Properties

Label 210.3.w.b.17.9
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.9

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(0.145428 + 2.99647i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.92543 + 0.860317i) q^{5} +(-0.898127 + 4.14649i) q^{6} +(1.68496 + 6.79418i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-8.95770 + 0.871542i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(0.145428 + 2.99647i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.92543 + 0.860317i) q^{5} +(-0.898127 + 4.14649i) q^{6} +(1.68496 + 6.79418i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-8.95770 + 0.871542i) q^{9} +(-7.04316 - 0.627617i) q^{10} +(-13.7602 - 7.94448i) q^{11} +(-2.74458 + 5.33547i) q^{12} +(5.32844 + 5.32844i) q^{13} +(-0.185142 + 9.89776i) q^{14} +(-3.29421 - 14.6338i) q^{15} +(2.00000 + 3.46410i) q^{16} +(16.9844 - 4.55096i) q^{17} +(-12.5555 - 2.08820i) q^{18} +(5.62474 + 9.74233i) q^{19} +(-9.39141 - 3.43532i) q^{20} +(-20.1135 + 6.03701i) q^{21} +(-15.8890 - 15.8890i) q^{22} +(-10.4778 + 39.1036i) q^{23} +(-5.70209 + 6.28380i) q^{24} +(23.5197 - 8.47486i) q^{25} +(5.32844 + 9.22913i) q^{26} +(-3.91425 - 26.7148i) q^{27} +(-3.87574 + 13.4528i) q^{28} -22.8488 q^{29} +(0.856366 - 21.1959i) q^{30} +(36.0825 + 20.8322i) q^{31} +(1.46410 + 5.46410i) q^{32} +(21.8043 - 42.3875i) q^{33} +24.8669 q^{34} +(-14.1443 - 32.0147i) q^{35} +(-16.3867 - 7.44815i) q^{36} +(7.72790 - 28.8409i) q^{37} +(4.11759 + 15.3671i) q^{38} +(-15.1916 + 16.7414i) q^{39} +(-11.5715 - 8.13022i) q^{40} +55.0717 q^{41} +(-29.6853 + 0.884639i) q^{42} +(-14.2521 + 14.2521i) q^{43} +(-15.8890 - 27.5205i) q^{44} +(43.3707 - 11.9992i) q^{45} +(-28.6258 + 49.5814i) q^{46} +(-6.77411 + 25.2813i) q^{47} +(-10.0892 + 6.49672i) q^{48} +(-43.3218 + 22.8959i) q^{49} +(35.2305 - 2.96807i) q^{50} +(16.1068 + 50.2315i) q^{51} +(3.90069 + 14.5576i) q^{52} +(59.0583 - 15.8246i) q^{53} +(4.43132 - 37.9258i) q^{54} +(74.6098 + 27.2918i) q^{55} +(-10.2184 + 16.9583i) q^{56} +(-28.3746 + 18.2712i) q^{57} +(-31.2120 - 8.36322i) q^{58} +(10.7056 + 6.18085i) q^{59} +(8.92806 - 28.6407i) q^{60} +(14.5577 - 8.40486i) q^{61} +(41.6644 + 41.6644i) q^{62} +(-21.0148 - 59.3917i) q^{63} +8.00000i q^{64} +(-30.8290 - 21.6607i) q^{65} +(45.3001 - 49.9215i) q^{66} +(103.766 - 27.8041i) q^{67} +(33.9688 + 9.10191i) q^{68} +(-118.697 - 25.7096i) q^{69} +(-7.60331 - 48.9100i) q^{70} -34.7786i q^{71} +(-19.6585 - 16.1723i) q^{72} +(-56.8067 + 15.2213i) q^{73} +(21.1130 - 36.5688i) q^{74} +(28.8151 + 69.2437i) q^{75} +22.4989i q^{76} +(30.7907 - 106.876i) q^{77} +(-26.8799 + 17.3087i) q^{78} +(40.5584 - 23.4164i) q^{79} +(-12.8311 - 15.3416i) q^{80} +(79.4808 - 15.6140i) q^{81} +(75.2293 + 20.1576i) q^{82} +(75.6892 - 75.6892i) q^{83} +(-40.8747 - 9.65714i) q^{84} +(-79.7402 + 37.0274i) q^{85} +(-24.6854 + 14.2521i) q^{86} +(-3.32285 - 68.4657i) q^{87} +(-11.6315 - 43.4094i) q^{88} +(-116.275 + 67.1315i) q^{89} +(63.6375 - 0.516401i) q^{90} +(-27.2242 + 45.1806i) q^{91} +(-57.2517 + 57.2517i) q^{92} +(-57.1758 + 111.150i) q^{93} +(-18.5072 + 32.0554i) q^{94} +(-36.0857 - 43.1461i) q^{95} +(-16.1601 + 5.18177i) q^{96} +(-75.7669 + 75.7669i) q^{97} +(-67.5592 + 15.4195i) q^{98} +(130.184 + 59.1716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 0.145428 + 2.99647i 0.0484760 + 0.998824i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −4.92543 + 0.860317i −0.985086 + 0.172063i
\(6\) −0.898127 + 4.14649i −0.149688 + 0.691081i
\(7\) 1.68496 + 6.79418i 0.240709 + 0.970597i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −8.95770 + 0.871542i −0.995300 + 0.0968380i
\(10\) −7.04316 0.627617i −0.704316 0.0627617i
\(11\) −13.7602 7.94448i −1.25093 0.722225i −0.279636 0.960106i \(-0.590214\pi\)
−0.971294 + 0.237881i \(0.923547\pi\)
\(12\) −2.74458 + 5.33547i −0.228715 + 0.444623i
\(13\) 5.32844 + 5.32844i 0.409880 + 0.409880i 0.881697 0.471817i \(-0.156402\pi\)
−0.471817 + 0.881697i \(0.656402\pi\)
\(14\) −0.185142 + 9.89776i −0.0132244 + 0.706983i
\(15\) −3.29421 14.6338i −0.219614 0.975587i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 16.9844 4.55096i 0.999083 0.267703i 0.278021 0.960575i \(-0.410321\pi\)
0.721061 + 0.692872i \(0.243655\pi\)
\(18\) −12.5555 2.08820i −0.697525 0.116011i
\(19\) 5.62474 + 9.74233i 0.296039 + 0.512754i 0.975226 0.221211i \(-0.0710009\pi\)
−0.679187 + 0.733965i \(0.737668\pi\)
\(20\) −9.39141 3.43532i −0.469571 0.171766i
\(21\) −20.1135 + 6.03701i −0.957788 + 0.287477i
\(22\) −15.8890 15.8890i −0.722225 0.722225i
\(23\) −10.4778 + 39.1036i −0.455556 + 1.70016i 0.230893 + 0.972979i \(0.425835\pi\)
−0.686449 + 0.727178i \(0.740832\pi\)
\(24\) −5.70209 + 6.28380i −0.237587 + 0.261825i
\(25\) 23.5197 8.47486i 0.940788 0.338995i
\(26\) 5.32844 + 9.22913i 0.204940 + 0.354966i
\(27\) −3.91425 26.7148i −0.144972 0.989436i
\(28\) −3.87574 + 13.4528i −0.138419 + 0.480458i
\(29\) −22.8488 −0.787888 −0.393944 0.919134i \(-0.628890\pi\)
−0.393944 + 0.919134i \(0.628890\pi\)
\(30\) 0.856366 21.1959i 0.0285455 0.706530i
\(31\) 36.0825 + 20.8322i 1.16395 + 0.672007i 0.952248 0.305327i \(-0.0987658\pi\)
0.211703 + 0.977334i \(0.432099\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 21.8043 42.3875i 0.660736 1.28447i
\(34\) 24.8669 0.731379
\(35\) −14.1443 32.0147i −0.404123 0.914705i
\(36\) −16.3867 7.44815i −0.455187 0.206893i
\(37\) 7.72790 28.8409i 0.208862 0.779484i −0.779375 0.626557i \(-0.784463\pi\)
0.988238 0.152927i \(-0.0488699\pi\)
\(38\) 4.11759 + 15.3671i 0.108358 + 0.404396i
\(39\) −15.1916 + 16.7414i −0.389529 + 0.429267i
\(40\) −11.5715 8.13022i −0.289287 0.203256i
\(41\) 55.0717 1.34321 0.671606 0.740909i \(-0.265605\pi\)
0.671606 + 0.740909i \(0.265605\pi\)
\(42\) −29.6853 + 0.884639i −0.706793 + 0.0210628i
\(43\) −14.2521 + 14.2521i −0.331445 + 0.331445i −0.853135 0.521690i \(-0.825302\pi\)
0.521690 + 0.853135i \(0.325302\pi\)
\(44\) −15.8890 27.5205i −0.361113 0.625465i
