Properties

Label 210.3.w.b.17.8
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.8

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-0.489601 - 2.95978i) q^{3} +(1.73205 + 1.00000i) q^{4} +(1.47500 - 4.77749i) q^{5} +(0.414547 - 4.22234i) q^{6} +(6.99874 + 0.132847i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-8.52058 + 2.89822i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-0.489601 - 2.95978i) q^{3} +(1.73205 + 1.00000i) q^{4} +(1.47500 - 4.77749i) q^{5} +(0.414547 - 4.22234i) q^{6} +(6.99874 + 0.132847i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-8.52058 + 2.89822i) q^{9} +(3.76357 - 5.98628i) q^{10} +(-9.30088 - 5.36987i) q^{11} +(2.11177 - 5.61609i) q^{12} +(-3.28522 - 3.28522i) q^{13} +(9.51183 + 2.74319i) q^{14} +(-14.8625 - 2.02662i) q^{15} +(2.00000 + 3.46410i) q^{16} +(16.0246 - 4.29378i) q^{17} +(-12.7002 + 0.840293i) q^{18} +(-1.04608 - 1.81186i) q^{19} +(7.33226 - 6.79985i) q^{20} +(-3.03339 - 20.7798i) q^{21} +(-10.7397 - 10.7397i) q^{22} +(3.40405 - 12.7041i) q^{23} +(4.94036 - 6.89876i) q^{24} +(-20.6487 - 14.0936i) q^{25} +(-3.28522 - 5.69017i) q^{26} +(12.7498 + 23.8001i) q^{27} +(11.9893 + 7.22884i) q^{28} +21.8689 q^{29} +(-19.5607 - 8.20845i) q^{30} +(40.3894 + 23.3188i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-11.3399 + 30.1576i) q^{33} +23.4616 q^{34} +(10.9578 - 33.2404i) q^{35} +(-17.6563 - 3.50072i) q^{36} +(-10.9244 + 40.7704i) q^{37} +(-0.765783 - 2.85794i) q^{38} +(-8.11508 + 11.3320i) q^{39} +(12.5050 - 6.60497i) q^{40} -41.7957 q^{41} +(3.46223 - 29.4960i) q^{42} +(-32.4714 + 32.4714i) q^{43} +(-10.7397 - 18.6018i) q^{44} +(1.27834 + 44.9818i) q^{45} +(9.30003 - 16.1081i) q^{46} +(-18.0449 + 67.3444i) q^{47} +(9.27377 - 7.61558i) q^{48} +(48.9647 + 1.85952i) q^{49} +(-23.0481 - 26.8102i) q^{50} +(-20.5543 - 45.3270i) q^{51} +(-2.40495 - 8.97539i) q^{52} +(31.2227 - 8.36609i) q^{53} +(8.70509 + 37.1782i) q^{54} +(-39.3733 + 36.5143i) q^{55} +(13.7318 + 14.2632i) q^{56} +(-4.85055 + 3.98325i) q^{57} +(29.8734 + 8.00456i) q^{58} +(8.21615 + 4.74360i) q^{59} +(-23.7159 - 18.3727i) q^{60} +(100.996 - 58.3099i) q^{61} +(46.6377 + 46.6377i) q^{62} +(-60.0184 + 19.1520i) q^{63} +8.00000i q^{64} +(-20.5408 + 10.8494i) q^{65} +(-26.5291 + 37.0454i) q^{66} +(-2.25609 + 0.604518i) q^{67} +(32.0492 + 8.58756i) q^{68} +(-39.2679 - 3.85530i) q^{69} +(27.1355 - 41.3964i) q^{70} +82.6653i q^{71} +(-22.8376 - 11.2447i) q^{72} +(89.0639 - 23.8646i) q^{73} +(-29.8460 + 51.6948i) q^{74} +(-31.6043 + 68.0159i) q^{75} -4.18431i q^{76} +(-64.3811 - 38.8179i) q^{77} +(-15.2332 + 12.5094i) q^{78} +(-27.5447 + 15.9030i) q^{79} +(19.4997 - 4.44542i) q^{80} +(64.2006 - 49.3891i) q^{81} +(-57.0939 - 15.2983i) q^{82} +(-37.0831 + 37.0831i) q^{83} +(15.5258 - 39.0250i) q^{84} +(3.12284 - 82.8906i) q^{85} +(-56.2421 + 32.4714i) q^{86} +(-10.7070 - 64.7270i) q^{87} +(-7.86203 - 29.3415i) q^{88} +(-136.159 + 78.6114i) q^{89} +(-14.7183 + 61.9142i) q^{90} +(-22.5560 - 23.4288i) q^{91} +(18.6001 - 18.6001i) q^{92} +(49.2439 - 130.961i) q^{93} +(-49.2996 + 85.3893i) q^{94} +(-10.1991 + 2.32513i) q^{95} +(15.4557 - 7.00865i) q^{96} +(-41.8856 + 41.8856i) q^{97} +(66.2064 + 20.4625i) q^{98} +(94.8120 + 18.7984i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −0.489601 2.95978i −0.163200 0.986593i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 1.47500 4.77749i 0.295000 0.955497i
\(6\) 0.414547 4.22234i 0.0690912 0.703723i
\(7\) 6.99874 + 0.132847i 0.999820 + 0.0189781i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −8.52058 + 2.89822i −0.946731 + 0.322024i
\(10\) 3.76357 5.98628i 0.376357 0.598628i
\(11\) −9.30088 5.36987i −0.845535 0.488170i 0.0136071 0.999907i \(-0.495669\pi\)
−0.859142 + 0.511738i \(0.829002\pi\)
\(12\) 2.11177 5.61609i 0.175980 0.468007i
\(13\) −3.28522 3.28522i −0.252709 0.252709i 0.569371 0.822081i \(-0.307187\pi\)
−0.822081 + 0.569371i \(0.807187\pi\)
\(14\) 9.51183 + 2.74319i 0.679416 + 0.195942i
\(15\) −14.8625 2.02662i −0.990831 0.135108i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 16.0246 4.29378i 0.942624 0.252575i 0.245394 0.969423i \(-0.421083\pi\)
0.697229 + 0.716848i \(0.254416\pi\)
\(18\) −12.7002 + 0.840293i −0.705564 + 0.0466830i
\(19\) −1.04608 1.81186i −0.0550568 0.0953611i 0.837183 0.546922i \(-0.184201\pi\)
−0.892240 + 0.451561i \(0.850867\pi\)
\(20\) 7.33226 6.79985i 0.366613 0.339992i
\(21\) −3.03339 20.7798i −0.144447 0.989513i
\(22\) −10.7397 10.7397i −0.488170 0.488170i
\(23\) 3.40405 12.7041i 0.148002 0.552351i −0.851601 0.524190i \(-0.824368\pi\)
0.999603 0.0281612i \(-0.00896517\pi\)
\(24\) 4.94036 6.89876i 0.205848 0.287448i
\(25\) −20.6487 14.0936i −0.825950 0.563744i
\(26\) −3.28522 5.69017i −0.126355 0.218853i
\(27\) 12.7498 + 23.8001i 0.472214 + 0.881484i
\(28\) 11.9893 + 7.22884i 0.428190 + 0.258173i
\(29\) 21.8689 0.754099 0.377049 0.926193i \(-0.376939\pi\)
0.377049 + 0.926193i \(0.376939\pi\)
\(30\) −19.5607 8.20845i −0.652024 0.273615i
\(31\) 40.3894 + 23.3188i 1.30288 + 0.752221i 0.980898 0.194523i \(-0.0623160\pi\)
0.321987 + 0.946744i \(0.395649\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −11.3399 + 30.1576i −0.343633 + 0.913868i
\(34\) 23.4616 0.690048
\(35\) 10.9578 33.2404i 0.313081 0.949727i
\(36\) −17.6563 3.50072i −0.490453 0.0972421i
\(37\) −10.9244 + 40.7704i −0.295254 + 1.10190i 0.645762 + 0.763539i \(0.276540\pi\)
−0.941016 + 0.338363i \(0.890127\pi\)
\(38\) −0.765783 2.85794i −0.0201522 0.0752089i
\(39\) −8.11508 + 11.3320i −0.208079 + 0.290564i
\(40\) 12.5050 6.60497i 0.312624 0.165124i
\(41\) −41.7957 −1.01941 −0.509703 0.860350i \(-0.670245\pi\)
−0.509703 + 0.860350i \(0.670245\pi\)
\(42\) 3.46223 29.4960i 0.0824340 0.702285i
\(43\) −32.4714 + 32.4714i −0.755148 + 0.755148i −0.975435 0.220287i \(-0.929301\pi\)
0.220287 + 0.975435i \(0.429301\pi\)
\(44\) −10.7397 18.6018i −0.244085 0.422767i
