \(-0.401948\pi\)
−0.213893 + 0.976857i \(0.568614\pi\)
\(228\) 105.198 + 118.040i 0.461395 + 0.517717i
\(229\) −148.758 + 257.656i −0.649596 + 1.12513i 0.333623 + 0.942707i \(0.391729\pi\)
−0.983219 + 0.182427i \(0.941605\pi\)
\(230\) 76.4798 150.192i 0.332521 0.653008i
\(231\) 73.3495 + 183.652i 0.317530 + 0.795029i
\(232\) 68.0305 68.0305i 0.293235 0.293235i
\(233\) 4.96446 + 18.5276i 0.0213067 + 0.0795176i 0.975761 0.218841i \(-0.0702276\pi\)
−0.954454 + 0.298358i \(0.903561\pi\)
\(234\) −233.448 173.276i −0.997643 0.740495i
\(235\) 10.7281 11.9207i 0.0456515 0.0507264i
\(236\) 38.7918 67.1894i 0.164372 0.284701i
\(237\) 130.850 27.1163i 0.552111 0.114415i
\(238\) 70.8527 59.5869i 0.297700 0.250365i
\(239\) 138.243 0.578425 0.289212 0.957265i \(-0.406607\pi\)
0.289212 + 0.957265i \(0.406607\pi\)
\(240\) −42.6318 + 42.2200i −0.177632 + 0.175917i
\(241\) −195.863 + 113.081i −0.812708 + 0.469217i −0.847896 0.530163i \(-0.822131\pi\)
0.0351871 + 0.999381i \(0.488797\pi\)
\(242\) −11.8298 + 44.1493i −0.0488834 + 0.182435i
\(243\) −213.474 + 116.094i −0.878493 + 0.477754i
\(244\) 186.003 0.762307
\(245\) −225.286 + 96.2865i −0.919536 + 0.393006i
\(246\) 7.73060 11.7722i 0.0314252 0.0478544i
\(247\) 155.792 + 581.422i 0.630735 + 2.35394i
\(248\) 2.44058 9.10836i 0.00984104 0.0367273i
\(249\) −299.416 17.2235i −1.20248 0.0691707i
\(250\) 161.440 72.0215i 0.645760 0.288086i
\(251\) 172.595 0.687631 0.343816 0.939037i \(-0.388280\pi\)
0.343816 + 0.939037i \(0.388280\pi\)
\(252\) 112.741 + 56.2617i 0.447386 + 0.223261i
\(253\) 158.717 + 158.717i 0.627342 + 0.627342i
\(254\) −25.5424 + 44.2408i −0.100561 + 0.174176i
\(255\) 121.142 + 70.7272i 0.475065 + 0.277362i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) 122.676 + 457.834i 0.477339 + 1.78145i 0.612324 + 0.790607i \(0.290235\pi\)
−0.134985 + 0.990848i \(0.543099\pi\)
\(258\) 169.958 35.2207i 0.658753 0.136514i
\(259\) −274.731 191.914i −1.06074 0.740980i
\(260\) −217.220 + 70.6386i −0.835463 + 0.271687i
\(261\) 35.1041 304.118i 0.134498 1.16520i
\(262\) 54.0763 201.816i 0.206398 0.770288i
\(263\) −272.280 72.9572i −1.03529 0.277404i −0.299127 0.954213i \(-0.596695\pi\)
−0.736158 + 0.676809i \(0.763362\pi\)
\(264\) −35.9130 71.3810i −0.136034 0.270383i
\(265\) 90.8746 + 279.448i 0.342923 + 1.05452i
\(266\) −110.513 236.310i −0.415464 0.888383i
\(267\) −400.732 + 83.0442i −1.50087 + 0.311027i
\(268\) 7.32770 1.96345i 0.0273422 0.00732631i
\(269\) 106.164 61.2938i 0.394662 0.227858i −0.289516 0.957173i \(-0.593494\pi\)
0.684178 + 0.729315i \(0.260161\pi\)
\(270\) −22.8124 + 189.551i −0.0844903 + 0.702041i
\(271\) −88.7006 51.2113i −0.327308 0.188972i 0.327337 0.944908i \(-0.393849\pi\)
−0.654645 + 0.755936i \(0.727182\pi\)
\(272\) −26.4509 + 26.4509i −0.0972459 + 0.0972459i
\(273\) 287.147 + 384.235i 1.05182 + 1.40745i
\(274\) 302.779i 1.10503i
\(275\) 24.7246 + 234.124i 0.0899076 + 0.851359i
\(276\) 142.777 + 8.21307i 0.517310 + 0.0297575i
\(277\) 210.515 + 56.4074i 0.759983 + 0.203637i 0.617942 0.786224i \(-0.287967\pi\)
0.142042 + 0.989861i \(0.454633\pi\)
\(278\) 19.2626 5.16139i 0.0692898 0.0185662i
\(279\) −11.9239 27.5340i −0.0427380 0.0986882i
\(280\) 87.3441 46.5942i 0.311943 0.166408i
\(281\) 160.860i 0.572457i 0.958161 + 0.286228i \(0.0924016\pi\)
−0.958161 + 0.286228i \(0.907598\pi\)
\(282\) 12.9205 + 4.27109i 0.0458173 + 0.0151457i
\(283\) −114.655 30.7218i −0.405143 0.108558i 0.0504921 0.998724i \(-0.483921\pi\)
−0.455635 + 0.890167i \(0.650588\pi\)
\(284\) 26.4798 + 45.8644i 0.0932389 + 0.161494i
\(285\) 280.862 278.149i 0.985479 0.975960i
\(286\) 304.199i 1.06363i
\(287\) −17.7837 + 14.9561i −0.0619641 + 0.0521117i
\(288\) −47.3416 18.7290i −0.164380 0.0650313i
\(289\) −174.542 100.772i −0.603952 0.348692i
\(290\) −178.784 160.898i −0.616497 0.554820i
\(291\) −502.143 28.8851i −1.72558 0.0992615i