\(45\) 43.3707 11.9992i 0.963794 0.266648i
\(46\) −28.6258 + 49.5814i −0.622301 + 1.07786i
\(47\) −6.77411 + 25.2813i −0.144130 + 0.537900i 0.855663 + 0.517534i \(0.173150\pi\)
−0.999793 + 0.0203662i \(0.993517\pi\)
\(48\) −10.0892 + 6.49672i −0.210192 + 0.135348i
\(49\) −43.3218 + 22.8959i −0.884118 + 0.467263i
\(50\) 35.2305 2.96807i 0.704611 0.0593614i
\(51\) 16.1068 + 50.2315i 0.315820 + 0.984931i
\(52\) 3.90069 + 14.5576i 0.0750132 + 0.279953i
\(53\) 59.0583 15.8246i 1.11431 0.298578i 0.345730 0.938334i \(-0.387631\pi\)
0.768578 + 0.639756i \(0.220965\pi\)
\(54\) 4.43132 37.9258i 0.0820614 0.702329i
\(55\) 74.6098 + 27.2918i 1.35654 + 0.496214i
\(56\) −10.2184 + 16.9583i −0.182472 + 0.302827i
\(57\) −28.3746 + 18.2712i −0.497801 + 0.320547i
\(58\) −31.2120 8.36322i −0.538138 0.144194i
\(59\) 10.7056 + 6.18085i 0.181450 + 0.104760i 0.587974 0.808880i \(-0.299926\pi\)
−0.406524 + 0.913640i \(0.633259\pi\)
\(60\) 8.92806 28.6407i 0.148801 0.477345i
\(61\) 14.5577 8.40486i 0.238650 0.137785i −0.375906 0.926658i \(-0.622668\pi\)
0.614556 + 0.788873i \(0.289335\pi\)
\(62\) 41.6644 + 41.6644i 0.672007 + 0.672007i
\(63\) −21.0148 59.3917i −0.333568 0.942726i
\(64\) 8.00000i 0.125000i
\(65\) −30.8290 21.6607i −0.474292 0.333242i
\(66\) 45.3001 49.9215i 0.686366 0.756387i
\(67\) 103.766 27.8041i 1.54875 0.414987i 0.619671 0.784862i \(-0.287266\pi\)
0.929082 + 0.369875i \(0.120600\pi\)
\(68\) 33.9688 + 9.10191i 0.499541 + 0.133852i
\(69\) −118.697 25.7096i −1.72024 0.372603i
\(70\) −7.60331 48.9100i −0.108619 0.698715i
\(71\) 34.7786i 0.489840i −0.969543 0.244920i \(-0.921238\pi\)
0.969543 0.244920i \(-0.0787617\pi\)
\(72\) −19.6585 16.1723i −0.273035 0.224616i
\(73\) −56.8067 + 15.2213i −0.778175 + 0.208511i −0.625980 0.779839i \(-0.715301\pi\)
−0.152195 + 0.988351i \(0.548634\pi\)
\(74\) 21.1130 36.5688i 0.285311 0.494173i
\(75\) 28.8151 + 69.2437i 0.384202 + 0.923249i
\(76\) 22.4989i 0.296039i
\(77\) 30.7907 106.876i 0.399880 1.38800i
\(78\) −26.8799 + 17.3087i −0.344614 + 0.221906i
\(79\) 40.5584 23.4164i 0.513398 0.296410i −0.220831 0.975312i \(-0.570877\pi\)
0.734229 + 0.678902i \(0.237544\pi\)
\(80\) −12.8311 15.3416i −0.160389 0.191769i
\(81\) 79.4808 15.6140i 0.981245 0.192766i
\(82\) 75.2293 + 20.1576i 0.917431 + 0.245825i
\(83\) 75.6892 75.6892i 0.911918 0.911918i −0.0845048 0.996423i \(-0.526931\pi\)
0.996423 + 0.0845048i \(0.0269308\pi\)
\(84\) −40.8747 9.65714i −0.486603 0.114966i
\(85\) −79.7402 + 37.0274i −0.938120 + 0.435616i
\(86\) −24.6854 + 14.2521i −0.287040 + 0.165722i
\(87\) −3.32285 68.4657i −0.0381936 0.786962i
\(88\) −11.6315 43.4094i −0.132176 0.493289i
\(89\) −116.275 + 67.1315i −1.30646 + 0.754286i −0.981504 0.191442i \(-0.938684\pi\)
−0.324958 + 0.945728i \(0.605350\pi\)
\(90\) 63.6375 0.516401i 0.707084 0.00573779i
\(91\) −27.2242 + 45.1806i −0.299167 + 0.496490i
\(92\) −57.2517 + 57.2517i −0.622301 + 0.622301i
\(93\) −57.1758 + 111.150i −0.614793 + 1.19516i
\(94\) −18.5072 + 32.0554i −0.196885 + 0.341015i
\(95\) −36.0857 43.1461i −0.379850 0.454169i
\(96\) −16.1601 + 5.18177i −0.168334 + 0.0539768i
\(97\) −75.7669 + 75.7669i −0.781102 + 0.781102i −0.980017 0.198915i \(-0.936258\pi\)
0.198915 + 0.980017i \(0.436258\pi\)
\(98\) −67.5592 + 15.4195i −0.689379 + 0.157342i
\(99\) 130.184 + 59.1716i 1.31499 + 0.597693i
\(100\) 49.2122 + 8.84081i 0.492122 + 0.0884081i
\(101\) 39.6447 68.6665i 0.392521 0.679867i −0.600260 0.799805i \(-0.704936\pi\)
0.992781 + 0.119938i \(0.0382696\pi\)
\(102\) 3.61634 + 74.5130i 0.0354543 + 0.730519i
\(103\) 12.9252 48.2373i 0.125487 0.468323i −0.874370 0.485260i \(-0.838725\pi\)
0.999857 + 0.0169370i \(0.00539146\pi\)
\(104\) 21.3138i 0.204940i
\(105\) 93.8741 47.0389i 0.894039 0.447989i
\(106\) 86.4673 0.815730
\(107\) −178.339 47.7857i −1.66672 0.446595i −0.702494 0.711690i \(-0.747930\pi\)
−0.964223 + 0.265094i \(0.914597\pi\)
\(108\) 19.9351 50.1856i 0.184584 0.464681i
\(109\) −70.6679 40.8002i −0.648330 0.374313i 0.139486 0.990224i \(-0.455455\pi\)
−0.787816 + 0.615911i \(0.788788\pi\)
\(110\) 91.9295 + 64.5904i 0.835722 + 0.587185i
\(111\) 87.5449 + 18.9622i 0.788692 + 0.170830i
\(112\) −20.1658 + 19.4252i −0.180052 + 0.173440i
\(113\) −56.2695 56.2695i −0.497960 0.497960i 0.412842 0.910803i \(-0.364536\pi\)
−0.910803 + 0.412842i \(0.864536\pi\)
\(114\) −45.4482 + 14.5731i −0.398668 + 0.127834i
\(115\) 17.9661 201.616i 0.156227 1.75319i
\(116\) −39.5752 22.8488i −0.341166 0.196972i
\(117\) −52.3745 43.0866i −0.447645 0.368262i
\(118\) 12.3617 + 12.3617i 0.104760 + 0.104760i
\(119\) 59.5381 + 107.727i 0.500320 + 0.905268i
\(120\) 22.6792 35.8560i 0.188993 0.298800i
\(121\) 65.7294 + 113.847i 0.543218 + 0.940882i
\(122\) 22.9625 6.15279i 0.188217 0.0504327i
\(123\) 8.00896 + 165.021i 0.0651135 + 1.34163i
\(124\) 41.6644 + 72.1649i 0.336004 + 0.581975i
\(125\) −108.554 + 61.9767i −0.868429 + 0.495814i
\(126\) −6.96787 88.8226i −0.0553006 0.704941i
\(127\) 29.9204 + 29.9204i 0.235594 + 0.235594i 0.815023 0.579429i \(-0.196724\pi\)
−0.579429 + 0.815023i \(0.696724\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −44.7788 40.6335i −0.347122 0.314988i
\(130\) −34.1848 40.8733i −0.262960 0.314410i
\(131\) 82.2110 + 142.394i 0.627565 + 1.08697i 0.988039 + 0.154205i \(0.0492816\pi\)
−0.360474 + 0.932769i \(0.617385\pi\)
\(132\) 80.1537 51.6131i 0.607225 0.391008i
\(133\) −56.7137 + 54.6309i −0.426419 + 0.410759i
\(134\) 151.925 1.13377
\(135\) 42.2625 + 128.214i 0.313056 + 0.949735i
\(136\) 43.0707 + 24.8669i 0.316696 + 0.182845i
\(137\) −9.26691 34.5846i −0.0676417 0.252442i 0.923823 0.382821i \(-0.125047\pi\)
−0.991464 + 0.130379i \(0.958381\pi\)
\(138\) −152.732 78.5660i −1.10676 0.569319i
\(139\) −29.1666 −0.209832 −0.104916 0.994481i \(-0.533457\pi\)
−0.104916 + 0.994481i \(0.533457\pi\)
\(140\) 7.51599 69.5953i 0.0536856 0.497109i
\(141\) −76.7399 16.6218i −0.544255 0.117885i
\(142\) 12.7299 47.5085i 0.0896469 0.334567i
\(143\) −30.9889 115.652i −0.216706 0.808757i