\(45\) 1.27834 + 44.9818i 0.0284075 + 0.999596i
\(46\) 9.30003 16.1081i 0.202175 0.350177i
\(47\) −18.0449 + 67.3444i −0.383934 + 1.43286i 0.455907 + 0.890028i \(0.349315\pi\)
−0.839841 + 0.542833i \(0.817352\pi\)
\(48\) 9.27377 7.61558i 0.193204 0.158658i
\(49\) 48.9647 + 1.85952i 0.999280 + 0.0379493i
\(50\) −23.0481 26.8102i −0.460962 0.536203i
\(51\) −20.5543 45.3270i −0.403025 0.888765i
\(52\) −2.40495 8.97539i −0.0462490 0.172604i
\(53\) 31.2227 8.36609i 0.589107 0.157851i 0.0480619 0.998844i \(-0.484696\pi\)
0.541045 + 0.840994i \(0.318029\pi\)
\(54\) 8.70509 + 37.1782i 0.161205 + 0.688486i
\(55\) −39.3733 + 36.5143i −0.715878 + 0.663896i
\(56\) 13.7318 + 14.2632i 0.245210 + 0.254699i
\(57\) −4.85055 + 3.98325i −0.0850973 + 0.0698816i
\(58\) 29.8734 + 8.00456i 0.515059 + 0.138010i
\(59\) 8.21615 + 4.74360i 0.139257 + 0.0804000i 0.568010 0.823022i \(-0.307714\pi\)
−0.428753 + 0.903422i \(0.641047\pi\)
\(60\) −23.7159 18.3727i −0.395265 0.306211i
\(61\) 100.996 58.3099i 1.65567 0.955901i 0.680989 0.732294i \(-0.261550\pi\)
0.974679 0.223607i \(-0.0717832\pi\)
\(62\) 46.6377 + 46.6377i 0.752221 + 0.752221i
\(63\) −60.0184 + 19.1520i −0.952672 + 0.303999i
\(64\) 8.00000i 0.125000i
\(65\) −20.5408 + 10.8494i −0.316012 + 0.166914i
\(66\) −26.5291 + 37.0454i −0.401955 + 0.561294i
\(67\) −2.25609 + 0.604518i −0.0336730 + 0.00902266i −0.275616 0.961268i \(-0.588882\pi\)
0.241943 + 0.970290i \(0.422215\pi\)
\(68\) 32.0492 + 8.58756i 0.471312 + 0.126288i
\(69\) −39.2679 3.85530i −0.569100 0.0558739i
\(70\) 27.1355 41.3964i 0.387650 0.591378i
\(71\) 82.6653i 1.16430i 0.813082 + 0.582150i \(0.197788\pi\)
−0.813082 + 0.582150i \(0.802212\pi\)
\(72\) −22.8376 11.2447i −0.317189 0.156177i
\(73\) 89.0639 23.8646i 1.22005 0.326912i 0.409355 0.912375i \(-0.365754\pi\)
0.810699 + 0.585463i \(0.199087\pi\)
\(74\) −29.8460 + 51.6948i −0.403324 + 0.698578i
\(75\) −31.6043 + 68.0159i −0.421390 + 0.906879i
\(76\) 4.18431i 0.0550568i
\(77\) −64.3811 38.8179i −0.836118 0.504128i
\(78\) −15.2332 + 12.5094i −0.195297 + 0.160377i
\(79\) −27.5447 + 15.9030i −0.348668 + 0.201303i −0.664098 0.747645i \(-0.731184\pi\)
0.315431 + 0.948949i \(0.397851\pi\)
\(80\) 19.4997 4.44542i 0.243746 0.0555677i
\(81\) 64.2006 49.3891i 0.792600 0.609741i
\(82\) −57.0939 15.2983i −0.696268 0.186564i
\(83\) −37.0831 + 37.0831i −0.446785 + 0.446785i −0.894284 0.447499i \(-0.852315\pi\)
0.447499 + 0.894284i \(0.352315\pi\)
\(84\) 15.5258 39.0250i 0.184831 0.464583i
\(85\) 3.12284 82.8906i 0.0367393 0.975184i
\(86\) −56.2421 + 32.4714i −0.653977 + 0.377574i
\(87\) −10.7070 64.7270i −0.123069 0.743988i
\(88\) −7.86203 29.3415i −0.0893412 0.333426i
\(89\) −136.159 + 78.6114i −1.52987 + 0.883274i −0.530509 + 0.847680i \(0.677999\pi\)
−0.999366 + 0.0355942i \(0.988668\pi\)
\(90\) −14.7183 + 61.9142i −0.163536 + 0.687936i
\(91\) −22.5560 23.4288i −0.247868 0.257460i
\(92\) 18.6001 18.6001i 0.202175 0.202175i
\(93\) 49.2439 130.961i 0.529505 1.40818i
\(94\) −49.2996 + 85.3893i −0.524463 + 0.908397i
\(95\) −10.1991 + 2.32513i −0.107359 + 0.0244750i
\(96\) 15.4557 7.00865i 0.160997 0.0730067i
\(97\) −41.8856 + 41.8856i −0.431810 + 0.431810i −0.889244 0.457434i \(-0.848769\pi\)
0.457434 + 0.889244i \(0.348769\pi\)
\(98\) 66.2064 + 20.4625i 0.675575 + 0.208801i
\(99\) 94.8120 + 18.7984i 0.957697 + 0.189883i
\(100\) −21.6711 45.0596i −0.216711 0.450596i
\(101\) 92.9876 161.059i 0.920670 1.59465i 0.122288 0.992495i \(-0.460977\pi\)
0.798381 0.602152i \(-0.205690\pi\)
\(102\) −11.4868 69.4413i −0.112616 0.680797i
\(103\) −19.6216 + 73.2287i −0.190501 + 0.710958i 0.802885 + 0.596134i \(0.203297\pi\)
−0.993386 + 0.114824i \(0.963370\pi\)
\(104\) 13.1409i 0.126355i
\(105\) −103.749 16.1582i −0.988088 0.153888i
\(106\) 45.7132 0.431256
\(107\) −127.816 34.2483i −1.19454 0.320077i −0.393864 0.919169i \(-0.628862\pi\)
−0.800681 + 0.599092i \(0.795529\pi\)
\(108\) −1.71681 + 53.9727i −0.0158964 + 0.499747i
\(109\) 140.071 + 80.8701i 1.28506 + 0.741927i 0.977768 0.209689i \(-0.0672452\pi\)
0.307288 + 0.951617i \(0.400579\pi\)
\(110\) −67.1500 + 35.4678i −0.610455 + 0.322435i
\(111\) 126.020 + 12.3726i 1.13531 + 0.111465i
\(112\) 13.5373 + 24.5100i 0.120869 + 0.218840i
\(113\) 15.2685 + 15.2685i 0.135119 + 0.135119i 0.771432 0.636312i \(-0.219541\pi\)
−0.636312 + 0.771432i \(0.719541\pi\)
\(114\) −8.08394 + 3.66580i −0.0709118 + 0.0321561i
\(115\) −55.6726 35.0013i −0.484109 0.304359i
\(116\) 37.8780 + 21.8689i 0.326534 + 0.188525i
\(117\) 37.5133 + 18.4707i 0.320627 + 0.157869i
\(118\) 9.48720 + 9.48720i 0.0804000 + 0.0804000i
\(119\) 112.722 27.9222i 0.947247 0.234641i
\(120\) −25.6717 33.7782i −0.213931 0.281485i
\(121\) −2.82907 4.90010i −0.0233808 0.0404967i
\(122\) 159.306 42.6858i 1.30578 0.349884i
\(123\) 20.4632 + 123.706i 0.166367 + 1.00574i
\(124\) 46.6377 + 80.7789i 0.376110 + 0.651442i
\(125\) −97.7889 + 77.8610i −0.782311 + 0.622888i
\(126\) −88.9967 + 4.19382i −0.706323 + 0.0332843i
\(127\) −60.5483 60.5483i −0.476758 0.476758i 0.427335 0.904093i \(-0.359453\pi\)
−0.904093 + 0.427335i \(0.859453\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 112.006 + 80.2101i 0.868264 + 0.621783i
\(130\) −32.0304 + 7.30209i −0.246388 + 0.0561699i
\(131\) −85.5142 148.115i −0.652780 1.13065i −0.982445 0.186550i \(-0.940269\pi\)
0.329666 0.944098i \(-0.393064\pi\)
\(132\) −49.7989 + 40.8947i −0.377265 + 0.309808i
\(133\) −7.08053 12.8197i −0.0532371 0.0963888i
\(134\) −3.30315 −0.0246504
\(135\) 132.510 25.8067i 0.981559 0.191161i
\(136\) 40.6368 + 23.4616i 0.298800 + 0.172512i
\(137\) −9.73567 36.3340i −0.0710633 0.265212i 0.921249 0.388974i \(-0.127171\pi\)
−0.992312 + 0.123763i \(0.960504\pi\)
\(138\) −52.2298 19.6395i −0.378477 0.142315i
\(139\) 167.962 1.20836 0.604180 0.796848i \(-0.293501\pi\)
0.604180 + 0.796848i \(0.293501\pi\)
\(140\) 52.2199 46.6163i 0.373000 0.332974i
\(141\) 208.159 + 20.4370i 1.47631 + 0.144943i