\(292\) 54.6191 14.6352i 0.187052 0.0501204i
\(293\) 38.3008 + 38.3008i 0.130719 + 0.130719i 0.769439 0.638720i \(-0.220536\pi\)
−0.638720 + 0.769439i \(0.720536\pi\)
\(294\) −151.632 142.217i −0.515756 0.483731i
\(295\) −172.841 88.0129i −0.585901 0.298349i
\(296\) 117.269 + 67.7053i 0.396179 + 0.228734i
\(297\) −230.668 106.959i −0.776661 0.360130i
\(298\) −36.2381 + 135.242i −0.121604 + 0.453833i
\(299\) 471.504 + 272.223i 1.57694 + 0.910445i
\(300\) 111.008 + 100.882i 0.370028 + 0.336273i
\(301\) −285.313 24.6418i −0.947882 0.0818664i
\(302\) 164.492 + 164.492i 0.544675 + 0.544675i
\(303\) 105.915 + 35.0120i 0.349553 + 0.115551i
\(304\) 52.7046 + 91.2871i 0.173370 + 0.300286i
\(305\) −24.4515 464.364i −0.0801689 1.52250i
\(306\) −13.6488 + 118.244i −0.0446039 + 0.386418i
\(307\) −178.315 178.315i −0.580830 0.580830i 0.354301 0.935131i \(-0.384719\pi\)
−0.935131 + 0.354301i \(0.884719\pi\)
\(308\) 23.0379 + 129.810i 0.0747985 + 0.421461i
\(309\) 80.3805 + 52.7845i 0.260131 + 0.170824i
\(310\) −23.0602 4.89564i −0.0743879 0.0157924i
\(311\) −36.9045 63.9205i −0.118664 0.205532i 0.800574 0.599233i \(-0.204528\pi\)
−0.919238 + 0.393701i \(0.871194\pi\)
\(312\) −128.954 144.695i −0.413313 0.463766i
\(313\) 57.2987 + 213.842i 0.183063 + 0.683201i 0.995037 + 0.0995068i \(0.0317265\pi\)
−0.811974 + 0.583694i \(0.801607\pi\)
\(314\) 98.7832i 0.314596i
\(315\) 125.639 288.860i 0.398854 0.917015i
\(316\) 89.0870 0.281921
\(317\) 137.782 36.9186i 0.434644 0.116463i −0.0348611 0.999392i \(-0.511099\pi\)
0.469505 + 0.882930i \(0.344432\pi\)
\(318\) −186.146 + 165.895i −0.585364 + 0.521683i
\(319\) 277.408 160.161i 0.869616 0.502073i
\(320\) −33.5414 + 21.7939i −0.104817 + 0.0681058i
\(321\) −293.415 + 446.813i −0.914065 + 1.39194i
\(322\) −221.820 80.4564i −0.688881 0.249865i
\(323\) 174.260 174.260i 0.539506 0.539506i
\(324\) −155.060 + 46.9073i −0.478581 + 0.144775i
\(325\) 204.908 + 533.014i 0.630485 + 1.64004i
\(326\) −189.463 + 109.387i −0.581176 + 0.335542i
\(327\) 8.87842 26.8581i 0.0271511 0.0821348i
\(328\) 6.63905 6.63905i 0.0202410 0.0202410i
\(329\) −18.4061 12.8576i −0.0559457 0.0390809i
\(330\) −173.485 + 99.0420i −0.525711 + 0.300127i
\(331\) 260.816 451.747i 0.787964 1.36479i −0.139248 0.990258i \(-0.544468\pi\)
0.927212 0.374537i \(-0.122198\pi\)
\(332\) −193.128 51.7485i −0.581711 0.155869i
\(333\) 426.235 63.0590i 1.27998 0.189366i
\(334\) −55.1776 + 95.5703i −0.165202 + 0.286139i
\(335\) −5.86512 18.0358i −0.0175078 0.0538382i
\(336\) 65.9861 + 51.9791i 0.196387 + 0.154700i
\(337\) −132.357 + 132.357i −0.392750 + 0.392750i −0.875667 0.482916i \(-0.839578\pi\)
0.482916 + 0.875667i \(0.339578\pi\)
\(338\) −129.114 481.859i −0.381993 1.42562i
\(339\) −21.9016 + 380.741i −0.0646064 + 1.12313i
\(340\) 69.5129 + 62.5586i 0.204450 + 0.183996i
\(341\) 15.6977 27.1892i 0.0460343 0.0797337i
\(342\) 311.890 + 123.388i 0.911959 + 0.360784i
\(343\) 172.491 + 296.473i 0.502888 + 0.864352i
\(344\) 115.713 0.336375
\(345\) 1.73507 357.529i 0.00502918 1.03632i
\(346\) −163.498 + 94.3959i −0.472539 + 0.272821i
\(347\) 50.9331 190.085i 0.146781 0.547796i −0.852888 0.522093i \(-0.825151\pi\)
0.999670 0.0257021i \(-0.00818213\pi\)
\(348\) 64.0569 193.778i 0.184072 0.556834i
\(349\) −282.056 −0.808184 −0.404092 0.914718i \(-0.632412\pi\)
−0.404092 + 0.914718i \(0.632412\pi\)
\(350\) −127.806 211.933i −0.365161 0.605523i
\(351\) −607.587 105.786i −1.73102 0.301385i
\(352\) −13.7875 51.4556i −0.0391690 0.146181i
\(353\) −116.873 + 436.174i −0.331084 + 1.23562i 0.576969 + 0.816766i \(0.304235\pi\)
−0.908053 + 0.418855i \(0.862431\pi\)
\(354\) 9.45160 164.308i 0.0266994 0.464148i
\(355\) 111.021 72.1373i 0.312737 0.203204i
\(356\) −272.831 −0.766378
\(357\) 77.4551 180.469i 0.216961 0.505514i
\(358\) 254.036 + 254.036i 0.709598 + 0.709598i
\(359\) 167.547 290.199i 0.466703 0.808354i −0.532573 0.846384i \(-0.678775\pi\)