\(144\) −20.9345 29.2873i −0.145379 0.203384i
\(145\) 112.540 19.6572i 0.776137 0.135567i
\(146\) −83.1709 −0.569663
\(147\) −74.9071 126.483i −0.509572 0.860428i
\(148\) 42.2260 42.2260i 0.285311 0.285311i
\(149\) 62.7849 + 108.747i 0.421375 + 0.729843i 0.996074 0.0885216i \(-0.0282142\pi\)
−0.574699 + 0.818365i \(0.694881\pi\)
\(150\) 14.0172 + 105.136i 0.0934483 + 0.700905i
\(151\) −93.1064 + 161.265i −0.616599 + 1.06798i 0.373503 + 0.927629i \(0.378157\pi\)
−0.990102 + 0.140352i \(0.955177\pi\)
\(152\) −8.23519 + 30.7341i −0.0541788 + 0.202198i
\(153\) −148.175 + 55.5687i −0.968463 + 0.363194i
\(154\) 81.1801 134.725i 0.527144 0.874836i
\(155\) −195.644 71.5653i −1.26222 0.461711i
\(156\) −43.0541 + 13.8054i −0.275988 + 0.0884960i
\(157\) −27.2585 101.730i −0.173621 0.647962i −0.996782 0.0801548i \(-0.974459\pi\)
0.823162 0.567807i \(-0.192208\pi\)
\(158\) 63.9748 17.1420i 0.404904 0.108494i
\(159\) 56.0068 + 174.665i 0.352244 + 1.09852i
\(160\) −11.9122 25.6535i −0.0744512 0.160334i
\(161\) −283.332 5.29983i −1.75982 0.0329182i
\(162\) 114.288 + 7.76285i 0.705481 + 0.0479188i
\(163\) −197.007 52.7878i −1.20863 0.323852i −0.402406 0.915461i \(-0.631826\pi\)
−0.806225 + 0.591610i \(0.798493\pi\)
\(164\) 95.3870 + 55.0717i 0.581628 + 0.335803i
\(165\) −70.9288 + 227.535i −0.429871 + 1.37900i
\(166\) 131.098 75.6892i 0.789744 0.455959i
\(167\) 168.308 + 168.308i 1.00783 + 1.00783i 0.999969 + 0.00786180i \(0.00250252\pi\)
0.00786180 + 0.999969i \(0.497497\pi\)
\(168\) −52.3011 28.1531i −0.311316 0.167578i
\(169\) 112.215i 0.663997i
\(170\) −122.480 + 21.3934i −0.720471 + 0.125844i
\(171\) −58.8756 82.3667i −0.344301 0.481676i
\(172\) −38.9375 + 10.4333i −0.226381 + 0.0606586i
\(173\) 140.288 + 37.5901i 0.810914 + 0.217284i 0.640370 0.768066i \(-0.278781\pi\)
0.170544 + 0.985350i \(0.445448\pi\)
\(174\) 20.5211 94.7421i 0.117937 0.544495i
\(175\) 97.2096 + 145.517i 0.555483 + 0.831528i
\(176\) 63.5558i 0.361113i
\(177\) −16.9639 + 32.9778i −0.0958411 + 0.186315i
\(178\) −183.407 + 49.1437i −1.03037 + 0.276088i
\(179\) −53.3572 + 92.4174i −0.298085 + 0.516298i −0.975698 0.219120i \(-0.929681\pi\)
0.677613 + 0.735419i \(0.263015\pi\)
\(180\) 87.1195 + 22.5875i 0.483997 + 0.125486i
\(181\) 16.9570i 0.0936850i −0.998902 0.0468425i \(-0.985084\pi\)
0.998902 0.0468425i \(-0.0149159\pi\)
\(182\) −53.7261 + 51.7531i −0.295199 + 0.284358i
\(183\) 27.3020 + 42.3993i 0.149191 + 0.231690i
\(184\) −99.1628 + 57.2517i −0.538928 + 0.311150i
\(185\) −13.2509 + 148.702i −0.0716264 + 0.803796i
\(186\) −118.787 + 130.906i −0.638641 + 0.703793i
\(187\) −269.864 72.3099i −1.44313 0.386684i
\(188\) −37.0144 + 37.0144i −0.196885 + 0.196885i
\(189\) 174.910 71.6075i 0.925448 0.378876i
\(190\) −33.5015 72.1470i −0.176323 0.379721i
\(191\) 30.1768 17.4226i 0.157994 0.0912178i −0.418919 0.908024i \(-0.637591\pi\)
0.576912 + 0.816806i \(0.304257\pi\)
\(192\) −23.9718 + 1.16342i −0.124853 + 0.00605950i
\(193\) −50.1378 187.117i −0.259781 0.969517i −0.965368 0.260893i \(-0.915983\pi\)
0.705586 0.708624i \(-0.250684\pi\)
\(194\) −131.232 + 75.7669i −0.676454 + 0.390551i
\(195\) 60.4223 95.5283i 0.309858 0.489889i
\(196\) −97.9314 3.66498i −0.499650 0.0186989i
\(197\) 48.4192 48.4192i 0.245783 0.245783i −0.573455 0.819237i \(-0.694397\pi\)
0.819237 + 0.573455i \(0.194397\pi\)
\(198\) 156.176 + 128.481i 0.788770 + 0.648892i
\(199\) 30.8142 53.3717i 0.154845 0.268200i −0.778157 0.628069i \(-0.783845\pi\)
0.933003 + 0.359870i \(0.117179\pi\)
\(200\) 63.9891 + 30.0897i 0.319946 + 0.150448i
\(201\) 98.4048 + 306.890i 0.489576 + 1.52681i
\(202\) 79.2893 79.2893i 0.392521 0.392521i
\(203\) −38.4993 155.239i −0.189652 0.764722i
\(204\) −22.3336 + 103.110i −0.109479 + 0.505443i
\(205\) −271.252 + 47.3791i −1.32318 + 0.231118i
\(206\) 35.3122 61.1625i 0.171418 0.296905i
\(207\) 59.7764 359.410i 0.288775 1.73628i
\(208\) −7.80137 + 29.1151i −0.0375066 + 0.139977i
\(209\) 178.742i 0.855227i
\(210\) 145.452 29.8960i 0.692628 0.142362i
\(211\) 312.769 1.48232 0.741158 0.671331i \(-0.234277\pi\)
0.741158 + 0.671331i \(0.234277\pi\)
\(212\) 118.117 + 31.6492i 0.557154 + 0.149289i
\(213\) 104.213 5.05779i 0.489264 0.0237455i
\(214\) −226.124 130.553i −1.05666 0.610061i
\(215\) 57.9365 82.4592i 0.269472 0.383531i
\(216\) 45.6010 61.2580i 0.211116 0.283602i
\(217\) −80.7403 + 280.252i −0.372075 + 1.29149i
\(218\) −81.6003 81.6003i −0.374313 0.374313i
\(219\) −53.8716 168.006i −0.245989 0.767152i
\(220\) 101.936 + 121.881i 0.463347 + 0.554003i
\(221\) 114.750 + 66.2508i 0.519230 + 0.299778i
\(222\) 112.648 + 57.9464i 0.507423 + 0.261020i
\(223\) 128.865 + 128.865i 0.577870 + 0.577870i 0.934316 0.356446i \(-0.116012\pi\)
−0.356446 + 0.934316i \(0.616012\pi\)
\(224\) −34.6571 + 19.1542i −0.154719 + 0.0855097i
\(225\) −203.296 + 96.4137i −0.903539 + 0.428505i
\(226\) −56.2695 97.4616i −0.248980 0.431246i
\(227\) 365.528 97.9428i 1.61025 0.431466i 0.662135 0.749384i \(-0.269650\pi\)
0.948118 + 0.317918i \(0.102984\pi\)
\(228\) −67.4175 + 3.27198i −0.295691 + 0.0143508i
\(229\) −78.9305 136.712i −0.344675 0.596994i 0.640620 0.767858i \(-0.278677\pi\)
−0.985295 + 0.170864i \(0.945344\pi\)
\(230\) 98.3388 268.837i 0.427560 1.16886i
\(231\) 324.728 + 76.7209i 1.40575 + 0.332125i
\(232\) −45.6975 45.6975i −0.196972 0.196972i
\(233\) 23.7904 88.7869i 0.102105 0.381060i −0.895896 0.444264i \(-0.853465\pi\)
0.998001 + 0.0632042i \(0.0201319\pi\)
\(234\) −55.7741 78.0278i −0.238351 0.333452i
\(235\) 11.6154 130.349i 0.0494274 0.554677i
\(236\) 12.3617 + 21.4111i 0.0523801 + 0.0907250i
\(237\) 76.0650 + 118.127i 0.320949 + 0.498425i
\(238\) 41.8998 + 168.950i 0.176049 + 0.709875i
\(239\) 77.3170 0.323502 0.161751 0.986832i \(-0.448286\pi\)
0.161751 + 0.986832i \(0.448286\pi\)
\(240\) 44.1046 40.6791i 0.183769 0.169496i
\(241\) −372.723 215.192i −1.54657 0.892912i −0.998400 0.0565436i \(-0.981992\pi\)
−0.548168 0.836368i \(-0.684675\pi\)
\(242\) 48.1173 + 179.576i 0.198832 + 0.742050i