\(142\) −30.2576 + 112.923i −0.213082 + 0.795231i
\(143\) 12.9143 + 48.1967i 0.0903095 + 0.337040i
\(144\) −27.0809 23.7197i −0.188062 0.164720i
\(145\) 32.2566 104.478i 0.222459 0.720539i
\(146\) 130.399 0.893141
\(147\) −18.4694 145.835i −0.125642 0.992076i
\(148\) −59.6920 + 59.6920i −0.403324 + 0.403324i
\(149\) −137.856 238.773i −0.925207 1.60251i −0.791228 0.611522i \(-0.790558\pi\)
−0.133979 0.990984i \(-0.542776\pi\)
\(150\) −68.0678 + 81.3435i −0.453785 + 0.542290i
\(151\) −60.5110 + 104.808i −0.400735 + 0.694093i −0.993815 0.111051i \(-0.964578\pi\)
0.593080 + 0.805144i \(0.297912\pi\)
\(152\) 1.53157 5.71588i 0.0100761 0.0376045i
\(153\) −124.095 + 83.0283i −0.811076 + 0.542669i
\(154\) −73.7379 76.5913i −0.478817 0.497346i
\(155\) 170.980 158.565i 1.10310 1.02300i
\(156\) −25.3877 + 11.5125i −0.162742 + 0.0737979i
\(157\) −23.3449 87.1243i −0.148694 0.554932i −0.999563 0.0295549i \(-0.990591\pi\)
0.850870 0.525377i \(-0.176076\pi\)
\(158\) −43.4477 + 11.6418i −0.274986 + 0.0736821i
\(159\) −40.0484 88.3161i −0.251877 0.555447i
\(160\) 28.2642 + 1.06483i 0.176651 + 0.00665520i
\(161\) 25.5117 88.4603i 0.158458 0.549443i
\(162\) 105.777 43.9676i 0.652947 0.271405i
\(163\) −60.2571 16.1458i −0.369676 0.0990543i 0.0691984 0.997603i \(-0.477956\pi\)
−0.438874 + 0.898549i \(0.644623\pi\)
\(164\) −72.3922 41.7957i −0.441416 0.254852i
\(165\) 127.351 + 98.6588i 0.771826 + 0.597932i
\(166\) −64.2299 + 37.0831i −0.386927 + 0.223392i
\(167\) 5.23730 + 5.23730i 0.0313611 + 0.0313611i 0.722613 0.691252i \(-0.242941\pi\)
−0.691252 + 0.722613i \(0.742941\pi\)
\(168\) 35.4927 47.6263i 0.211266 0.283490i
\(169\) 147.415i 0.872276i
\(170\) 34.6060 112.088i 0.203564 0.659339i
\(171\) 14.1644 + 12.4063i 0.0828326 + 0.0725517i
\(172\) −88.7134 + 23.7707i −0.515776 + 0.138202i
\(173\) 117.733 + 31.5466i 0.680540 + 0.182350i 0.582498 0.812832i \(-0.302075\pi\)
0.0980419 + 0.995182i \(0.468742\pi\)
\(174\) 9.06567 92.3377i 0.0521016 0.530677i
\(175\) −142.643 101.381i −0.815102 0.579317i
\(176\) 42.9589i 0.244085i
\(177\) 10.0174 26.6405i 0.0565953 0.150511i
\(178\) −214.770 + 57.5475i −1.20657 + 0.323301i
\(179\) −32.0467 + 55.5065i −0.179032 + 0.310092i −0.941549 0.336876i \(-0.890630\pi\)
0.762517 + 0.646968i \(0.223963\pi\)
\(180\) −42.7677 + 79.1892i −0.237598 + 0.439940i
\(181\) 305.611i 1.68846i −0.535984 0.844228i \(-0.680059\pi\)
0.535984 0.844228i \(-0.319941\pi\)
\(182\) −22.2365 40.2605i −0.122179 0.221211i
\(183\) −222.032 270.377i −1.21329 1.47747i
\(184\) 32.2162 18.6001i 0.175088 0.101087i
\(185\) 178.666 + 112.327i 0.965764 + 0.607175i
\(186\) 115.203 160.871i 0.619373 0.864898i
\(187\) −172.100 46.1140i −0.920321 0.246599i
\(188\) −98.5991 + 98.5991i −0.524463 + 0.524463i
\(189\) 86.0706 + 168.264i 0.455400 + 0.890287i
\(190\) −14.7833 0.556949i −0.0778068 0.00293131i
\(191\) −91.1439 + 52.6220i −0.477193 + 0.275508i −0.719246 0.694755i \(-0.755513\pi\)
0.242053 + 0.970263i \(0.422179\pi\)
\(192\) 23.6782 3.91681i 0.123324 0.0204000i
\(193\) 30.3272 + 113.183i 0.157136 + 0.586439i 0.998913 + 0.0466140i \(0.0148431\pi\)
−0.841777 + 0.539825i \(0.818490\pi\)
\(194\) −72.5479 + 41.8856i −0.373958 + 0.215905i
\(195\) 42.1686 + 55.4844i 0.216249 + 0.284535i
\(196\) 82.9498 + 52.1855i 0.423213 + 0.266252i
\(197\) −227.255 + 227.255i −1.15358 + 1.15358i −0.167748 + 0.985830i \(0.553649\pi\)
−0.985830 + 0.167748i \(0.946351\pi\)
\(198\) 122.635 + 60.3827i 0.619368 + 0.304963i
\(199\) −53.7513 + 93.1000i −0.270107 + 0.467839i −0.968889 0.247495i \(-0.920392\pi\)
0.698782 + 0.715335i \(0.253726\pi\)
\(200\) −13.1103 69.4847i −0.0655515 0.347423i
\(201\) 2.89382 + 6.38156i 0.0143971 + 0.0317491i
\(202\) 185.975 185.975i 0.920670 0.920670i
\(203\) 153.054 + 2.90520i 0.753963 + 0.0143113i
\(204\) 9.72596 99.0630i 0.0476763 0.485603i
\(205\) −61.6487 + 199.678i −0.300725 + 0.974040i
\(206\) −53.6071 + 92.8502i −0.260229 + 0.450729i
\(207\) 7.81475 + 118.112i 0.0377524 + 0.570588i
\(208\) 4.80990 17.9508i 0.0231245 0.0863019i
\(209\) 22.4692i 0.107508i
\(210\) −135.810 60.0474i −0.646714 0.285940i
\(211\) −297.536 −1.41012 −0.705061 0.709147i \(-0.749080\pi\)
−0.705061 + 0.709147i \(0.749080\pi\)
\(212\) 62.4453 + 16.7322i 0.294553 + 0.0789254i
\(213\) 244.671 40.4730i 1.14869 0.190014i
\(214\) −162.065 93.5680i −0.757311 0.437234i
\(215\) 107.236 + 203.027i 0.498773 + 0.944311i
\(216\) −22.1006 + 73.0997i −0.102318 + 0.338424i
\(217\) 279.577 + 168.568i 1.28837 + 0.776812i
\(218\) 161.740 + 161.740i 0.741927 + 0.741927i
\(219\) −114.240 251.925i −0.521643 1.15034i
\(220\) −104.711 + 23.8713i −0.475958 + 0.108506i
\(221\) −66.7504 38.5384i −0.302038 0.174382i
\(222\) 167.618 + 63.0277i 0.755035 + 0.283909i
\(223\) −194.026 194.026i −0.870074 0.870074i 0.122406 0.992480i \(-0.460939\pi\)
−0.992480 + 0.122406i \(0.960939\pi\)
\(224\) 9.52098 + 38.4363i 0.0425044 + 0.171591i
\(225\) 216.786 + 60.2410i 0.963492 + 0.267738i
\(226\) 15.2685 + 26.4458i 0.0675597 + 0.117017i
\(227\) −64.3983 + 17.2555i −0.283693 + 0.0760153i −0.397860 0.917446i \(-0.630247\pi\)
0.114167 + 0.993462i \(0.463580\pi\)
\(228\) −12.3846 + 2.04864i −0.0543186 + 0.00898528i
\(229\) −22.0393 38.1732i −0.0962416 0.166695i 0.813885 0.581027i \(-0.197349\pi\)
−0.910126 + 0.414331i \(0.864015\pi\)
\(230\) −63.2388 68.1903i −0.274951 0.296479i
\(231\) −83.3713 + 209.559i −0.360915 + 0.907182i
\(232\) 43.7377 + 43.7377i 0.188525 + 0.188525i
\(233\) −7.91167 + 29.5268i −0.0339557 + 0.126724i −0.980823 0.194899i \(-0.937562\pi\)
0.946868 + 0.321624i \(0.104229\pi\)
\(234\) 44.4834 + 38.9623i 0.190100 + 0.166505i
\(235\) 295.121 + 185.542i 1.25583 + 0.789542i
\(236\) 9.48720 + 16.4323i 0.0402000 + 0.0696284i
\(237\) 60.5552 + 73.7403i 0.255507 + 0.311140i
\(238\) 164.202 + 3.11680i 0.689924 + 0.0130958i
\(239\) 213.748 0.894343 0.447171 0.894448i \(-0.352431\pi\)
0.447171 + 0.894448i \(0.352431\pi\)