0.999277 + 0.0380300i \(0.0121082\pi\)
\(360\) −40.5343 + 120.652i −0.112595 + 0.335145i
\(361\) −166.722 288.771i −0.461834 0.799919i
\(362\) −112.524 419.944i −0.310839 1.16007i
\(363\) 19.6749 + 94.9415i 0.0542007 + 0.261547i
\(364\) 135.469 + 289.673i 0.372168 + 0.795804i
\(365\) −43.7174 134.435i −0.119774 0.368315i
\(366\) 352.475 177.336i 0.963046 0.484525i
\(367\) 160.378 598.537i 0.436996 1.63089i −0.299248 0.954175i \(-0.596736\pi\)
0.736244 0.676716i \(-0.236597\pi\)
\(368\) 92.0936 + 24.6764i 0.250254 + 0.0670555i
\(369\) 3.42578 29.6787i 0.00928397 0.0804300i
\(370\) 153.613 301.667i 0.415171 0.815317i
\(371\) 372.655 174.277i 1.00446 0.469750i
\(372\) −4.05908 19.5872i −0.0109115 0.0526537i
\(373\) −316.330 + 84.7604i −0.848070 + 0.227240i −0.656581 0.754255i \(-0.727998\pi\)
−0.191488 + 0.981495i \(0.561331\pi\)
\(374\) −107.859 + 62.2722i −0.288392 + 0.166503i
\(375\) 237.263 290.399i 0.632701 0.774396i
\(376\) 7.85665 + 4.53604i 0.0208953 + 0.0120639i
\(377\) 549.399 549.399i 1.45729 1.45729i
\(378\) 267.285 0.872608i 0.707103 0.00230849i
\(379\) 119.151i 0.314382i 0.987568 + 0.157191i \(0.0502438\pi\)
−0.987568 + 0.157191i \(0.949756\pi\)
\(380\) 220.973 143.580i 0.581509 0.377841i
\(381\) −6.22340 + 108.189i −0.0163344 + 0.283960i
\(382\) 195.776 + 52.4581i 0.512503 + 0.137325i
\(383\) −319.180 + 85.5240i −0.833368 + 0.223300i −0.650183 0.759778i \(-0.725308\pi\)
−0.183186 + 0.983078i \(0.558641\pi\)
\(384\) −28.3708 18.6306i −0.0738822 0.0485172i
\(385\) 321.047 74.5797i 0.833889 0.193714i
\(386\) 402.498i 1.04274i
\(387\) 288.491 228.782i 0.745454 0.591169i
\(388\) −323.890 86.7861i −0.834768 0.223675i
\(389\) −148.817 257.759i −0.382564 0.662620i 0.608864 0.793274i \(-0.291625\pi\)
−0.991428 + 0.130655i \(0.958292\pi\)
\(390\) −344.285 + 340.959i −0.882782 + 0.874255i
\(391\) 222.906i 0.570091i
\(392\) −79.7461 113.352i −0.203434 0.289162i
\(393\) −89.9378 433.997i −0.228849 1.10432i
\(394\) −219.860 126.936i −0.558019 0.322172i
\(395\) −11.7112 222.409i −0.0296486 0.563062i
\(396\) −136.110 101.027i −0.343713 0.255119i
\(397\) 303.837 81.4129i 0.765333 0.205070i 0.145024 0.989428i \(-0.453674\pi\)
0.620309 + 0.784358i \(0.287007\pi\)
\(398\) 87.1886 + 87.1886i 0.219067 + 0.219067i
\(399\) −434.722 342.442i −1.08953 0.858252i
\(400\) 58.8186 + 80.8726i 0.147046 + 0.202181i
\(401\) −160.034 92.3959i −0.399088 0.230414i 0.287002 0.957930i \(-0.407341\pi\)
−0.686090 + 0.727516i \(0.740675\pi\)
\(402\) 12.0140 10.7070i 0.0298856 0.0266344i
\(403\) 19.7096 73.5571i 0.0489071 0.182524i
\(404\) 64.4043 + 37.1839i 0.159417 + 0.0920392i
\(405\) 137.490 + 380.948i 0.339481 + 0.940613i
\(406\) −192.836 + 276.051i −0.474964 + 0.679928i
\(407\) 318.791 + 318.791i 0.783271 + 0.783271i
\(408\) −24.9059 + 75.3428i −0.0610439 + 0.184664i
\(409\) 211.032 + 365.519i 0.515972 + 0.893689i 0.999828 + 0.0185417i \(0.00590236\pi\)
−0.483856 + 0.875147i \(0.660764\pi\)
\(410\) −17.4474 15.7019i −0.0425547 0.0382974i
\(411\) −288.671 573.765i −0.702364 1.39602i
\(412\) 45.3314 + 45.3314i 0.110028 + 0.110028i
\(413\) −92.5892 + 255.270i −0.224187 + 0.618087i
\(414\) 278.393 120.561i 0.672448 0.291211i
\(415\) −103.804 + 488.955i −0.250130 + 1.17821i
\(416\) −64.6062 111.901i −0.155303 0.268993i
\(417\) 31.5816 28.1459i 0.0757353 0.0674961i
\(418\) 90.8330 + 338.993i 0.217304 + 0.810989i
\(419\) 583.700i 1.39308i 0.717519 + 0.696539i \(0.245278\pi\)
−0.717519 + 0.696539i \(0.754722\pi\)
\(420\) 121.094 171.570i 0.288318 0.408500i
\(421\) 634.883 1.50804 0.754018 0.656853i \(-0.228113\pi\)
0.754018 + 0.656853i \(0.228113\pi\)
\(422\) 390.041 104.511i 0.924269 0.247657i
\(423\) 28.5564 4.22475i 0.0675091 0.00998759i
\(424\) −143.958 + 83.1140i −0.339523 + 0.196024i
\(425\) 147.042 181.766i 0.345981 0.427684i
\(426\) 93.9067 + 61.6669i 0.220438 + 0.144758i