\(243\) 58.3457 + 235.891i 0.240106 + 0.970747i
\(244\) 33.6195 0.137785
\(245\) 193.681 150.043i 0.790534 0.612419i
\(246\) −49.4614 + 228.354i −0.201062 + 0.928269i
\(247\) −21.9403 + 81.8824i −0.0888273 + 0.331508i
\(248\) 30.5005 + 113.829i 0.122986 + 0.458989i
\(249\) 237.808 + 215.793i 0.955052 + 0.866640i
\(250\) −170.972 + 44.9284i −0.683888 + 0.179714i
\(251\) 17.9306 0.0714367 0.0357184 0.999362i \(-0.488628\pi\)
0.0357184 + 0.999362i \(0.488628\pi\)
\(252\) 22.9930 123.884i 0.0912422 0.491604i
\(253\) 454.834 454.834i 1.79776 1.79776i
\(254\) 29.9204 + 51.8237i 0.117797 + 0.204030i
\(255\) −122.548 233.555i −0.480581 0.915900i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 39.1745 146.201i 0.152430 0.568876i −0.846882 0.531781i \(-0.821523\pi\)
0.999312 0.0370950i \(-0.0118104\pi\)
\(258\) −46.2961 71.8965i −0.179442 0.278669i
\(259\) 208.972 + 3.90890i 0.806840 + 0.0150923i
\(260\) −31.7367 68.3464i −0.122064 0.262871i
\(261\) 204.672 19.9136i 0.784185 0.0762975i
\(262\) 60.1826 + 224.605i 0.229705 + 0.857270i
\(263\) 427.661 114.591i 1.62609 0.435709i 0.673306 0.739364i \(-0.264874\pi\)
0.952782 + 0.303655i \(0.0982070\pi\)
\(264\) 128.384 41.1665i 0.486302 0.155934i
\(265\) −277.273 + 128.752i −1.04631 + 0.485856i
\(266\) −97.4686 + 53.8686i −0.366423 + 0.202514i
\(267\) −218.067 338.653i −0.816732 1.26836i
\(268\) 207.533 + 55.6082i 0.774376 + 0.207493i
\(269\) −53.4816 30.8776i −0.198817 0.114787i 0.397287 0.917694i \(-0.369952\pi\)
−0.596103 + 0.802908i \(0.703285\pi\)
\(270\) 10.8021 + 190.613i 0.0400076 + 0.705974i
\(271\) 100.182 57.8400i 0.369675 0.213432i −0.303642 0.952786i \(-0.598203\pi\)
0.673316 + 0.739355i \(0.264869\pi\)
\(272\) 49.7338 + 49.7338i 0.182845 + 0.182845i
\(273\) −139.342 75.0059i −0.510409 0.274747i
\(274\) 50.6354i 0.184801i
\(275\) −390.965 70.2357i −1.42169 0.255402i
\(276\) −179.879 163.227i −0.651736 0.591402i
\(277\) 361.333 96.8189i 1.30445 0.349527i 0.461320 0.887234i \(-0.347376\pi\)
0.843132 + 0.537707i \(0.180709\pi\)
\(278\) −39.8424 10.6757i −0.143318 0.0384019i
\(279\) −341.372 155.161i −1.22356 0.556134i
\(280\) 35.7407 92.3179i 0.127645 0.329707i
\(281\) 236.224i 0.840656i 0.907372 + 0.420328i \(0.138085\pi\)
−0.907372 + 0.420328i \(0.861915\pi\)
\(282\) −98.7446 50.7946i −0.350158 0.180123i
\(283\) −22.9106 + 6.13887i −0.0809561 + 0.0216921i −0.299070 0.954231i \(-0.596676\pi\)
0.218114 + 0.975923i \(0.430010\pi\)
\(284\) 34.7786 60.2384i 0.122460 0.212107i
\(285\) 124.038 114.405i 0.435222 0.401420i
\(286\) 169.327i 0.592051i
\(287\) 92.7937 + 374.167i 0.323323 + 1.30372i
\(288\) −17.8772 47.6698i −0.0620735 0.165520i
\(289\) 17.4774 10.0906i 0.0604754 0.0349155i
\(290\) 160.927 + 14.3403i 0.554922 + 0.0494492i
\(291\) −238.052 216.015i −0.818049 0.742319i
\(292\) −113.613 30.4426i −0.389087 0.104256i
\(293\) 89.0653 89.0653i 0.303977 0.303977i −0.538591 0.842568i \(-0.681043\pi\)
0.842568 + 0.538591i \(0.181043\pi\)
\(294\) −56.0290 200.197i −0.190575 0.680941i
\(295\) −58.0469 21.2332i −0.196769 0.0719769i
\(296\) 73.1376 42.2260i 0.247087 0.142655i
\(297\) −158.374 + 398.698i −0.533245 + 1.34242i
\(298\) 45.9617 + 171.532i 0.154234 + 0.575609i
\(299\) −264.191 + 152.531i −0.883583 + 0.510137i
\(300\) −19.3344 + 148.749i −0.0644481 + 0.495829i
\(301\) −120.846 72.8172i −0.401481 0.241918i
\(302\) −186.213 + 186.213i −0.616599 + 0.616599i
\(303\) 211.523 + 108.808i 0.698095 + 0.359103i
\(304\) −22.4989 + 38.9693i −0.0740097 + 0.128189i
\(305\) −64.4718 + 53.9218i −0.211383 + 0.176793i
\(306\) −222.750 + 21.6725i −0.727942 + 0.0708253i
\(307\) 79.6418 79.6418i 0.259419 0.259419i −0.565398 0.824818i \(-0.691278\pi\)
0.824818 + 0.565398i \(0.191278\pi\)
\(308\) 160.207 154.323i 0.520152 0.501050i
\(309\) 146.422 + 31.7148i 0.473856 + 0.102637i
\(310\) −241.060 169.371i −0.777613 0.546357i
\(311\) −53.4146 + 92.5167i −0.171751 + 0.297481i −0.939032 0.343829i \(-0.888276\pi\)
0.767281 + 0.641311i \(0.221609\pi\)
\(312\) −63.8661 + 3.09962i −0.204699 + 0.00993466i
\(313\) −34.8889 + 130.207i −0.111466 + 0.415998i −0.998998 0.0447483i \(-0.985751\pi\)
0.887532 + 0.460746i \(0.152418\pi\)
\(314\) 148.943i 0.474341i
\(315\) 154.603 + 274.450i 0.490802 + 0.871271i
\(316\) 93.6657 0.296410
\(317\) −317.743 85.1391i −1.00235 0.268578i −0.279917 0.960024i \(-0.590307\pi\)
−0.722428 + 0.691447i \(0.756974\pi\)
\(318\) 12.5748 + 259.097i 0.0395433 + 0.814771i
\(319\) 314.404 + 181.521i 0.985593 + 0.569033i
\(320\) −6.88254 39.4034i −0.0215079 0.123136i
\(321\) 117.253 541.336i 0.365275 1.68641i
\(322\) −385.098 110.946i −1.19596 0.344554i
\(323\) 139.870 + 139.870i 0.433033 + 0.433033i
\(324\) 153.279 + 52.4365i 0.473083 + 0.161841i
\(325\) 170.481 + 80.1655i 0.524557 + 0.246663i
\(326\) −249.795 144.219i −0.766241 0.442390i
\(327\) 111.979 217.688i 0.342445 0.665713i
\(328\) 110.143 + 110.143i 0.335803 + 0.335803i
\(329\) −183.180 3.42645i −0.556778 0.0104148i
\(330\) −180.174 + 284.857i −0.545982 + 0.863204i
\(331\) −275.493 477.168i −0.832305 1.44160i −0.896206 0.443639i \(-0.853687\pi\)
0.0639004 0.997956i \(-0.479646\pi\)
\(332\) 206.787 55.4084i 0.622852 0.166893i
\(333\) −44.0882 + 265.083i −0.132397 + 0.796046i
\(334\) 168.308 + 291.518i 0.503915 + 0.872807i
\(335\) −487.174 + 226.219i −1.45425 + 0.675281i
\(336\) −61.1399 57.6013i −0.181964 0.171433i
\(337\) 174.856 + 174.856i 0.518861 + 0.518861i 0.917227 0.398366i \(-0.130423\pi\)
−0.398366 + 0.917227i \(0.630423\pi\)
\(338\) 41.0737 153.289i 0.121520 0.453518i
\(339\) 160.427 176.793i 0.473236 0.521514i
\(340\) −175.141 15.6069i −0.515122 0.0459026i
\(341\) −331.002 573.313i −0.970681 1.68127i
\(342\) −50.2772 134.065i −0.147009 0.392003i
\(343\) −228.554 255.758i −0.666339 0.745649i
\(344\) −57.0085 −0.165722
\(345\) 606.751 + 24.5142i 1.75870 + 0.0710556i
\(346\) 177.878 + 102.698i 0.514099 + 0.296815i
\(347\) 32.4333 + 121.043i 0.0934678 + 0.348827i 0.996783 0.0801515i \(-0.0255404\pi\)