\(240\) −22.7045 55.5383i −0.0946022 0.231410i
\(241\) 63.6195 + 36.7307i 0.263981 + 0.152410i 0.626149 0.779703i \(-0.284630\pi\)
−0.362168 + 0.932113i \(0.617963\pi\)
\(242\) −2.07103 7.72917i −0.00855796 0.0319387i
\(243\) −177.613 165.839i −0.730919 0.682464i
\(244\) 233.240 0.955901
\(245\) 81.1068 231.185i 0.331048 0.943614i
\(246\) −17.3263 + 176.475i −0.0704320 + 0.717380i
\(247\) −2.51577 + 9.38897i −0.0101853 + 0.0380120i
\(248\) 34.1412 + 127.417i 0.137666 + 0.513776i
\(249\) 127.914 + 91.6020i 0.513710 + 0.367879i
\(250\) −162.081 + 70.5669i −0.648325 + 0.282268i
\(251\) 235.026 0.936358 0.468179 0.883634i \(-0.344910\pi\)
0.468179 + 0.883634i \(0.344910\pi\)
\(252\) −123.107 26.8462i −0.488519 0.106532i
\(253\) −99.8798 + 99.8798i −0.394782 + 0.394782i
\(254\) −60.5483 104.873i −0.238379 0.412885i
\(255\) −246.867 + 31.3404i −0.968105 + 0.122904i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −98.9522 + 369.295i −0.385028 + 1.43694i 0.453095 + 0.891462i \(0.350320\pi\)
−0.838123 + 0.545482i \(0.816347\pi\)
\(258\) 123.644 + 150.566i 0.479241 + 0.583589i
\(259\) −81.8731 + 283.890i −0.316113 + 1.09610i
\(260\) −46.4271 1.74911i −0.178566 0.00672733i
\(261\) −186.335 + 63.3808i −0.713929 + 0.242838i
\(262\) −62.6007 233.629i −0.238934 0.891714i
\(263\) −294.961 + 79.0345i −1.12152 + 0.300511i −0.771500 0.636230i \(-0.780493\pi\)
−0.350024 + 0.936741i \(0.613826\pi\)
\(264\) −82.9951 + 37.6355i −0.314375 + 0.142559i
\(265\) 6.08461 161.506i 0.0229608 0.609456i
\(266\) −4.97985 20.1037i −0.0187212 0.0755779i
\(267\) 299.336 + 364.512i 1.12111 + 1.36521i
\(268\) −4.51218 1.20904i −0.0168365 0.00451133i
\(269\) −153.231 88.4680i −0.569632 0.328877i 0.187370 0.982289i \(-0.440004\pi\)
−0.757002 + 0.653412i \(0.773337\pi\)
\(270\) 190.459 + 13.2495i 0.705402 + 0.0490723i
\(271\) −334.108 + 192.897i −1.23287 + 0.711798i −0.967627 0.252383i \(-0.918786\pi\)
−0.265243 + 0.964182i \(0.585452\pi\)
\(272\) 46.9233 + 46.9233i 0.172512 + 0.172512i
\(273\) −58.3008 + 78.2315i −0.213556 + 0.286562i
\(274\) 53.1967i 0.194149i
\(275\) 116.371 + 241.964i 0.423166 + 0.879869i
\(276\) −64.1587 45.9455i −0.232459 0.166469i
\(277\) −446.379 + 119.607i −1.61148 + 0.431794i −0.948482 0.316831i \(-0.897381\pi\)
−0.662994 + 0.748625i \(0.730714\pi\)
\(278\) 229.440 + 61.4783i 0.825325 + 0.221145i
\(279\) −411.725 81.6327i −1.47572 0.292590i
\(280\) 88.3965 44.5652i 0.315702 0.159161i
\(281\) 100.962i 0.359295i 0.983731 + 0.179647i \(0.0574957\pi\)
−0.983731 + 0.179647i \(0.942504\pi\)
\(282\) 276.871 + 104.109i 0.981811 + 0.369181i
\(283\) 371.789 99.6207i 1.31374 0.352016i 0.467113 0.884198i \(-0.345294\pi\)
0.846630 + 0.532181i \(0.178628\pi\)
\(284\) −82.6653 + 143.180i −0.291075 + 0.504157i
\(285\) 11.8754 + 29.0487i 0.0416679 + 0.101925i
\(286\) 70.5648i 0.246730i
\(287\) −292.517 5.55241i −1.01922 0.0193464i
\(288\) −28.3112 42.3140i −0.0983027 0.146924i
\(289\) −11.9300 + 6.88780i −0.0412804 + 0.0238332i
\(290\) 82.3050 130.913i 0.283810 0.451424i
\(291\) 144.479 + 103.465i 0.496492 + 0.355549i
\(292\) 178.128 + 47.7292i 0.610027 + 0.163456i
\(293\) 259.252 259.252i 0.884820 0.884820i −0.109200 0.994020i \(-0.534829\pi\)
0.994020 + 0.109200i \(0.0348289\pi\)
\(294\) 28.1497 205.975i 0.0957472 0.700594i
\(295\) 34.7813 32.2557i 0.117903 0.109341i
\(296\) −103.390 + 59.6920i −0.349289 + 0.201662i
\(297\) 9.21903 289.826i 0.0310405 0.975846i
\(298\) −100.917 376.629i −0.338649 1.26386i
\(299\) −52.9188 + 30.5527i −0.176986 + 0.102183i
\(300\) −122.756 + 86.2028i −0.409187 + 0.287343i
\(301\) −231.572 + 222.945i −0.769343 + 0.740681i
\(302\) −121.022 + 121.022i −0.400735 + 0.400735i
\(303\) −522.227 196.368i −1.72352 0.648079i
\(304\) 4.18431 7.24745i 0.0137642 0.0238403i
\(305\) −129.606 568.513i −0.424938 1.86398i
\(306\) −199.907 + 67.9970i −0.653290 + 0.222212i
\(307\) 150.022 150.022i 0.488672 0.488672i −0.419215 0.907887i \(-0.637695\pi\)
0.907887 + 0.419215i \(0.137695\pi\)
\(308\) −72.6934 131.616i −0.236018 0.427323i
\(309\) 226.347 + 22.2227i 0.732516 + 0.0719180i
\(310\) 291.602 154.020i 0.940650 0.496840i
\(311\) 29.8412 51.6864i 0.0959523 0.166194i −0.814053 0.580790i \(-0.802744\pi\)
0.910006 + 0.414596i \(0.136077\pi\)
\(312\) −38.8941 + 6.43379i −0.124661 + 0.0206211i
\(313\) 32.8475 122.588i 0.104944 0.391656i −0.893395 0.449272i \(-0.851683\pi\)
0.998339 + 0.0576160i \(0.0183499\pi\)
\(314\) 127.559i 0.406238i
\(315\) 2.97107 + 314.986i 0.00943197 + 0.999956i
\(316\) −63.6119 −0.201303
\(317\) 270.266 + 72.4174i 0.852573 + 0.228446i 0.658537 0.752548i \(-0.271176\pi\)
0.194036 + 0.980994i \(0.437842\pi\)
\(318\) −22.3812 135.301i −0.0703811 0.425474i
\(319\) −203.400 117.433i −0.637616 0.368128i
\(320\) 38.2199 + 11.8000i 0.119437 + 0.0368750i
\(321\) −38.7883 + 395.076i −0.120836 + 1.23077i
\(322\) 67.2284 111.501i 0.208784 0.346277i
\(323\) −24.5427 24.5427i −0.0759837 0.0759837i
\(324\) 160.588 21.3437i 0.495641 0.0658756i
\(325\) 21.5351 + 114.136i 0.0662619 + 0.351189i
\(326\) −76.4030 44.1113i −0.234365 0.135311i
\(327\) 170.779 454.174i 0.522259 1.38891i
\(328\) −83.5913 83.5913i −0.254852 0.254852i
\(329\) −135.238 + 468.929i −0.411058 + 1.42532i
\(330\) 137.854 + 181.384i 0.417738 + 0.549649i
\(331\) 74.7861 + 129.533i 0.225940 + 0.391339i 0.956601 0.291401i \(-0.0941214\pi\)
−0.730661 + 0.682740i \(0.760788\pi\)
\(332\) −101.313 + 27.1467i −0.305160 + 0.0817673i
\(333\) −25.0794 379.049i −0.0753135 1.13828i
\(334\) 5.23730 + 9.07126i 0.0156805 + 0.0271595i
\(335\) −0.439662 + 11.6701i −0.00131242 + 0.0348362i
\(336\) 65.9164 52.0675i 0.196180 0.154963i
\(337\) 217.610 + 217.610i 0.645728 + 0.645728i 0.951958 0.306230i \(-0.0990676\pi\)
−0.306230 + 0.951958i \(0.599068\pi\)
\(338\) 53.9575 201.372i 0.159638 0.595776i
\(339\) 37.7159 52.6668i 0.111256 0.155359i
\(340\) 88.2996 140.448i 0.259705 0.413082i