\(427\) −640.993 + 113.760i −1.50116 + 0.266417i
\(428\) −251.985 + 251.985i −0.588750 + 0.588750i
\(429\) −290.026 576.457i −0.676050 1.34372i
\(430\) −15.2114 288.882i −0.0353753 0.671819i
\(431\) −13.8237 + 7.98112i −0.0320736 + 0.0185177i −0.515951 0.856618i \(-0.672561\pi\)
0.483877 + 0.875136i \(0.339228\pi\)
\(432\) −107.569 + 9.64434i −0.249001 + 0.0223249i
\(433\) −106.458 + 106.458i −0.245862 + 0.245862i −0.819270 0.573408i \(-0.805621\pi\)
0.573408 + 0.819270i \(0.305621\pi\)
\(434\) −2.83989 + 32.8814i −0.00654353 + 0.0757637i
\(435\) −492.196 134.447i −1.13149 0.309074i
\(436\) 9.42916 16.3318i 0.0216265 0.0374582i
\(437\) −606.720 162.570i −1.38837 0.372014i
\(438\) 89.5499 79.8078i 0.204452 0.182210i
\(439\) 86.9506 150.603i 0.198065 0.343059i −0.749836 0.661624i \(-0.769868\pi\)
0.947901 + 0.318565i \(0.103201\pi\)
\(440\) −126.649 + 41.1853i −0.287838 + 0.0936029i
\(441\) −422.933 124.933i −0.959033 0.283295i
\(442\) −213.611 + 213.611i −0.483284 + 0.483284i
\(443\) −6.66345 24.8683i −0.0150416 0.0561362i 0.957997 0.286778i \(-0.0925842\pi\)
−0.973039 + 0.230642i \(0.925917\pi\)
\(444\) 286.775 + 16.4963i 0.645890 + 0.0371539i
\(445\) 35.8657 + 681.133i 0.0805971 + 1.53064i
\(446\) −92.5468 + 160.296i −0.207504 + 0.359408i
\(447\) 60.2698 + 290.833i 0.134832 + 0.650634i
\(448\) 36.0438 + 42.8584i 0.0804549 + 0.0956661i
\(449\) −590.012 −1.31406 −0.657029 0.753866i \(-0.728187\pi\)
−0.657029 + 0.753866i \(0.728187\pi\)
\(450\) 306.542 + 85.3349i 0.681204 + 0.189633i
\(451\) 27.0720 15.6300i 0.0600267 0.0346564i
\(452\) −65.8039 + 245.583i −0.145584 + 0.543326i
\(453\) 468.540 + 154.884i 1.03430 + 0.341908i
\(454\) 29.6786 0.0653713
\(455\) 705.371 376.284i 1.55027 0.826998i
\(456\) 186.909 + 122.740i 0.409888 + 0.269166i
\(457\) −108.396 404.540i −0.237191 0.885208i −0.977149 0.212555i \(-0.931821\pi\)
0.739958 0.672653i \(-0.234845\pi\)
\(458\) −108.898 + 406.413i −0.237769 + 0.887365i
\(459\) 86.8701 + 237.085i 0.189259 + 0.516525i
\(460\) 49.4993 233.159i 0.107607 0.506868i
\(461\) −630.123 −1.36686 −0.683431 0.730015i \(-0.739513\pi\)
−0.683431 + 0.730015i \(0.739513\pi\)
\(462\) 167.418 + 224.025i 0.362378 + 0.484903i
\(463\) 109.680 + 109.680i 0.236889 + 0.236889i 0.815561 0.578672i \(-0.196429\pi\)
−0.578672 + 0.815561i \(0.696429\pi\)
\(464\) 68.0305 117.832i 0.146617 0.253949i
\(465\) −48.3666 + 12.7086i −0.104014 + 0.0273302i
\(466\) 13.5631 + 23.4921i 0.0291055 + 0.0504121i
\(467\) 227.552 + 849.236i 0.487264 + 1.81849i 0.569644 + 0.821892i \(0.307081\pi\)
−0.0823804 + 0.996601i \(0.526252\pi\)
\(468\) −382.320 151.251i −0.816923 0.323186i
\(469\) −24.0515 + 11.2480i −0.0512825 + 0.0239829i
\(470\) 10.2916 20.2108i 0.0218970 0.0430016i
\(471\) 94.1805 + 187.194i 0.199959 + 0.397439i
\(472\) 28.3976 105.981i 0.0601644 0.224537i
\(473\) 372.130 + 99.7119i 0.786744 + 0.210807i
\(474\) 168.820 84.9361i 0.356160 0.179190i
\(475\) −387.501 532.795i −0.815792 1.12167i
\(476\) 74.9763 107.331i 0.157513 0.225486i
\(477\) −194.580 + 491.843i −0.407925 + 1.03112i
\(478\) 188.844 50.6006i 0.395071 0.105859i
\(479\) −90.6955 + 52.3631i −0.189344 + 0.109318i −0.591675 0.806176i \(-0.701533\pi\)
0.402332 + 0.915494i \(0.368200\pi\)
\(480\) −42.7825 + 73.2779i −0.0891302 + 0.152662i
\(481\) 947.038 + 546.773i 1.96889 + 1.13674i
\(482\) −226.163 + 226.163i −0.469217 + 0.469217i
\(483\) −497.055 + 59.0197i −1.02910 + 0.122194i
\(484\) 64.6391i 0.133552i
\(485\) −174.087 + 820.014i −0.358943 + 1.69075i
\(486\) −249.117 + 236.725i −0.512587 + 0.487088i
\(487\) 534.720 + 143.278i 1.09799 + 0.294205i 0.761945 0.647642i \(-0.224245\pi\)
0.336043 + 0.941847i \(0.390911\pi\)
\(488\) 254.085 68.0818i 0.520665 0.139512i
\(489\) −254.743 + 387.923i −0.520946 + 0.793299i
\(490\) −272.503 + 213.990i −0.556130 + 0.436715i
\(491\) 212.339i 0.432463i −0.976342 0.216231i \(-0.930623\pi\)