−0.903315 + 0.428978i \(0.858874\pi\)
\(348\) 62.7103 121.909i 0.180202 0.350313i
\(349\) 82.2163 0.235577 0.117788 0.993039i \(-0.462420\pi\)
0.117788 + 0.993039i \(0.462420\pi\)
\(350\) 79.5277 + 234.362i 0.227222 + 0.669604i
\(351\) 121.491 163.205i 0.346129 0.464971i
\(352\) 23.2630 86.8189i 0.0660882 0.246644i
\(353\) 108.630 + 405.413i 0.307734 + 1.14848i 0.930566 + 0.366124i \(0.119315\pi\)
−0.622832 + 0.782356i \(0.714018\pi\)
\(354\) −35.2438 + 38.8393i −0.0995587 + 0.109715i
\(355\) 29.9207 + 171.300i 0.0842836 + 0.482534i
\(356\) −268.526 −0.754286
\(357\) −314.142 + 194.071i −0.879950 + 0.543616i
\(358\) −106.714 + 106.714i −0.298085 + 0.298085i
\(359\) 222.108 + 384.703i 0.618687 + 1.07160i 0.989726 + 0.142979i \(0.0456683\pi\)
−0.371039 + 0.928617i \(0.620998\pi\)
\(360\) 110.740 + 62.7431i 0.307611 + 0.174286i
\(361\) 117.225 203.039i 0.324722 0.562435i
\(362\) 6.20669 23.1637i 0.0171455 0.0639880i
\(363\) −331.580 + 213.513i −0.913443 + 0.588190i
\(364\) −92.3342 + 51.0309i −0.253665 + 0.140195i
\(365\) 266.702 123.843i 0.730692 0.339297i
\(366\) 21.7761 + 67.9118i 0.0594974 + 0.185551i
\(367\) 144.420 + 538.984i 0.393516 + 1.46862i 0.824293 + 0.566163i \(0.191573\pi\)
−0.430777 + 0.902458i \(0.641761\pi\)
\(368\) −156.414 + 41.9111i −0.425039 + 0.113889i
\(369\) −493.316 + 47.9973i −1.33690 + 0.130074i
\(370\) −72.5299 + 198.281i −0.196027 + 0.535895i
\(371\) 207.026 + 374.589i 0.558023 + 1.00967i
\(372\) −210.181 + 135.341i −0.565003 + 0.363820i
\(373\) 297.089 + 79.6048i 0.796485 + 0.213418i 0.634040 0.773300i \(-0.281395\pi\)
0.162445 + 0.986718i \(0.448062\pi\)
\(374\) −342.174 197.554i −0.914905 0.528220i
\(375\) −201.498 316.265i −0.537329 0.843373i
\(376\) −64.1108 + 37.0144i −0.170507 + 0.0984425i
\(377\) −121.748 121.748i −0.322939 0.322939i
\(378\) 265.141 33.7963i 0.701432 0.0894083i
\(379\) 7.39316i 0.0195070i 0.999952 + 0.00975351i \(0.00310469\pi\)
−0.999952 + 0.00975351i \(0.996895\pi\)
\(380\) −19.3562 110.817i −0.0509374 0.291624i
\(381\) −85.3045 + 94.0070i −0.223896 + 0.246738i
\(382\) 47.5994 12.7542i 0.124606 0.0333880i
\(383\) −159.487 42.7344i −0.416415 0.111578i 0.0445273 0.999008i \(-0.485822\pi\)
−0.460942 + 0.887430i \(0.652488\pi\)
\(384\) −33.1719 7.18502i −0.0863852 0.0187110i
\(385\) −59.7106 + 552.898i −0.155092 + 1.43610i
\(386\) 273.958i 0.709736i
\(387\) 115.245 140.088i 0.297791 0.361984i
\(388\) −206.999 + 55.4652i −0.533503 + 0.142952i
\(389\) 209.686 363.187i 0.539038 0.933641i −0.459918 0.887961i \(-0.652121\pi\)
0.998956 0.0456801i \(-0.0145455\pi\)
\(390\) 117.504 108.378i 0.301293 0.277892i
\(391\) 711.835i 1.82055i
\(392\) −132.435 40.8518i −0.337845 0.104214i
\(393\) −414.723 + 267.051i −1.05527 + 0.679519i
\(394\) 83.8645 48.4192i 0.212854 0.122891i
\(395\) −179.622 + 150.229i −0.454739 + 0.380327i
\(396\) 166.314 + 232.672i 0.419984 + 0.587556i
\(397\) −291.896 78.2133i −0.735255 0.197011i −0.128287 0.991737i \(-0.540948\pi\)
−0.606968 + 0.794726i \(0.707614\pi\)
\(398\) 61.6284 61.6284i 0.154845 0.154845i
\(399\) −171.948 161.996i −0.430947 0.406005i
\(400\) 76.3972 + 64.5249i 0.190993 + 0.161312i
\(401\) 322.132 185.983i 0.803320 0.463797i −0.0413104 0.999146i \(-0.513153\pi\)
0.844631 + 0.535349i \(0.179820\pi\)
\(402\) 22.0941 + 455.238i 0.0549604 + 1.13243i
\(403\) 81.2600 + 303.266i 0.201638 + 0.752522i
\(404\) 137.333 79.2893i 0.339933 0.196261i
\(405\) −378.044 + 145.284i −0.933442 + 0.358727i
\(406\) 4.23026 226.152i 0.0104193 0.557024i
\(407\) −335.464 + 335.464i −0.824235 + 0.824235i
\(408\) −68.2493 + 132.677i −0.167278 + 0.325188i
\(409\) 148.294 256.853i 0.362577 0.628001i −0.625807 0.779978i \(-0.715230\pi\)
0.988384 + 0.151976i \(0.0485637\pi\)
\(410\) −387.879 34.5639i −0.946045 0.0843023i
\(411\) 102.284 32.7976i 0.248866 0.0797996i
\(412\) 70.6243 70.6243i 0.171418 0.171418i
\(413\) −23.9554 + 83.1500i −0.0580033 + 0.201332i
\(414\) 213.209 469.084i 0.514998 1.13305i
\(415\) −307.685 + 437.919i −0.741410 + 1.05523i
\(416\) −21.3138 + 36.9165i −0.0512350 + 0.0887416i
\(417\) −4.24165 87.3971i −0.0101718 0.209585i
\(418\) 65.4242 244.167i 0.156517 0.584131i
\(419\) 564.525i 1.34732i 0.739044 + 0.673658i \(0.235278\pi\)
−0.739044 + 0.673658i \(0.764722\pi\)
\(420\) 209.634 + 12.4003i 0.499128 + 0.0295246i
\(421\) −576.949 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(422\) 427.250 + 114.481i 1.01244 + 0.271283i
\(423\) 38.6467 232.366i 0.0913633 0.549329i
\(424\) 149.766 + 86.4673i 0.353221 + 0.203932i
\(425\) 360.899 250.978i 0.849175 0.590536i
\(426\) 144.209 + 31.2356i 0.338519 + 0.0733231i
\(427\) 81.6333 + 84.7454i 0.191179 + 0.198467i
\(428\) −261.106 261.106i −0.610061 0.610061i
\(429\) 342.042 109.677i 0.797301 0.255656i
\(430\) 109.325 91.4351i 0.254244 0.212640i
\(431\) −443.346 255.966i −1.02864 0.593888i −0.112048 0.993703i \(-0.535741\pi\)
−0.916596 + 0.399815i \(0.869075\pi\)
\(432\) 84.7142 66.9889i 0.196098 0.155067i
\(433\) 545.122 + 545.122i 1.25894 + 1.25894i 0.951599 + 0.307343i \(0.0994400\pi\)
0.307343 + 0.951599i \(0.400560\pi\)
\(434\) −212.873 + 353.279i −0.490490 + 0.814006i
\(435\) 75.2686 + 334.364i 0.173031 + 0.768653i
\(436\) −81.6003 141.336i −0.187157 0.324165i
\(437\) −439.895 + 117.869i −1.00662 + 0.269724i
\(438\) −12.0954 249.219i −0.0276150 0.568994i
\(439\) −135.516 234.721i −0.308693 0.534673i 0.669383 0.742917i \(-0.266558\pi\)
−0.978077 + 0.208245i \(0.933225\pi\)
\(440\) 94.6361 + 203.803i 0.215082 + 0.463189i
\(441\) 368.109 242.851i 0.834714 0.550683i
\(442\) 132.502 + 132.502i 0.299778 + 0.299778i
\(443\) −29.6092 + 110.503i −0.0668380 + 0.249443i −0.991259 0.131931i \(-0.957882\pi\)
0.924421 + 0.381374i \(0.124549\pi\)
\(444\) 132.670 + 120.388i 0.298806 + 0.271145i
\(445\) 514.951 430.685i 1.15719 0.967831i
\(446\) 128.865 + 223.201i 0.288935 + 0.500450i
\(447\) −316.726 + 203.948i −0.708559 + 0.456260i
\(448\) −54.3535 + 13.4797i −0.121325 + 0.0300886i