\(341\) −250.438 433.772i −0.734423 1.27206i
\(342\) 14.8079 + 22.1319i 0.0432978 + 0.0647132i
\(343\) 342.444 + 19.5191i 0.998379 + 0.0569069i
\(344\) −129.885 −0.377574
\(345\) −76.3388 + 181.915i −0.221272 + 0.527290i
\(346\) 149.280 + 86.1868i 0.431445 + 0.249095i
\(347\) 18.6415 + 69.5709i 0.0537218 + 0.200492i 0.987571 0.157175i \(-0.0502387\pi\)
−0.933849 + 0.357668i \(0.883572\pi\)
\(348\) 46.1819 122.817i 0.132707 0.352924i
\(349\) −257.887 −0.738932 −0.369466 0.929244i \(-0.620459\pi\)
−0.369466 + 0.929244i \(0.620459\pi\)
\(350\) −157.746 190.699i −0.450703 0.544855i
\(351\) 36.3027 120.074i 0.103426 0.342092i
\(352\) 15.7241 58.6830i 0.0446706 0.166713i
\(353\) −33.7279 125.874i −0.0955466 0.356585i 0.901555 0.432664i \(-0.142426\pi\)
−0.997102 + 0.0760795i \(0.975760\pi\)
\(354\) 23.4351 32.7249i 0.0662007 0.0924433i
\(355\) 394.932 + 121.931i 1.11249 + 0.343469i
\(356\) −314.445 −0.883274
\(357\) −137.833 319.963i −0.386086 0.896254i
\(358\) −64.0933 + 64.0933i −0.179032 + 0.179032i
\(359\) 315.396 + 546.282i 0.878540 + 1.52168i 0.852943 + 0.522004i \(0.174815\pi\)
0.0255973 + 0.999672i \(0.491851\pi\)
\(360\) −87.4070 + 92.5204i −0.242797 + 0.257001i
\(361\) 178.311 308.844i 0.493938 0.855525i
\(362\) 111.861 417.472i 0.309009 1.15324i
\(363\) −13.1181 + 10.7725i −0.0361380 + 0.0296764i
\(364\) −15.6393 63.1359i −0.0429650 0.173450i
\(365\) 17.3566 460.702i 0.0475523 1.26220i
\(366\) −204.337 450.611i −0.558297 1.23118i
\(367\) 41.5321 + 155.000i 0.113167 + 0.422343i 0.999143 0.0413865i \(-0.0131775\pi\)
−0.885977 + 0.463730i \(0.846511\pi\)
\(368\) 50.8163 13.6162i 0.138088 0.0370005i
\(369\) 356.123 121.133i 0.965104 0.328274i
\(370\) 202.948 + 218.839i 0.548508 + 0.591456i
\(371\) 219.631 54.4042i 0.591997 0.146642i
\(372\) 216.254 177.587i 0.581327 0.477383i
\(373\) −3.96685 1.06291i −0.0106350 0.00284963i 0.253498 0.967336i \(-0.418419\pi\)
−0.264133 + 0.964486i \(0.585086\pi\)
\(374\) −218.214 125.986i −0.583460 0.336861i
\(375\) 278.329 + 251.313i 0.742210 + 0.670167i
\(376\) −170.779 + 98.5991i −0.454199 + 0.262232i
\(377\) −71.8441 71.8441i −0.190568 0.190568i
\(378\) 55.9856 + 261.357i 0.148110 + 0.691421i
\(379\) 282.119i 0.744377i −0.928157 0.372189i \(-0.878607\pi\)
0.928157 0.372189i \(-0.121393\pi\)
\(380\) −19.9905 6.17187i −0.0526066 0.0162418i
\(381\) −149.565 + 208.854i −0.392559 + 0.548174i
\(382\) −143.766 + 38.5220i −0.376351 + 0.100843i
\(383\) 525.594 + 140.832i 1.37231 + 0.367709i 0.868321 0.496003i \(-0.165200\pi\)
0.503986 + 0.863712i \(0.331866\pi\)
\(384\) 33.7787 + 3.31638i 0.0879654 + 0.00863640i
\(385\) −280.414 + 250.323i −0.728348 + 0.650190i
\(386\) 165.711i 0.429303i
\(387\) 182.566 370.784i 0.471746 0.958098i
\(388\) −114.433 + 30.6624i −0.294932 + 0.0790267i
\(389\) −22.1584 + 38.3795i −0.0569626 + 0.0986621i −0.893101 0.449857i \(-0.851475\pi\)
0.836138 + 0.548519i \(0.184808\pi\)
\(390\) 37.2947 + 91.2279i 0.0956274 + 0.233918i
\(391\) 218.194i 0.558041i
\(392\) 94.2104 + 101.648i 0.240333 + 0.259307i
\(393\) −396.519 + 325.620i −1.00896 + 0.828550i
\(394\) −393.617 + 227.255i −0.999028 + 0.576789i
\(395\) 35.3477 + 155.052i 0.0894878 + 0.392536i
\(396\) 145.421 + 127.372i 0.367224 + 0.321646i
\(397\) 273.314 + 73.2343i 0.688448 + 0.184469i 0.586051 0.810274i \(-0.300682\pi\)
0.102398 + 0.994744i \(0.467349\pi\)
\(398\) −107.503 + 107.503i −0.270107 + 0.270107i
\(399\) −34.4769 + 27.2334i −0.0864082 + 0.0682540i
\(400\) 7.52416 99.7165i 0.0188104 0.249291i
\(401\) 359.724 207.687i 0.897067 0.517922i 0.0208196 0.999783i \(-0.493372\pi\)
0.876247 + 0.481861i \(0.160039\pi\)
\(402\) 1.61722 + 9.77659i 0.00402294 + 0.0243199i
\(403\) −56.0806 209.296i −0.139158 0.519344i
\(404\) 322.119 185.975i 0.797323 0.460335i
\(405\) −141.259 379.567i −0.348789 0.937201i
\(406\) 208.013 + 59.9904i 0.512347 + 0.147760i
\(407\) 320.538 320.538i 0.787562 0.787562i
\(408\) 49.5455 131.763i 0.121435 0.322948i
\(409\) 257.340 445.725i 0.629192 1.08979i −0.358522 0.933521i \(-0.616719\pi\)
0.987714 0.156272i \(-0.0499475\pi\)
\(410\) −157.301 + 250.200i −0.383661 + 0.610245i
\(411\) −102.774 + 46.6046i −0.250059 + 0.113393i
\(412\) −107.214 + 107.214i −0.260229 + 0.260229i
\(413\) 56.8725 + 34.2907i 0.137706 + 0.0830283i
\(414\) −32.5568 + 164.204i −0.0786395 + 0.396628i
\(415\) 122.467 + 231.862i 0.295100 + 0.558703i
\(416\) 13.1409 22.7607i 0.0315887 0.0547132i
\(417\) −82.2343 497.130i −0.197205 1.19216i
\(418\) −8.22430 + 30.6935i −0.0196754 + 0.0734295i
\(419\) 18.1550i 0.0433294i −0.999765 0.0216647i \(-0.993103\pi\)
0.999765 0.0216647i \(-0.00689662\pi\)
\(420\) −163.541 131.736i −0.389383 0.313657i
\(421\) −744.462 −1.76832 −0.884160 0.467185i \(-0.845268\pi\)
−0.884160 + 0.467185i \(0.845268\pi\)
\(422\) −406.441 108.906i −0.963131 0.258070i
\(423\) −41.4261 626.112i −0.0979340 1.48017i
\(424\) 79.1775 + 45.7132i 0.186739 + 0.107814i
\(425\) −391.403 137.183i −0.920947 0.322784i
\(426\) 349.041 + 34.2686i 0.819345 + 0.0804428i
\(427\) 714.589 394.679i 1.67351 0.924307i
\(428\) −187.136 187.136i −0.437234 0.437234i
\(429\) 136.329 61.8205i 0.317782 0.144104i
\(430\) 72.1744 + 316.591i 0.167847 + 0.736258i
\(431\) 250.590 + 144.678i 0.581416 + 0.335681i 0.761696 0.647935i \(-0.224367\pi\)
−0.180280 + 0.983615i \(0.557700\pi\)
\(432\) −56.9463 + 91.7667i −0.131820 + 0.212423i
\(433\) 71.7806 + 71.7806i 0.165775 + 0.165775i 0.785119 0.619344i \(-0.212602\pi\)
−0.619344 + 0.785119i \(0.712602\pi\)
\(434\) 320.209 + 332.601i 0.737810 + 0.766361i
\(435\) −325.025 44.3198i −0.747184 0.101885i
\(436\) 161.740 + 280.142i 0.370964 + 0.642528i
\(437\) −26.5789 + 7.12180i −0.0608213 + 0.0162970i
\(438\) −63.8433 385.951i −0.145761 0.881167i
\(439\) −387.852 671.779i −0.883489 1.53025i −0.847435 0.530899i \(-0.821854\pi\)
−0.0360543 0.999350i \(-0.511479\pi\)
\(440\) −151.775 5.71801i −0.344943 0.0129955i