0.976342 0.216231i \(-0.0693766\pi\)
\(492\) 6.25127 18.9107i 0.0127058 0.0384364i
\(493\) −307.265 82.3313i −0.623255 0.167001i
\(494\) 425.631 + 737.214i 0.861600 + 1.49234i
\(495\) −234.326 + 353.086i −0.473385 + 0.713304i
\(496\) 13.3356i 0.0268862i
\(497\) −119.304 141.861i −0.240049 0.285434i
\(498\) −415.315 + 86.0663i −0.833965 + 0.172824i
\(499\) −144.944 83.6836i −0.290470 0.167703i 0.347684 0.937612i \(-0.386968\pi\)
−0.638154 + 0.769909i \(0.720302\pi\)
\(500\) 194.170 157.474i 0.388339 0.314949i
\(501\) −13.4440 + 233.712i −0.0268343 + 0.466491i
\(502\) 235.770 63.1743i 0.469661 0.125845i
\(503\) −292.158 292.158i −0.580831 0.580831i 0.354301 0.935131i \(-0.384719\pi\)
−0.935131 + 0.354301i \(0.884719\pi\)
\(504\) 174.601 + 35.5887i 0.346430 + 0.0706125i
\(505\) 84.3646 165.676i 0.167059 0.328072i
\(506\) 274.907 + 158.717i 0.543294 + 0.313671i
\(507\) −704.077 790.023i −1.38871 1.55823i
\(508\) −18.6984 + 69.7833i −0.0368078 + 0.137369i
\(509\) 72.6555 + 41.9477i 0.142742 + 0.0824120i 0.569670 0.821874i \(-0.307071\pi\)
−0.426928 + 0.904285i \(0.640404\pi\)
\(510\) 191.371 + 52.2743i 0.375236 + 0.102499i
\(511\) −179.275 + 83.8402i −0.350831 + 0.164071i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 708.670 63.5376i 1.38142 0.123855i
\(514\) 335.158 + 580.510i 0.652058 + 1.12940i
\(515\) 107.213 119.131i 0.208180 0.231322i
\(516\) 219.276 110.321i 0.424953 0.213801i
\(517\) 21.3580 + 21.3580i 0.0413114 + 0.0413114i
\(518\) −445.535 161.600i −0.860107 0.311970i
\(519\) −219.832 + 334.761i −0.423568 + 0.645011i
\(520\) −270.873 + 176.002i −0.520910 + 0.338466i
\(521\) 240.730 + 416.957i 0.462054 + 0.800302i 0.999063 0.0432749i \(-0.0137791\pi\)
−0.537009 + 0.843577i \(0.680446\pi\)
\(522\) −63.3618 428.282i −0.121383 0.820463i
\(523\) −116.586 435.105i −0.222918 0.831941i −0.983228 0.182381i \(-0.941620\pi\)
0.760310 0.649560i \(-0.225047\pi\)
\(524\) 295.478i 0.563890i
\(525\) −444.251 279.761i −0.846192 0.532878i
\(526\) −398.646 −0.757881
\(527\) −30.1155 + 8.06943i −0.0571452 + 0.0153120i
\(528\) −75.1854 84.3632i −0.142397 0.159779i
\(529\) −33.8918 + 19.5674i −0.0640677 + 0.0369895i
\(530\) 226.422 + 348.470i 0.427211 + 0.657491i
\(531\) −138.742 320.375i −0.261284 0.603343i
\(532\) −237.459 282.354i −0.446352 0.530742i
\(533\) 53.6155 53.6155i 0.100592 0.100592i
\(534\) −517.014 + 260.119i −0.968190 + 0.487113i
\(535\) 662.217 + 595.966i 1.23779 + 1.11395i
\(536\) 9.29116 5.36425i 0.0173342 0.0100079i
\(537\) 723.597 + 239.198i 1.34748 + 0.445434i
\(538\) 122.588 122.588i 0.227858 0.227858i
\(539\) −158.784 433.254i −0.294591 0.803811i
\(540\) 38.2182 + 267.281i 0.0707745 + 0.494966i
\(541\) 24.3231 42.1289i 0.0449596 0.0778723i −0.842670 0.538431i \(-0.819017\pi\)
0.887629 + 0.460558i \(0.152351\pi\)
\(542\) −139.912 37.4893i −0.258140 0.0691684i
\(543\) −613.610 688.512i −1.13004 1.26798i
\(544\) −26.4509 + 45.8143i −0.0486230 + 0.0842174i
\(545\) −42.0125 21.3934i −0.0770872 0.0392539i
\(546\) 532.889 + 419.772i 0.975988 + 0.768812i
\(547\) 463.843 463.843i 0.847977 0.847977i −0.141904 0.989880i \(-0.545322\pi\)
0.989880 + 0.141904i \(0.0453224\pi\)
\(548\) −110.825 413.604i −0.202235 0.754751i
\(549\) 498.866 672.104i 0.908680 1.22423i
\(550\) 119.470 + 310.769i 0.217218 + 0.565035i
\(551\) −448.190 + 776.288i −0.813412 + 1.40887i
\(552\) 198.044 41.0409i 0.358775 0.0743495i
\(553\) −307.007 + 54.4859i −0.555166 + 0.0985278i
\(554\) 308.216 0.556347
\(555\) 3.48497 718.115i 0.00627922 1.29390i
\(556\) 24.4240 14.1012i 0.0439280 0.0253618i
\(557\) −84.0919 + 313.835i −0.150973 + 0.563438i 0.848444 + 0.529285i \(0.177540\pi\)
−0.999417 + 0.0341527i \(0.989127\pi\)
\(558\) −26.3665 33.2477i −0.0472518 0.0595837i
\(559\) 934.471 1.67168
\(560\) 102.260 95.6189i 0.182606 0.170748i
\(561\) −145.021 + 220.839i −0.258505 + 0.393652i