\(449\) −113.813 −0.253482 −0.126741 0.991936i \(-0.540452\pi\)
−0.126741 + 0.991936i \(0.540452\pi\)
\(450\) −312.998 + 57.2919i −0.695551 + 0.127315i
\(451\) −757.799 437.516i −1.68026 0.970101i
\(452\) −41.1921 153.731i −0.0911330 0.340113i
\(453\) −496.767 255.538i −1.09662 0.564103i
\(454\) 535.169 1.17879
\(455\) 95.2210 245.955i 0.209277 0.540561i
\(456\) −93.2916 20.2069i −0.204587 0.0443134i
\(457\) 178.486 666.119i 0.390560 1.45759i −0.438652 0.898657i \(-0.644544\pi\)
0.829212 0.558934i \(-0.188789\pi\)
\(458\) −57.7812 215.642i −0.126160 0.470835i
\(459\) −188.059 435.921i −0.409715 0.949718i
\(460\) 232.734 331.244i 0.505944 0.720095i
\(461\) −195.653 −0.424410 −0.212205 0.977225i \(-0.568065\pi\)
−0.212205 + 0.977225i \(0.568065\pi\)
\(462\) 415.505 + 223.661i 0.899361 + 0.484116i
\(463\) 478.759 478.759i 1.03404 1.03404i 0.0346360 0.999400i \(-0.488973\pi\)
0.999400 0.0346360i \(-0.0110272\pi\)
\(464\) −45.6975 79.1504i −0.0984860 0.170583i
\(465\) 185.991 596.649i 0.399981 1.28312i
\(466\) 64.9965 112.577i 0.139478 0.241582i
\(467\) 26.7812 99.9487i 0.0573472 0.214023i −0.931306 0.364237i \(-0.881330\pi\)
0.988653 + 0.150214i \(0.0479964\pi\)
\(468\) −47.6287 127.003i −0.101771 0.271373i
\(469\) 363.749 + 658.159i 0.775584 + 1.40332i
\(470\) 63.5781 173.809i 0.135273 0.369806i
\(471\) 300.867 96.4737i 0.638784 0.204827i
\(472\) 9.04940 + 33.7728i 0.0191724 + 0.0715526i
\(473\) 309.338 82.8870i 0.653992 0.175237i
\(474\) 60.6693 + 189.206i 0.127994 + 0.399169i
\(475\) 214.857 + 181.468i 0.452331 + 0.382038i
\(476\) −4.60390 + 246.127i −0.00967205 + 0.517073i
\(477\) −515.235 + 193.224i −1.08016 + 0.405082i
\(478\) 105.617 + 28.3000i 0.220956 + 0.0592050i
\(479\) −170.076 98.1933i −0.355064 0.204997i 0.311849 0.950132i \(-0.399052\pi\)
−0.666914 + 0.745135i \(0.732385\pi\)
\(480\) 75.1375 39.4253i 0.156537 0.0821360i
\(481\) 194.855 112.499i 0.405103 0.233886i
\(482\) −430.383 430.383i −0.892912 0.892912i
\(483\) −25.3235 849.766i −0.0524297 1.75935i
\(484\) 262.918i 0.543218i
\(485\) 308.001 438.368i 0.635054 0.903852i
\(486\) −6.64051 + 343.590i −0.0136636 + 0.706975i
\(487\) −93.4744 + 25.0464i −0.191939 + 0.0514299i −0.353508 0.935431i \(-0.615011\pi\)
0.161569 + 0.986861i \(0.448345\pi\)
\(488\) 45.9250 + 12.3056i 0.0941087 + 0.0252163i
\(489\) 129.527 598.002i 0.264881 1.22291i
\(490\) 319.492 134.070i 0.652025 0.273612i
\(491\) 54.8531i 0.111717i 0.998439 + 0.0558585i \(0.0177896\pi\)
−0.998439 + 0.0558585i \(0.982210\pi\)
\(492\) −151.149 + 293.833i −0.307213 + 0.597222i
\(493\) −388.072 + 103.984i −0.787165 + 0.210920i
\(494\) −59.9421 + 103.823i −0.121340 + 0.210168i
\(495\) −692.119 179.446i −1.39822 0.362517i
\(496\) 166.658i 0.336004i
\(497\) 236.292 58.6007i 0.475437 0.117909i
\(498\) 245.866 + 381.823i 0.493707 + 0.766713i
\(499\) −617.735 + 356.650i −1.23795 + 0.714729i −0.968674 0.248335i \(-0.920117\pi\)
−0.269272 + 0.963064i \(0.586783\pi\)
\(500\) −249.997 1.20671i −0.499994 0.00241343i
\(501\) −479.853 + 528.806i −0.957790 + 1.05550i
\(502\) 24.4937 + 6.56306i 0.0487922 + 0.0130738i
\(503\) 662.424 662.424i 1.31695 1.31695i 0.400767 0.916180i \(-0.368744\pi\)
0.916180 0.400767i \(-0.131256\pi\)
\(504\) 76.7539 160.813i 0.152289 0.319074i
\(505\) −136.192 + 372.319i −0.269687 + 0.737266i
\(506\) 787.796 454.834i 1.55691 0.898882i
\(507\) 336.251 16.3193i 0.663216 0.0321879i
\(508\) 21.9033 + 81.7441i 0.0431167 + 0.160914i
\(509\) 330.632 190.890i 0.649572 0.375030i −0.138721 0.990332i \(-0.544299\pi\)
0.788292 + 0.615301i \(0.210966\pi\)
\(510\) −81.9168 363.897i −0.160621 0.713524i
\(511\) −199.134 360.308i −0.389694 0.705104i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 238.247 188.397i 0.464420 0.367246i
\(514\) 107.027 185.376i 0.208223 0.360653i
\(515\) −22.1625 + 248.709i −0.0430340 + 0.482931i
\(516\) −36.9257 115.158i −0.0715613 0.223174i
\(517\) 294.060 294.060i 0.568781 0.568781i
\(518\) 284.030 + 81.8286i 0.548320 + 0.157970i
\(519\) −92.2358 + 425.836i −0.177718 + 0.820493i
\(520\) −18.3366 104.979i −0.0352627 0.201883i
\(521\) −389.610 + 674.824i −0.747812 + 1.29525i 0.201058 + 0.979579i \(0.435562\pi\)
−0.948870 + 0.315668i \(0.897771\pi\)
\(522\) 286.876 + 47.7127i 0.549572 + 0.0914037i
\(523\) −56.6393 + 211.381i −0.108297 + 0.404170i −0.998698 0.0510066i \(-0.983757\pi\)
0.890401 + 0.455176i \(0.150424\pi\)
\(524\) 328.844i 0.627565i
\(525\) −421.902 + 312.448i −0.803622 + 0.595139i
\(526\) 626.139 1.19038
\(527\) 707.646 + 189.613i 1.34278 + 0.359797i
\(528\) 190.443 9.24279i 0.360688 0.0175053i
\(529\) −961.181 554.938i −1.81698 1.04903i
\(530\) −425.889 + 74.3893i −0.803564 + 0.140357i
\(531\) −101.284 46.0359i −0.190742 0.0866966i
\(532\) −152.862 + 37.9099i −0.287334 + 0.0712592i
\(533\) 293.446 + 293.446i 0.550555 + 0.550555i
\(534\) −173.930 542.426i −0.325712 1.01578i
\(535\) 919.505 + 81.9373i 1.71870 + 0.153154i
\(536\) 263.141 + 151.925i 0.490935 + 0.283441i
\(537\) −284.686 146.443i −0.530141 0.272706i
\(538\) −61.7553 61.7553i −0.114787 0.114787i
\(539\) 778.014 + 29.1163i 1.44344 + 0.0540191i
\(540\) −55.0133 + 264.336i −0.101877 + 0.489511i
\(541\) 280.957 + 486.632i 0.519329 + 0.899504i 0.999748 + 0.0224649i \(0.00715140\pi\)
−0.480419 + 0.877039i \(0.659515\pi\)
\(542\) 158.022 42.3418i 0.291553 0.0781215i
\(543\) 50.8111 2.46602i 0.0935749 0.00454147i
\(544\) 49.7338 + 86.1414i 0.0914224 + 0.158348i
\(545\) 383.171 + 140.161i 0.703066 + 0.257177i
\(546\) −162.890 153.463i −0.298333 0.281067i
\(547\) −706.567 706.567i −1.29171 1.29171i −0.933727 0.357987i \(-0.883463\pi\)
−0.357987 0.933727i \(-0.616537\pi\)
\(548\) 18.5338 69.1692i 0.0338208 0.126221i
\(549\) −123.078 + 87.9759i −0.224186 + 0.160247i
\(550\) −508.360 239.047i −0.924291 0.434631i
\(551\) −128.518 222.600i −0.233245 0.403993i
\(552\) −185.974 288.813i −0.336910 0.523211i
\(553\) 227.435 + 236.105i 0.411274 + 0.426954i
\(554\) 529.028 0.954925