\(441\) −422.597 + 126.066i −0.958270 + 0.285865i
\(442\) −77.0767 77.0767i −0.174382 0.174382i
\(443\) −95.9678 + 358.157i −0.216632 + 0.808480i 0.768954 + 0.639304i \(0.220777\pi\)
−0.985586 + 0.169176i \(0.945889\pi\)
\(444\) 205.900 + 147.450i 0.463739 + 0.332094i
\(445\) 174.730 + 766.449i 0.392652 + 1.72236i
\(446\) −194.026 336.064i −0.435037 0.753506i
\(447\) −639.222 + 524.927i −1.43003 + 1.17433i
\(448\) −1.06277 + 55.9899i −0.00237226 + 0.124977i
\(449\) −777.510 −1.73165 −0.865825 0.500348i \(-0.833206\pi\)
−0.865825 + 0.500348i \(0.833206\pi\)
\(450\) 274.085 + 161.640i 0.609078 + 0.359200i
\(451\) 388.736 + 224.437i 0.861943 + 0.497643i
\(452\) 11.1773 + 41.7143i 0.0247286 + 0.0922883i
\(453\) 339.835 + 127.785i 0.750187 + 0.282086i
\(454\) −94.2856 −0.207678
\(455\) −145.201 + 73.2033i −0.319123 + 0.160886i
\(456\) −17.6676 1.73460i −0.0387447 0.00380394i
\(457\) −195.875 + 731.014i −0.428609 + 1.59959i 0.327303 + 0.944919i \(0.393860\pi\)
−0.755912 + 0.654673i \(0.772806\pi\)
\(458\) −16.1339 60.2126i −0.0352269 0.131468i
\(459\) 306.502 + 326.642i 0.667761 + 0.711638i
\(460\) −61.4264 116.297i −0.133536 0.252819i
\(461\) −199.974 −0.433783 −0.216892 0.976196i \(-0.569592\pi\)
−0.216892 + 0.976196i \(0.569592\pi\)
\(462\) −190.591 + 255.747i −0.412535 + 0.553565i
\(463\) 508.040 508.040i 1.09728 1.09728i 0.102550 0.994728i \(-0.467300\pi\)
0.994728 0.102550i \(-0.0327002\pi\)
\(464\) 43.7377 + 75.7559i 0.0942623 + 0.163267i
\(465\) −553.028 428.429i −1.18931 0.921353i
\(466\) −21.6151 + 37.4384i −0.0463843 + 0.0803400i
\(467\) 67.3165 251.229i 0.144147 0.537963i −0.855645 0.517563i \(-0.826839\pi\)
0.999792 0.0204000i \(-0.00649398\pi\)
\(468\) 46.5042 + 69.5055i 0.0993680 + 0.148516i
\(469\) −15.8701 + 3.93115i −0.0338382 + 0.00838198i
\(470\) 335.229 + 361.477i 0.713254 + 0.769101i
\(471\) −246.439 + 111.752i −0.523225 + 0.237265i
\(472\) 6.94511 + 25.9195i 0.0147142 + 0.0549142i
\(473\) 476.379 127.645i 1.00714 0.269863i
\(474\) 55.7291 + 122.896i 0.117572 + 0.259274i
\(475\) −3.93543 + 52.1557i −0.00828512 + 0.109801i
\(476\) 223.163 + 64.3597i 0.468830 + 0.135209i
\(477\) −241.789 + 161.774i −0.506894 + 0.339149i
\(478\) 291.985 + 78.2372i 0.610847 + 0.163676i
\(479\) −559.185 322.846i −1.16740 0.674000i −0.214335 0.976760i \(-0.568758\pi\)
−0.953067 + 0.302761i \(0.902092\pi\)
\(480\) −10.6865 84.1772i −0.0222636 0.175369i
\(481\) 169.829 98.0507i 0.353074 0.203848i
\(482\) 73.4615 + 73.4615i 0.152410 + 0.152410i
\(483\) −274.314 32.1988i −0.567937 0.0666643i
\(484\) 11.3163i 0.0233808i
\(485\) 138.326 + 261.889i 0.285209 + 0.539977i
\(486\) −181.923 291.551i −0.374327 0.599899i
\(487\) −523.382 + 140.240i −1.07471 + 0.287967i −0.752426 0.658677i \(-0.771116\pi\)
−0.322281 + 0.946644i \(0.604450\pi\)
\(488\) 318.611 + 85.3717i 0.652892 + 0.174942i
\(489\) −18.2862 + 186.253i −0.0373951 + 0.380885i
\(490\) 195.414 286.118i 0.398803 0.583914i
\(491\) 663.596i 1.35152i 0.737122 + 0.675760i \(0.236184\pi\)
−0.737122 + 0.675760i \(0.763816\pi\)
\(492\) −88.2626 + 234.728i −0.179396 + 0.477090i
\(493\) 350.440 93.9000i 0.710831 0.190467i
\(494\) −6.87320 + 11.9047i −0.0139134 + 0.0240987i
\(495\) 229.657 425.235i 0.463953 0.859061i
\(496\) 186.551i 0.376110i
\(497\) −10.9818 + 578.553i −0.0220962 + 1.16409i
\(498\) 141.205 + 171.950i 0.283544 + 0.345282i
\(499\) 632.196 364.999i 1.26693 0.731460i 0.292521 0.956259i \(-0.405506\pi\)
0.974405 + 0.224799i \(0.0721725\pi\)
\(500\) −247.236 + 37.0703i −0.494473 + 0.0741407i
\(501\) 12.9371 18.0654i 0.0258225 0.0360587i
\(502\) 321.051 + 86.0255i 0.639545 + 0.171365i
\(503\) −151.136 + 151.136i −0.300470 + 0.300470i −0.841198 0.540728i \(-0.818149\pi\)
0.540728 + 0.841198i \(0.318149\pi\)
\(504\) −158.341 81.7328i −0.314168 0.162168i
\(505\) −632.302 681.810i −1.25208 1.35012i
\(506\) −172.997 + 99.8798i −0.341891 + 0.197391i
\(507\) −436.315 + 72.1743i −0.860581 + 0.142356i
\(508\) −44.3244 165.421i −0.0872528 0.325632i
\(509\) 315.266 182.019i 0.619383 0.357601i −0.157246 0.987560i \(-0.550261\pi\)
0.776629 + 0.629959i \(0.216928\pi\)
\(510\) −348.698 47.5478i −0.683721 0.0932309i
\(511\) 626.506 155.190i 1.22604 0.303699i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 29.7852 47.9976i 0.0580607 0.0935625i
\(514\) −270.342 + 468.247i −0.525958 + 0.910986i
\(515\) 320.907 + 201.754i 0.623120 + 0.391756i
\(516\) 113.790 + 250.934i 0.220524 + 0.486306i
\(517\) 529.464 529.464i 1.02411 1.02411i
\(518\) −215.752 + 357.833i −0.416509 + 0.690798i
\(519\) 35.7285 363.910i 0.0688410 0.701175i
\(520\) −62.7804 19.3828i −0.120732 0.0372747i
\(521\) −98.0617 + 169.848i −0.188218 + 0.326003i −0.944656 0.328062i \(-0.893605\pi\)
0.756438 + 0.654065i \(0.226938\pi\)
\(522\) −277.738 + 18.3763i −0.532065 + 0.0352036i
\(523\) −182.310 + 680.391i −0.348586 + 1.30094i 0.539781 + 0.841805i \(0.318507\pi\)
−0.888367 + 0.459134i \(0.848160\pi\)
\(524\) 342.057i 0.652780i
\(525\) −230.226 + 471.827i −0.438525 + 0.898719i
\(526\) −431.852 −0.821012
\(527\) 747.350 + 200.252i 1.41812 + 0.379985i
\(528\) −127.149 + 21.0327i −0.240812 + 0.0398347i
\(529\) 308.321 + 178.009i 0.582838 + 0.336502i
\(530\) 67.4270 218.394i 0.127221 0.412064i
\(531\) −83.7544 16.6060i −0.157730 0.0312731i
\(532\) 0.555872 29.2849i 0.00104487 0.0550469i
\(533\) 137.308 + 137.308i 0.257614 + 0.257614i
\(534\) 275.480 + 607.497i 0.515879 + 1.13763i
\(535\) −352.150 + 560.124i −0.658224 + 1.04696i
\(536\) −5.72122 3.30315i −0.0106739 0.00616259i
\(537\) 179.977 + 67.6751i 0.335153 + 0.126024i
\(538\) −176.936 176.936i −0.328877 0.328877i
\(539\) −445.430 280.229i −0.826400 0.519905i
\(540\) 255.322 + 87.8118i 0.472818 + 0.162615i
\(541\) −36.0002 62.3542i −0.0665438 0.115257i 0.830834 0.556520i \(-0.187864\pi\)
−0.897378 + 0.441263i \(0.854531\pi\)
\(542\) −527.005 + 141.211i −0.972334 + 0.260536i
\(543\) −904.540 + 149.627i −1.66582 + 0.275557i