\(562\) 58.8790 + 219.739i 0.104767 + 0.390995i
\(563\) 36.4063 135.870i 0.0646649 0.241333i −0.926027 0.377458i \(-0.876798\pi\)
0.990692 + 0.136125i \(0.0434650\pi\)
\(564\) 19.2130 + 1.10520i 0.0340656 + 0.00195958i
\(565\) 621.759 + 131.998i 1.10046 + 0.233625i
\(566\) −167.867 −0.296585
\(567\) 505.672 256.485i 0.891838 0.452354i
\(568\) 52.9597 + 52.9597i 0.0932389 + 0.0932389i
\(569\) 371.512 643.477i 0.652920 1.13089i −0.329491 0.944159i \(-0.606877\pi\)
0.982411 0.186732i \(-0.0597896\pi\)
\(570\) 281.854 482.761i 0.494482 0.846948i
\(571\) 90.1507 + 156.146i 0.157882 + 0.273460i 0.934105 0.356999i \(-0.116200\pi\)
−0.776223 + 0.630459i \(0.782867\pi\)
\(572\) −111.345 415.544i −0.194658 0.726475i
\(573\) 421.009 87.2463i 0.734745 0.152262i
\(574\) −18.8187 + 26.9396i −0.0327852 + 0.0469332i
\(575\) −588.599 92.9263i −1.02365 0.161611i
\(576\) −71.5251 8.25608i −0.124175 0.0143335i
\(577\) −250.300 + 934.133i −0.433796 + 1.61895i 0.310135 + 0.950692i \(0.399626\pi\)
−0.743931 + 0.668256i \(0.767041\pi\)
\(578\) −275.314 73.7701i −0.476322 0.127630i
\(579\) −383.744 762.733i −0.662770 1.31733i
\(580\) −303.116 154.351i −0.522614 0.266122i
\(581\) 697.198 + 60.2153i 1.20000 + 0.103641i
\(582\) −696.513 + 144.339i −1.19676 + 0.248006i
\(583\) −534.585 + 143.242i −0.916956 + 0.245698i
\(584\) 69.2543 39.9840i 0.118586 0.0684657i
\(585\) −327.346 + 974.360i −0.559566 + 1.66557i
\(586\) 66.3389 + 38.3008i 0.113206 + 0.0653597i
\(587\) −777.398 + 777.398i −1.32436 + 1.32436i −0.414147 + 0.910210i \(0.635920\pi\)
−0.910210 + 0.414147i \(0.864080\pi\)
\(588\) −259.189 138.770i −0.440797 0.236004i
\(589\) 87.8557i 0.149161i
\(590\) −268.320 56.9637i −0.454779 0.0965487i
\(591\) −537.655 30.9278i −0.909738 0.0523314i
\(592\) 184.974 + 49.5637i 0.312457 + 0.0837225i
\(593\) 521.442 139.720i 0.879328 0.235615i 0.209211 0.977871i \(-0.432910\pi\)
0.670117 + 0.742255i \(0.266244\pi\)
\(594\) −354.248 61.6778i −0.596378 0.103835i
\(595\) −277.813 173.072i −0.466912 0.290877i
\(596\) 198.008i 0.332229i
\(597\) 248.348 + 82.0960i 0.415994 + 0.137514i
\(598\) 743.727 + 199.281i 1.24369 + 0.333246i
\(599\) 334.255 + 578.947i 0.558022 + 0.966523i 0.997662 + 0.0683484i \(0.0217730\pi\)
−0.439639 + 0.898174i \(0.644894\pi\)
\(600\) 188.565 + 97.1754i 0.314276 + 0.161959i
\(601\) 586.870i 0.976488i −0.872707 0.488244i \(-0.837638\pi\)
0.872707 0.488244i \(-0.162362\pi\)
\(602\) −398.764 + 70.7704i −0.662398 + 0.117559i
\(603\) 12.5584 31.7440i 0.0208265 0.0526435i
\(604\) 284.908 + 164.492i 0.471703 + 0.272338i
\(605\) 161.374 8.49731i 0.266734 0.0140451i
\(606\) 157.497 + 9.05982i 0.259897 + 0.0149502i
\(607\) −692.161 + 185.464i −1.14030 + 0.305542i −0.779071 0.626936i \(-0.784309\pi\)
−0.361228 + 0.932478i \(0.617642\pi\)
\(608\) 105.409 + 105.409i 0.173370 + 0.173370i
\(609\) −102.234 + 706.966i −0.167872 + 1.16086i
\(610\) −203.370 625.383i −0.333394 1.02522i
\(611\) 63.4485 + 36.6320i 0.103844 + 0.0599542i
\(612\) 24.6357 + 166.520i 0.0402544 + 0.272091i
\(613\) 57.8477 215.891i 0.0943682 0.352187i −0.902555 0.430575i \(-0.858311\pi\)
0.996923 + 0.0783882i \(0.0249774\pi\)
\(614\) −308.850 178.315i −0.503013 0.290415i
\(615\) −48.0331 13.1206i −0.0781027 0.0213343i
\(616\) 78.9842 + 168.891i 0.128221 + 0.274174i
\(617\) 371.341 + 371.341i 0.601849 + 0.601849i 0.940803 0.338954i \(-0.110073\pi\)
−0.338954 + 0.940803i \(0.610073\pi\)
\(618\) 129.122 + 42.6837i 0.208936 + 0.0690674i
\(619\) −364.934 632.084i −0.589554 1.02114i −0.994291 0.106704i \(-0.965970\pi\)
0.404737 0.914433i \(-0.367363\pi\)
\(620\) −33.2928 + 1.75306i −0.0536981 + 0.00282752i
\(621\) 412.611 493.885i 0.664430 0.795306i
\(622\) −73.8090 73.8090i −0.118664 0.118664i
\(623\) 940.215 166.864i 1.50917 0.267840i
\(624\) −229.116 150.457i −0.367173 0.241116i
\(625\) −418.666 464.051i −0.669866 0.742482i