\(555\) −447.510 18.0805i −0.806323 0.0325774i
\(556\) −50.5181 29.1666i −0.0908599 0.0524580i
\(557\) 138.355 + 516.348i 0.248393 + 0.927016i 0.971648 + 0.236434i \(0.0759787\pi\)
−0.723254 + 0.690582i \(0.757355\pi\)
\(558\) −409.530 336.905i −0.733925 0.603773i
\(559\) −151.883 −0.271705
\(560\) 82.6134 113.027i 0.147524 0.201833i
\(561\) 177.429 819.157i 0.316273 1.46017i
\(562\) −86.4641 + 322.689i −0.153851 + 0.574179i
\(563\) −45.3296 169.172i −0.0805144 0.300484i 0.913913 0.405911i \(-0.133046\pi\)
−0.994427 + 0.105427i \(0.966379\pi\)
\(564\) −116.296 105.530i −0.206198 0.187109i
\(565\) 325.561 + 228.742i 0.576214 + 0.404853i
\(566\) −33.5434 −0.0592640
\(567\) 240.007 + 513.698i 0.423292 + 0.905993i
\(568\) 69.5573 69.5573i 0.122460 0.122460i
\(569\) 3.43082 + 5.94235i 0.00602955 + 0.0104435i 0.869024 0.494769i \(-0.164747\pi\)
−0.862995 + 0.505213i \(0.831414\pi\)
\(570\) 211.314 110.878i 0.370727 0.194524i
\(571\) −282.742 + 489.723i −0.495169 + 0.857658i −0.999984 0.00556934i \(-0.998227\pi\)
0.504815 + 0.863227i \(0.331561\pi\)
\(572\) 61.9778 231.304i 0.108353 0.404378i
\(573\) 56.5949 + 87.8903i 0.0987694 + 0.153386i
\(574\) −10.1961 + 545.086i −0.0177632 + 0.949628i
\(575\) 84.9634 + 1008.50i 0.147762 + 1.75392i
\(576\) −6.97233 71.6616i −0.0121047 0.124413i
\(577\) 173.275 + 646.672i 0.300304 + 1.12075i 0.936913 + 0.349562i \(0.113670\pi\)
−0.636610 + 0.771186i \(0.719664\pi\)
\(578\) 27.5680 7.38681i 0.0476954 0.0127799i
\(579\) 553.399 177.449i 0.955784 0.306474i
\(580\) 214.582 + 78.4927i 0.369969 + 0.135332i
\(581\) 641.780 + 386.713i 1.10461 + 0.665599i
\(582\) −246.118 382.215i −0.422884 0.656727i
\(583\) −938.375 251.437i −1.60956 0.431281i
\(584\) −144.056 83.1709i −0.246671 0.142416i
\(585\) 295.035 + 167.161i 0.504334 + 0.285746i
\(586\) 154.266 89.0653i 0.263252 0.151989i
\(587\) 120.200 + 120.200i 0.204770 + 0.204770i 0.802040 0.597270i \(-0.203748\pi\)
−0.597270 + 0.802040i \(0.703748\pi\)
\(588\) −3.25997 293.982i −0.00554416 0.499969i
\(589\) 468.703i 0.795761i
\(590\) −71.5217 50.2517i −0.121223 0.0851724i
\(591\) 152.128 + 138.045i 0.257408 + 0.233579i
\(592\) 115.364 30.9116i 0.194871 0.0522155i
\(593\) −578.491 155.006i −0.975534 0.261393i −0.264371 0.964421i \(-0.585164\pi\)
−0.711163 + 0.703028i \(0.751831\pi\)
\(594\) −362.276 + 486.663i −0.609893 + 0.819298i
\(595\) −385.930 479.380i −0.648622 0.805680i
\(596\) 251.140i 0.421375i
\(597\) 164.408 + 84.5721i 0.275391 + 0.141662i
\(598\) −416.722 + 111.660i −0.696860 + 0.186723i
\(599\) −312.822 + 541.824i −0.522241 + 0.904548i 0.477424 + 0.878673i \(0.341570\pi\)
−0.999665 + 0.0258747i \(0.991763\pi\)
\(600\) −80.8571 + 196.118i −0.134762 + 0.326863i
\(601\) 564.677i 0.939563i 0.882783 + 0.469782i \(0.155667\pi\)
−0.882783 + 0.469782i \(0.844333\pi\)
\(602\) −138.426 143.703i −0.229943 0.238709i
\(603\) −905.276 + 339.498i −1.50129 + 0.563015i
\(604\) −322.530 + 186.213i −0.533990 + 0.308299i
\(605\) −421.690 504.196i −0.697008 0.833381i
\(606\) 249.119 + 226.057i 0.411088 + 0.373032i
\(607\) 432.927 + 116.002i 0.713224 + 0.191108i 0.597146 0.802132i \(-0.296301\pi\)
0.116078 + 0.993240i \(0.462968\pi\)
\(608\) −44.9979 + 44.9979i −0.0740097 + 0.0740097i
\(609\) 459.569 137.938i 0.754629 0.226499i
\(610\) −107.807 + 50.0602i −0.176733 + 0.0820658i
\(611\) −170.805 + 98.6145i −0.279550 + 0.161398i
\(612\) −312.215 51.9270i −0.510155 0.0848480i
\(613\) 157.847 + 589.092i 0.257499 + 0.960998i 0.966683 + 0.255975i \(0.0823966\pi\)
−0.709185 + 0.705023i \(0.750937\pi\)
\(614\) 137.944 79.6418i 0.224664 0.129710i
\(615\) −181.418 805.908i −0.294988 1.31042i
\(616\) 275.333 152.170i 0.446969 0.247029i
\(617\) 717.965 717.965i 1.16364 1.16364i 0.179965 0.983673i \(-0.442402\pi\)
0.983673 0.179965i \(-0.0575985\pi\)
\(618\) 188.407 + 96.9172i 0.304866 + 0.156824i
\(619\) 282.875 489.955i 0.456988 0.791526i −0.541812 0.840499i \(-0.682262\pi\)
0.998800 + 0.0489736i \(0.0155950\pi\)
\(620\) −267.300 319.599i −0.431129 0.515482i
\(621\) 1085.66 + 126.850i 1.74824 + 0.204267i
\(622\) −106.829 + 106.829i −0.171751 + 0.171751i
\(623\) −652.023 676.880i −1.04659 1.08649i
\(624\) −88.3772 19.1425i −0.141630 0.0306770i
\(625\) 481.353 398.653i 0.770165 0.637844i
\(626\) −95.3183 + 165.096i −0.152266 + 0.263732i
\(627\) 535.597 25.9941i 0.854221 0.0414579i
\(628\) 54.5170 203.460i 0.0868105 0.323981i
\(629\) 525.015i 0.834682i
\(630\) 110.735 + 431.495i 0.175770 + 0.684912i
\(631\) 1216.92 1.92856 0.964281 0.264880i \(-0.0853323\pi\)
0.964281 + 0.264880i \(0.0853323\pi\)
\(632\) 127.950 + 34.2840i 0.202452 + 0.0542469i
\(633\) 45.4853 + 937.203i 0.0718567 + 1.48057i
\(634\) −402.882 232.604i −0.635461 0.366884i
\(635\) −173.112 121.630i −0.272617 0.191543i
\(636\) −77.6587 + 358.536i −0.122105 + 0.563736i
\(637\) −352.837 108.838i −0.553904 0.170861i
\(638\) 363.043 + 363.043i 0.569033 + 0.569033i
\(639\) 30.3110 + 311.537i 0.0474351 + 0.487538i
\(640\) 5.02094 56.3453i 0.00784521 0.0880395i
\(641\) 14.4603 + 8.34866i 0.0225590 + 0.0130244i 0.511237 0.859440i \(-0.329187\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(642\) 358.314 696.562i 0.558121 1.08499i
\(643\) −838.779 838.779i −1.30448 1.30448i −0.925341 0.379137i \(-0.876221\pi\)
−0.379137 0.925341i \(-0.623779\pi\)
\(644\) −485.445 292.511i −0.753797 0.454210i
\(645\) 255.512 + 161.613i 0.396143 + 0.250563i
\(646\) 139.870 + 242.261i 0.216517 + 0.375018i
\(647\) −195.284 + 52.3263i −0.301830 + 0.0808752i −0.406556 0.913626i \(-0.633270\pi\)
0.104725 + 0.994501i \(0.466604\pi\)
\(648\) 190.190 + 127.734i 0.293503 + 0.197120i
\(649\) −98.2073 170.100i −0.151321 0.262096i
\(650\) 203.539 + 171.909i 0.313137 + 0.264475i
\(651\) −851.510 201.180i −1.30800 0.309032i
\(652\) −288.438 288.438i −0.442390 0.442390i
\(653\) −206.448 + 770.473i −0.316152 + 1.17990i 0.606759 + 0.794886i \(0.292469\pi\)
−0.922912 + 0.385011i \(0.874198\pi\)
\(654\) 232.646 256.380i 0.355728 0.392019i