\(544\) 46.9233 + 81.2735i 0.0862560 + 0.149400i
\(545\) 592.961 549.904i 1.08800 1.00900i
\(546\) −108.275 + 85.5267i −0.198306 + 0.156642i
\(547\) 369.252 + 369.252i 0.675049 + 0.675049i 0.958876 0.283827i \(-0.0916040\pi\)
−0.283827 + 0.958876i \(0.591604\pi\)
\(548\) 19.4713 72.6680i 0.0355316 0.132606i
\(549\) −691.548 + 789.543i −1.25965 + 1.43815i
\(550\) 70.4005 + 373.123i 0.128001 + 0.678406i
\(551\) −22.8765 39.6233i −0.0415182 0.0719117i
\(552\) −70.8252 86.2464i −0.128306 0.156243i
\(553\) −194.891 + 107.641i −0.352425 + 0.194650i
\(554\) −653.544 −1.17968
\(555\) 244.989 583.809i 0.441422 1.05191i
\(556\) 290.919 + 167.962i 0.523235 + 0.302090i
\(557\) 60.6241 + 226.252i 0.108840 + 0.406198i 0.998753 0.0499341i \(-0.0159011\pi\)
−0.889912 + 0.456132i \(0.849234\pi\)
\(558\) −532.547 262.214i −0.954385 0.469917i
\(559\) 213.351 0.381666
\(560\) 137.064 28.5218i 0.244757 0.0509319i
\(561\) −52.2271 + 531.955i −0.0930964 + 0.948227i
\(562\) −36.9546 + 137.916i −0.0657555 + 0.245403i
\(563\) 13.3709 + 49.9008i 0.0237494 + 0.0886338i 0.976783 0.214230i \(-0.0687241\pi\)
−0.953034 + 0.302863i \(0.902057\pi\)
\(564\) 340.106 + 243.557i 0.603024 + 0.431839i
\(565\) 95.4661 50.4240i 0.168966 0.0892460i
\(566\) 544.337 0.961727
\(567\) 455.885 337.132i 0.804029 0.594590i
\(568\) −165.331 + 165.331i −0.291075 + 0.291075i
\(569\) −79.3283 137.401i −0.139417 0.241477i 0.787859 0.615856i \(-0.211189\pi\)
−0.927276 + 0.374378i \(0.877856\pi\)
\(570\) 5.58947 + 44.0280i 0.00980609 + 0.0772421i
\(571\) 396.116 686.092i 0.693723 1.20156i −0.276887 0.960903i \(-0.589303\pi\)
0.970609 0.240660i \(-0.0773640\pi\)
\(572\) −25.8285 + 96.3933i −0.0451547 + 0.168520i
\(573\) 200.374 + 244.002i 0.349692 + 0.425833i
\(574\) −397.553 114.653i −0.692601 0.199745i
\(575\) −249.335 + 214.348i −0.433627 + 0.372779i
\(576\) −23.1858 68.1647i −0.0402531 0.118341i
\(577\) −218.523 815.540i −0.378723 1.41341i −0.847828 0.530271i \(-0.822090\pi\)
0.469105 0.883142i \(-0.344577\pi\)
\(578\) −18.8178 + 5.04222i −0.0325568 + 0.00872357i
\(579\) 320.148 145.176i 0.552932 0.250736i
\(580\) 160.348 148.705i 0.276462 0.256388i
\(581\) −264.462 + 254.609i −0.455184 + 0.438225i
\(582\) 159.492 + 194.219i 0.274040 + 0.333709i
\(583\) −335.323 89.8495i −0.575168 0.154116i
\(584\) 225.857 + 130.399i 0.386742 + 0.223285i
\(585\) 143.576 151.975i 0.245429 0.259786i
\(586\) 449.038 259.252i 0.766276 0.442410i
\(587\) −395.180 395.180i −0.673220 0.673220i 0.285237 0.958457i \(-0.407928\pi\)
−0.958457 + 0.285237i \(0.907928\pi\)
\(588\) 113.845 271.063i 0.193614 0.460992i
\(589\) 97.5734i 0.165659i
\(590\) 59.3186 31.3313i 0.100540 0.0531039i
\(591\) 783.888 + 561.360i 1.32638 + 0.949847i
\(592\) −163.081 + 43.6976i −0.275475 + 0.0738134i
\(593\) 116.227 + 31.1428i 0.195998 + 0.0525174i 0.355482 0.934683i \(-0.384317\pi\)
−0.159485 + 0.987200i \(0.550983\pi\)
\(594\) 118.677 392.536i 0.199793 0.660834i
\(595\) 32.8677 579.715i 0.0552398 0.974311i
\(596\) 551.423i 0.925207i
\(597\) 301.872 + 113.510i 0.505649 + 0.190134i
\(598\) −83.4714 + 22.3661i −0.139584 + 0.0374015i
\(599\) 598.910 1037.34i 0.999850 1.73179i 0.484920 0.874558i \(-0.338849\pi\)
0.514930 0.857232i \(-0.327818\pi\)
\(600\) −199.240 + 72.8233i −0.332067 + 0.121372i
\(601\) 170.669i 0.283975i −0.989868 0.141988i \(-0.954651\pi\)
0.989868 0.141988i \(-0.0453493\pi\)
\(602\) −397.937 + 219.787i −0.661025 + 0.365095i
\(603\) 17.4712 11.6895i 0.0289738 0.0193856i
\(604\) −209.616 + 121.022i −0.347047 + 0.200367i
\(605\) −27.5830 + 6.28821i −0.0455918 + 0.0103937i
\(606\) −641.499 459.392i −1.05858 0.758073i
\(607\) −375.584 100.638i −0.618755 0.165795i −0.0641933 0.997937i \(-0.520447\pi\)
−0.554562 + 0.832143i \(0.687114\pi\)
\(608\) 8.36863 8.36863i 0.0137642 0.0137642i
\(609\) −66.3368 454.430i −0.108927 0.746190i
\(610\) 31.0452 824.042i 0.0508937 1.35089i
\(611\) 280.523 161.960i 0.459121 0.265074i
\(612\) −297.967 + 19.7147i −0.486873 + 0.0322135i
\(613\) 71.3663 + 266.343i 0.116421 + 0.434490i 0.999389 0.0349428i \(-0.0111249\pi\)
−0.882968 + 0.469433i \(0.844458\pi\)
\(614\) 259.846 150.022i 0.423202 0.244336i
\(615\) 621.186 + 84.7038i 1.01006 + 0.137730i
\(616\) −51.1264 206.398i −0.0829974 0.335062i
\(617\) 140.458 140.458i 0.227647 0.227647i −0.584062 0.811709i \(-0.698538\pi\)
0.811709 + 0.584062i \(0.198538\pi\)
\(618\) 301.062 + 113.206i 0.487156 + 0.183181i
\(619\) −514.196 + 890.614i −0.830688 + 1.43879i 0.0668049 + 0.997766i \(0.478719\pi\)
−0.897493 + 0.441028i \(0.854614\pi\)
\(620\) 454.710 103.662i 0.733404 0.167197i
\(621\) 345.759 80.9576i 0.556777 0.130366i
\(622\) 59.6823 59.6823i 0.0959523 0.0959523i
\(623\) −963.384 + 532.092i −1.54636 + 0.854081i
\(624\) −55.4853 5.44752i −0.0889187 0.00872999i
\(625\) 227.741 + 582.030i 0.364386 + 0.931248i
\(626\) 89.7410 155.436i 0.143356 0.248300i
\(627\) 66.5039 11.0009i 0.106067 0.0175454i
\(628\) 46.6898 174.249i 0.0743468 0.277466i
\(629\) 700.236i 1.11325i
\(630\) −111.234 + 431.366i −0.176562 + 0.684708i
\(631\) −328.983 −0.521367 −0.260684 0.965424i \(-0.583948\pi\)
−0.260684 + 0.965424i \(0.583948\pi\)
\(632\) −86.8954 23.2836i −0.137493 0.0368411i
\(633\) 145.674 + 880.639i 0.230132 + 1.39122i
\(634\) 342.683 + 197.848i 0.540509 + 0.312063i
\(635\) −378.578 + 199.960i −0.596185 + 0.314897i
\(636\) 18.9503 193.016i 0.0297960 0.303485i
\(637\) −154.751 166.969i −0.242937 0.262117i
\(638\) −234.866 234.866i −0.368128 0.368128i
\(639\) −239.582 704.356i −0.374933 1.10228i
\(640\) 47.8902 + 30.1086i 0.0748285 + 0.0470446i
\(641\) 199.327 + 115.081i 0.310962 + 0.179534i 0.647357 0.762187i \(-0.275874\pi\)
−0.336395 + 0.941721i \(0.609208\pi\)
\(642\) −197.594 + 525.486i −0.307778 + 0.818514i
\(643\) 301.400 + 301.400i 0.468740 + 0.468740i 0.901506 0.432766i \(-0.142462\pi\)
−0.432766 + 0.901506i \(0.642462\pi\)
\(644\) 132.648 127.706i 0.205975 0.198301i