\(626\) 156.543 + 271.141i 0.250069 + 0.433132i
\(627\) 495.327 + 555.791i 0.789995 + 0.886429i
\(628\) 36.1571 + 134.940i 0.0575751 + 0.214873i
\(629\) 447.717i 0.711791i
\(630\) 65.8960 440.577i 0.104597 0.699328i
\(631\) 678.904 1.07592 0.537958 0.842971i \(-0.319196\pi\)
0.537958 + 0.842971i \(0.319196\pi\)
\(632\) 121.695 32.6081i 0.192555 0.0515951i
\(633\) 639.486 569.917i 1.01025 0.900342i
\(634\) 174.701 100.864i 0.275553 0.159091i
\(635\) 176.675 + 37.5077i 0.278228 + 0.0590672i
\(636\) −193.558 + 294.751i −0.304337 + 0.463445i
\(637\) −644.011 915.401i −1.01101 1.43705i
\(638\) 320.323 320.323i 0.502073 0.502073i
\(639\) 236.747 + 27.3275i 0.370496 + 0.0427660i
\(640\) −37.8413 + 42.0480i −0.0591271 + 0.0657000i
\(641\) 512.506 295.895i 0.799541 0.461615i −0.0437699 0.999042i \(-0.513937\pi\)
0.843310 + 0.537427i \(0.180604\pi\)
\(642\) −237.267 + 717.755i −0.369575 + 1.11800i
\(643\) 462.272 462.272i 0.718930 0.718930i −0.249456 0.968386i \(-0.580252\pi\)
0.968386 + 0.249456i \(0.0802519\pi\)
\(644\) −332.460 28.7138i −0.516243 0.0445867i
\(645\) −304.247 532.928i −0.471701 0.826245i
\(646\) 174.260 301.828i 0.269753 0.467226i
\(647\) 111.765 + 29.9472i 0.172743 + 0.0462863i 0.344154 0.938913i \(-0.388166\pi\)
−0.171411 + 0.985200i \(0.554833\pi\)
\(648\) −194.647 + 120.833i −0.300381 + 0.186470i
\(649\) 182.652 316.362i 0.281436 0.487461i
\(650\) 475.005 + 653.109i 0.730778 + 1.00478i
\(651\) 25.9678 + 65.0178i 0.0398891 + 0.0998738i
\(652\) −218.774 + 218.774i −0.335542 + 0.335542i
\(653\) −53.9679 201.411i −0.0826460 0.308439i 0.912212 0.409719i \(-0.134373\pi\)
−0.994858 + 0.101279i \(0.967706\pi\)
\(654\) 2.29741 39.9385i 0.00351286 0.0610681i
\(655\) −737.674 + 38.8429i −1.12622 + 0.0593022i
\(656\) 6.63905 11.4992i 0.0101205 0.0175292i
\(657\) 93.6075 236.613i 0.142477 0.360142i
\(658\) −29.8494 10.8267i −0.0453639 0.0164540i
\(659\) −971.092 −1.47358 −0.736792 0.676119i \(-0.763660\pi\)
−0.736792 + 0.676119i \(0.763660\pi\)
\(660\) −200.732 + 198.794i −0.304140 + 0.301202i
\(661\) −578.822 + 334.183i −0.875676 + 0.505572i −0.869230 0.494407i \(-0.835385\pi\)
−0.00644601 + 0.999979i \(0.502052\pi\)
\(662\) 190.931 712.563i 0.288415 1.07638i
\(663\) −201.135 + 608.452i −0.303371 + 0.917725i
\(664\) −282.759 −0.425842
\(665\) −673.694 + 629.945i −1.01307 + 0.947286i
\(666\) 559.166 242.153i 0.839589 0.363593i
\(667\) 209.844 + 783.147i 0.314608 + 1.17413i
\(668\) −40.3928 + 150.748i −0.0604682 + 0.225670i
\(669\) −22.5490 + 391.995i −0.0337055 + 0.585941i
\(670\) −14.6135 22.4906i −0.0218111 0.0335680i
\(671\) 875.797 1.30521
\(672\) 109.164 + 46.8522i 0.162447 + 0.0697205i
\(673\) 43.2365 + 43.2365i 0.0642445 + 0.0642445i 0.738499 0.674255i \(-0.235535\pi\)
−0.674255 + 0.738499i \(0.735535\pi\)
\(674\) −132.357 + 229.249i −0.196375 + 0.340132i
\(675\) 662.255 130.550i 0.981119 0.193407i
\(676\) −352.745 610.972i −0.521812 0.903805i
\(677\) −216.148 806.676i −0.319273 1.19154i −0.919945 0.392048i \(-0.871767\pi\)
0.600671 0.799496i \(-0.294900\pi\)
\(678\) 109.443 + 528.118i 0.161420 + 0.778935i
\(679\) 1169.25 + 100.986i 1.72202 + 0.148727i
\(680\) 117.854 + 60.0131i 0.173315 + 0.0882546i
\(681\) 56.2408 28.2957i 0.0825856 0.0415503i
\(682\) 11.4915 42.8869i 0.0168497 0.0628840i
\(683\) −903.320 242.044i −1.32258 0.354383i −0.472634 0.881259i \(-0.656697\pi\)
−0.849942 + 0.526876i \(0.823363\pi\)
\(684\) 471.213 + 54.3917i 0.688907 + 0.0795200i
\(685\) −1018.01 + 331.050i −1.48615 + 0.483285i
\(686\) 344.143 + 341.853i 0.501666 + 0.498328i
\(687\) 181.115 + 873.976i 0.263632 + 1.27216i
\(688\) 158.067 42.3539i 0.229748 0.0615608i
\(689\) −1162.57 + 671.210i −1.68733 + 0.974180i
\(690\) −128.495 489.029i −0.186224 0.708738i
\(691\) −893.269 515.729i −1.29272 0.746352i −0.313584 0.949560i \(-0.601530\pi\)
−0.979136 + 0.203208i \(0.934863\pi\)