\(655\) −527.428 630.622i −0.805234 0.962782i
\(656\) 110.143 + 190.774i 0.167901 + 0.290814i
\(657\) 495.592 185.858i 0.754326 0.282888i
\(658\) −248.974 71.7291i −0.378380 0.109011i
\(659\) −897.874 −1.36248 −0.681240 0.732061i \(-0.738559\pi\)
−0.681240 + 0.732061i \(0.738559\pi\)
\(660\) −350.388 + 323.174i −0.530890 + 0.489658i
\(661\) −373.944 215.897i −0.565725 0.326621i 0.189715 0.981839i \(-0.439244\pi\)
−0.755440 + 0.655218i \(0.772577\pi\)
\(662\) −201.675 752.661i −0.304645 1.13695i
\(663\) −181.831 + 353.479i −0.274255 + 0.533152i
\(664\) 302.757 0.455959
\(665\) 232.339 317.873i 0.349382 0.478004i
\(666\) −157.253 + 345.973i −0.236115 + 0.519480i
\(667\) 239.404 893.469i 0.358927 1.33953i
\(668\) 123.210 + 459.825i 0.184446 + 0.688361i
\(669\) −367.400 + 404.881i −0.549177 + 0.605203i
\(670\) −748.294 + 130.703i −1.11686 + 0.195080i
\(671\) −267.089 −0.398046
\(672\) −62.4351 101.064i −0.0929094 0.150392i
\(673\) 286.300 286.300i 0.425408 0.425408i −0.461653 0.887061i \(-0.652743\pi\)
0.887061 + 0.461653i \(0.152743\pi\)
\(674\) 174.856 + 302.860i 0.259430 + 0.449347i
\(675\) −318.466 595.151i −0.471802 0.881705i
\(676\) 112.215 194.363i 0.165999 0.287519i
\(677\) 26.5015 98.9049i 0.0391455 0.146093i −0.943587 0.331124i \(-0.892572\pi\)
0.982733 + 0.185031i \(0.0592387\pi\)
\(678\) 283.858 182.784i 0.418670 0.269592i
\(679\) −642.439 387.110i −0.946154 0.570117i
\(680\) −233.535 85.4256i −0.343434 0.125626i
\(681\) 346.641 + 1081.05i 0.509017 + 1.58744i
\(682\) −242.310 904.315i −0.355294 1.32597i
\(683\) −733.390 + 196.511i −1.07378 + 0.287718i −0.752044 0.659113i \(-0.770932\pi\)
−0.321733 + 0.946831i \(0.604265\pi\)
\(684\) −19.6088 201.539i −0.0286678 0.294647i
\(685\) 75.3972 + 162.371i 0.110069 + 0.237039i
\(686\) −218.597 433.028i −0.318655 0.631236i
\(687\) 398.174 256.395i 0.579584 0.373210i
\(688\) −77.8751 20.8666i −0.113191 0.0303293i
\(689\) 399.009 + 230.368i 0.579113 + 0.334351i
\(690\) 819.864 + 255.573i 1.18821 + 0.370396i
\(691\) −651.620 + 376.213i −0.943010 + 0.544447i −0.890903 0.454194i \(-0.849927\pi\)
−0.0521077 + 0.998641i \(0.516594\pi\)
\(692\) 205.396 + 205.396i 0.296815 + 0.296815i
\(693\) −182.668 + 984.196i −0.263590 + 1.42020i
\(694\) 177.219i 0.255359i
\(695\) 143.658 25.0926i 0.206703 0.0361044i
\(696\) 130.286 143.577i 0.187192 0.206289i
\(697\) 935.360 250.629i 1.34198 0.359582i
\(698\) 112.310 + 30.0933i 0.160902 + 0.0431135i
\(699\) 269.507 + 58.3751i 0.385561 + 0.0835123i
\(700\) 22.8546 + 349.253i 0.0326494 + 0.498933i
\(701\) 306.359i 0.437032i −0.975833 0.218516i \(-0.929878\pi\)
0.975833 0.218516i \(-0.0701216\pi\)
\(702\) 225.697 178.473i 0.321506 0.254235i
\(703\) 324.445 86.9348i 0.461515 0.123663i
\(704\) 63.5558 110.082i 0.0902781 0.156366i
\(705\) 392.277 + 15.8489i 0.556421 + 0.0224807i
\(706\) 593.567i 0.840746i
\(707\) 533.333 + 153.652i 0.754360 + 0.217330i
\(708\) −62.3600 + 40.1553i −0.0880792 + 0.0567165i
\(709\) 188.596 108.886i 0.266003 0.153577i −0.361067 0.932540i \(-0.617587\pi\)
0.627070 + 0.778963i \(0.284254\pi\)
\(710\) −21.8277 + 244.952i −0.0307432 + 0.345002i
\(711\) −342.902 + 245.106i −0.482281 + 0.344734i
\(712\) −366.813 98.2873i −0.515187 0.138044i
\(713\) −1192.68 + 1192.68i −1.67276 + 1.67276i
\(714\) −500.161 + 150.122i −0.700506 + 0.210254i
\(715\) 252.131 + 542.977i 0.352631 + 0.759408i
\(716\) −184.835 + 106.714i −0.258149 + 0.149043i
\(717\) 11.2441 + 231.678i 0.0156821 + 0.323122i
\(718\) 162.595 + 606.812i 0.226455 + 0.845142i
\(719\) 204.988 118.350i 0.285101 0.164603i −0.350629 0.936514i \(-0.614032\pi\)
0.635731 + 0.771911i \(0.280699\pi\)
\(720\) 128.308 + 126.242i 0.178205 + 0.175336i
\(721\) 349.511 + 6.53775i 0.484759 + 0.00906762i
\(722\) 234.449 234.449i 0.324722 0.324722i
\(723\) 590.612 1148.15i 0.816891 1.58803i
\(724\) 16.9570 29.3704i 0.0234212 0.0405668i
\(725\) −537.396 + 193.640i −0.741236 + 0.267090i
\(726\) −531.097 + 170.298i −0.731539 + 0.234570i
\(727\) −173.946 + 173.946i −0.239266 + 0.239266i −0.816546 0.577280i \(-0.804114\pi\)
0.577280 + 0.816546i \(0.304114\pi\)
\(728\) −144.809 + 35.9129i −0.198914 + 0.0493309i
\(729\) −698.357 + 209.137i −0.957966 + 0.286882i
\(730\) 409.652 71.5533i 0.561167 0.0980182i
\(731\) −177.203 + 306.925i −0.242412 + 0.419870i
\(732\) 4.88921 + 100.740i 0.00667925 + 0.137623i
\(733\) 233.681 872.111i 0.318801 1.18978i −0.601597 0.798800i \(-0.705469\pi\)
0.920398 0.390983i \(-0.127865\pi\)
\(734\) 789.128i 1.07511i
\(735\) 477.765 + 558.539i 0.650020 + 0.759917i
\(736\) −229.007 −0.311150
\(737\) −1648.74 441.778i −2.23710 0.599428i
\(738\) −691.450 115.001i −0.936924 0.155827i
\(739\) −340.163 196.393i −0.460302 0.265756i 0.251869 0.967761i \(-0.418955\pi\)
−0.712171 + 0.702006i \(0.752288\pi\)
\(740\) −171.654 + 244.309i −0.231964 + 0.330147i
\(741\) −248.549 53.8356i −0.335424 0.0726527i
\(742\) 145.694 + 587.475i 0.196353 + 0.791745i
\(743\) −219.726 219.726i −0.295729 0.295729i 0.543610 0.839338i \(-0.317057\pi\)
−0.839338 + 0.543610i \(0.817057\pi\)
\(744\) −336.651 + 107.948i −0.452488 + 0.145091i
\(745\) −402.799 481.609i −0.540670 0.646455i
\(746\) 376.694 + 217.484i 0.504951 + 0.291534i
\(747\) −612.035 + 743.968i −0.819324 + 0.995941i
\(748\) −395.109 395.109i −0.528220 0.528220i
\(749\) 24.1708 1292.18i 0.0322707 1.72521i
\(750\) −159.491 505.779i −0.212655 0.674372i
\(751\) 189.018 + 327.389i 0.251688 + 0.435937i 0.963991 0.265936i \(-0.0856808\pi\)
−0.712302 + 0.701873i \(0.752347\pi\)
\(752\) −101.125 + 27.0964i −0.134475 + 0.0360325i
\(753\) 2.60761 + 53.7286i 0.00346297 + 0.0713528i
\(754\) −121.748 210.874i −0.161470 0.279674i
\(755\) 319.850 874.401i 0.423642 1.15815i
\(756\) 374.560 + 50.8817i 0.495449 + 0.0673039i
\(757\) −396.630 396.630i −0.523950 0.523950i 0.394812 0.918762i \(-0.370810\pi\)
−0.918762 + 0.394812i \(0.870810\pi\)
\(758\) −2.70608 + 10.0992i −0.00357003 + 0.0133235i
\(759\) 1429.04 + 1296.75i 1.88280 + 1.70850i
\(760\) 14.1207