\(692\) −188.792 + 188.792i −0.272821 + 0.272821i
\(693\) 530.845 + 264.909i 0.766009 + 0.382264i
\(694\) 278.304i 0.401014i
\(695\) −38.4149 59.1217i −0.0552733 0.0850672i
\(696\) 16.5756 288.153i 0.0238155 0.414012i
\(697\) −29.9858 8.03466i −0.0430212 0.0115275i
\(698\) −385.296 + 103.240i −0.552000 + 0.147908i
\(699\) 48.0996 + 31.5862i 0.0688120 + 0.0451877i
\(700\) −252.159 242.725i −0.360228 0.346751i
\(701\) 508.656i 0.725615i −0.931864 0.362807i \(-0.881818\pi\)
0.931864 0.362807i \(-0.118182\pi\)
\(702\) −868.699 + 77.8855i −1.23746 + 0.110948i
\(703\) −1218.63 326.530i −1.73346 0.464480i
\(704\) −37.6681 65.2431i −0.0535059 0.0926749i
\(705\) 0.233482 48.1114i 0.000331180 0.0682431i
\(706\) 638.604i 0.904538i
\(707\) −244.689 88.7512i −0.346094 0.125532i
\(708\) −47.2299 227.909i −0.0667088 0.321905i
\(709\) 86.1429 + 49.7346i 0.121499 + 0.0701476i 0.559518 0.828818i \(-0.310986\pi\)
−0.438019 + 0.898966i \(0.644320\pi\)
\(710\) 125.254 139.178i 0.176414 0.196025i
\(711\) 238.934 321.907i 0.336054 0.452753i
\(712\) −372.694 + 99.8630i −0.523446 + 0.140257i
\(713\) 56.1904 + 56.1904i 0.0788084 + 0.0788084i
\(714\) 39.7496 274.875i 0.0556717 0.384979i
\(715\) −1022.79 + 332.603i −1.43047 + 0.465179i
\(716\) 440.003 + 254.036i 0.614530 + 0.354799i
\(717\) 309.616 275.933i 0.431822 0.384844i
\(718\) 122.653 457.746i 0.170825 0.637529i
\(719\) 497.276 + 287.102i 0.691621 + 0.399308i 0.804219 0.594333i \(-0.202584\pi\)
−0.112598 + 0.993641i \(0.535917\pi\)
\(720\) −11.2091 + 179.651i −0.0155682 + 0.249515i
\(721\) −183.944 128.494i −0.255123 0.178216i
\(722\) −333.444 333.444i −0.461834 0.461834i
\(723\) −212.953 + 644.203i −0.294541 + 0.891014i
\(724\) −307.420 532.468i −0.424614 0.735453i
\(725\) −345.497 + 777.033i −0.476547 + 1.07177i
\(726\) 61.6273 + 122.491i 0.0848861 + 0.168720i
\(727\) 538.164 + 538.164i 0.740254 + 0.740254i 0.972627 0.232373i \(-0.0746491\pi\)
−0.232373 + 0.972627i \(0.574649\pi\)
\(728\) 291.082 + 346.115i 0.399838 + 0.475433i
\(729\) −246.382 + 686.103i −0.337972 + 0.941156i
\(730\) −108.926 167.640i −0.149213 0.229644i
\(731\) −191.294 331.331i −0.261689 0.453258i
\(732\) 416.580 371.261i 0.569099 0.507187i
\(733\) −336.084 1254.28i −0.458505 1.71116i −0.677574 0.735454i \(-0.736969\pi\)
0.219069 0.975709i \(-0.429698\pi\)
\(734\) 876.319i 1.19390i
\(735\) −312.374 + 665.318i −0.424998 + 0.905194i
\(736\) 134.834 0.183199
\(737\) 34.5026 9.24494i 0.0468149 0.0125440i
\(738\) −6.18344 41.7958i −0.00837865 0.0566338i
\(739\) −1252.93 + 723.380i −1.69544 + 0.978863i −0.745462 + 0.666549i \(0.767771\pi\)
−0.949979 + 0.312314i \(0.898896\pi\)
\(740\) 99.4216 468.312i 0.134353 0.632854i
\(741\) 1509.43 + 991.219i 2.03702 + 1.33768i
\(742\) 445.267 374.468i 0.600090 0.504674i
\(743\) 213.369 213.369i 0.287173 0.287173i −0.548788 0.835961i \(-0.684911\pi\)
0.835961 + 0.548788i \(0.184911\pi\)
\(744\) −12.7142 25.2709i −0.0170890 0.0339662i
\(745\) 494.336 26.0298i 0.663539 0.0349393i
\(746\) −401.090 + 231.570i −0.537655 + 0.310415i
\(747\) −704.964 + 559.059i −0.943727 + 0.748406i
\(748\) −124.544 + 124.544i −0.166503 + 0.166503i
\(749\) 714.263 1022.49i 0.953623 1.36514i
\(750\) 217.814 483.536i 0.290419 0.644715i
\(751\) −439.885 + 761.904i −0.585733 + 1.01452i 0.409051 + 0.912512i \(0.365860\pi\)
−0.994784 + 0.102008i \(0.967473\pi\)
\(752\) 12.3927 + 3.32061i 0.0164796 + 0.00441571i
\(753\) 386.552 344.500i 0.513350 0.457503i
\(754\) 549.399 951.587i 0.728646 1.26205i
\(755\) 373.208 732.910i 0.494315 0.970741i
\(756\) 364.799 99.0251i 0.482538 0.130986i
\(757\) 38.0541 38.0541i 0.0502697 0.0502697i −0.681525 0.731795i \(-0.738683\pi\)
0.731795 + 0.681525i \(0.238683\pi\)
\(758\) 43.6122 + 162.763i 0.0575359 + 0.214727i
\(759\) 672.270 + 38.6714i 0.885731 + 0.0509504i
\(760\) 249.302 277.015i 0.328028 0.364494i
\(761\) 499.455 865.081i 0.656314 1.1367