\(645\) 548.412 416.797i 0.850250 0.646198i
\(646\) −24.5427 42.5092i −0.0379918 0.0658038i
\(647\) 623.121 166.965i 0.963092 0.258060i 0.257184 0.966363i \(-0.417206\pi\)
0.705909 + 0.708303i \(0.250539\pi\)
\(648\) 227.179 + 29.6232i 0.350585 + 0.0457148i
\(649\) −50.9450 88.2393i −0.0784977 0.135962i
\(650\) −12.3593 + 163.795i −0.0190143 + 0.251993i
\(651\) 362.043 910.018i 0.556134 1.39788i
\(652\) −88.2225 88.2225i −0.135311 0.135311i
\(653\) −187.337 + 699.151i −0.286886 + 1.07067i 0.660563 + 0.750770i \(0.270318\pi\)
−0.947450 + 0.319905i \(0.896349\pi\)
\(654\) 399.527 557.903i 0.610898 0.853063i
\(655\) −833.750 + 190.073i −1.27290 + 0.290188i
\(656\) −83.5913 144.784i −0.127426 0.220708i
\(657\) −689.712 + 461.467i −1.04979 + 0.702385i
\(658\) −356.378 + 591.068i −0.541609 + 0.898280i
\(659\) 1009.35 1.53165 0.765823 0.643052i \(-0.222332\pi\)
0.765823 + 0.643052i \(0.222332\pi\)
\(660\) 121.920 + 298.233i 0.184728 + 0.451869i
\(661\) −305.298 176.264i −0.461873 0.266663i 0.250958 0.967998i \(-0.419254\pi\)
−0.712832 + 0.701335i \(0.752588\pi\)
\(662\) 54.7472 + 204.319i 0.0826997 + 0.308640i
\(663\) −81.3840 + 216.435i −0.122751 + 0.326448i
\(664\) −148.333 −0.223392
\(665\) −71.6898 + 14.9180i −0.107804 + 0.0224332i
\(666\) 104.482 526.970i 0.156880 0.791246i
\(667\) 74.4426 277.824i 0.111608 0.416527i
\(668\) 3.83397 + 14.3086i 0.00573947 + 0.0214200i
\(669\) −479.280 + 669.271i −0.716412 + 1.00041i
\(670\) −4.87215 + 15.7807i −0.00727186 + 0.0235533i
\(671\) −1252.47 −1.86657
\(672\) 109.102 46.9984i 0.162353 0.0699382i
\(673\) −328.459 + 328.459i −0.488052 + 0.488052i −0.907691 0.419639i \(-0.862157\pi\)
0.419639 + 0.907691i \(0.362157\pi\)
\(674\) 217.610 + 376.912i 0.322864 + 0.559217i
\(675\) 72.1617 671.132i 0.106906 0.994269i
\(676\) 147.415 255.330i 0.218069 0.377707i
\(677\) −97.5907 + 364.214i −0.144152 + 0.537982i 0.855640 + 0.517572i \(0.173164\pi\)
−0.999792 + 0.0204101i \(0.993503\pi\)
\(678\) 70.7983 58.1393i 0.104422 0.0857511i
\(679\) −298.711 + 287.582i −0.439927 + 0.423537i
\(680\) 172.027 159.536i 0.252981 0.234611i
\(681\) 82.6018 + 182.156i 0.121295 + 0.267484i
\(682\) −183.333 684.210i −0.268817 1.00324i
\(683\) −197.306 + 52.8679i −0.288881 + 0.0774054i −0.400349 0.916363i \(-0.631111\pi\)
0.111469 + 0.993768i \(0.464445\pi\)
\(684\) 12.1271 + 35.6528i 0.0177296 + 0.0521240i
\(685\) −187.945 7.08069i −0.274373 0.0103368i
\(686\) 460.643 + 152.007i 0.671491 + 0.221584i
\(687\) −102.194 + 83.9212i −0.148754 + 0.122156i
\(688\) −177.427 47.5414i −0.257888 0.0691008i
\(689\) −130.058 75.0889i −0.188763 0.108982i
\(690\) −170.866 + 220.559i −0.247632 + 0.319650i
\(691\) −30.3995 + 17.5512i −0.0439935 + 0.0253996i −0.521835 0.853046i \(-0.674752\pi\)
0.477842 + 0.878446i \(0.341419\pi\)
\(692\) 172.374 + 172.374i 0.249095 + 0.249095i
\(693\) 661.067 + 144.160i 0.953921 + 0.208024i
\(694\) 101.859i 0.146771i
\(695\) 247.744 802.436i 0.356466 1.15458i
\(696\) 108.040 150.868i 0.155230 0.216764i
\(697\) −669.759 + 179.461i −0.960917 + 0.257477i
\(698\) −352.280 94.3933i −0.504700 0.135234i
\(699\) 91.2662 + 8.96047i 0.130567 + 0.0128190i
\(700\) −145.684 318.239i −0.208120 0.454627i
\(701\) 1035.40i 1.47703i −0.674238 0.738514i \(-0.735528\pi\)
0.674238 0.738514i \(-0.264472\pi\)
\(702\) 93.5406 150.737i 0.133249 0.214725i
\(703\) 85.2980 22.8555i 0.121334 0.0325114i
\(704\) 42.9589 74.4070i 0.0610212 0.105692i
\(705\) 404.673 964.334i 0.574004 1.36785i
\(706\) 184.293i 0.261038i
\(707\) 672.192 1114.86i 0.950767 1.57689i
\(708\) 43.9911 36.1253i 0.0621343 0.0510244i
\(709\) −362.406 + 209.235i −0.511151 + 0.295113i −0.733307 0.679898i \(-0.762024\pi\)
0.222156 + 0.975011i \(0.428691\pi\)
\(710\) 494.857 + 311.117i 0.696982 + 0.438192i
\(711\) 188.607 215.333i 0.265270 0.302860i
\(712\) −429.540 115.095i −0.603287 0.161650i
\(713\) 433.732 433.732i 0.608320 0.608320i
\(714\) −71.1684 487.527i −0.0996756 0.682812i
\(715\) 249.307 + 9.39246i 0.348682 + 0.0131363i
\(716\) −111.013 + 64.0933i −0.155046 + 0.0895158i
\(717\) −104.651 632.647i −0.145957 0.882352i
\(718\) 230.886 + 861.678i 0.321568 + 1.20011i
\(719\) 393.739 227.325i 0.547621 0.316169i −0.200541 0.979685i \(-0.564270\pi\)
0.748162 + 0.663516i \(0.230937\pi\)
\(720\) −153.265 + 94.3920i −0.212868 + 0.131100i
\(721\) −147.054 + 509.902i −0.203959 + 0.707214i
\(722\) 356.623 356.623i 0.493938 0.493938i
\(723\) 77.5667 206.283i 0.107285 0.285315i
\(724\) 305.611 529.333i 0.422114 0.731123i
\(725\) −451.564 308.211i −0.622847 0.425118i
\(726\) −21.8627 + 9.91399i −0.0301139 + 0.0136556i
\(727\) −707.691 + 707.691i −0.973441 + 0.973441i −0.999656 0.0262157i \(-0.991654\pi\)
0.0262157 + 0.999656i \(0.491654\pi\)
\(728\) 1.74572 91.9696i 0.00239797 0.126332i
\(729\) −403.886 + 606.891i −0.554028 + 0.832498i
\(730\) 192.338 622.978i 0.263477 0.853394i
\(731\) −380.916 + 659.766i −0.521089 + 0.902552i
\(732\) −114.194 690.338i −0.156003 0.943085i
\(733\) −216.868 + 809.364i −0.295864 + 1.10418i 0.644664 + 0.764466i \(0.276997\pi\)
−0.940529 + 0.339715i \(0.889670\pi\)
\(734\) 226.936i 0.309177i
\(735\) −723.968 126.870i −0.984990 0.172612i
\(736\) 74.4002 0.101087
\(737\) 24.2298 + 6.49236i 0.0328763 + 0.00880917i
\(738\) 530.811 35.1206i 0.719257 0.0475889i
\(739\) 605.923 + 349.830i 0.819923 + 0.473383i 0.850390 0.526153i \(-0.176366\pi\)
−0.0304668 + 0.999536i \(0.509699\pi\)
\(740\) 197.132 + 373.223i 0.266394 + 0.504356i
\(741\) 29.0210 + 2.84927i 0.0391646 + 0.00384516i
\(742\) 319.934 + 6.07283i 0.431179 + 0.00818441i
\(743\) −116.105 116.105i −0.156265 0.156265i 0.624644 0.780910i \(-0.285244\pi\)
−0.780910 + 0.624644i \(0.785244\pi\)
\(744\) 360.409 163.434i 0.484421 0.219669i
\(745\) −1344.07 + 306.413i −1.80413 + 0.411293i
\(746\) −5.02976 2.90393i −0.00674231 0.00389267i
\(747\) 208.495 423.445i 0.279110 0.566861i
\(748\) −251.972 251.972i −0.336861 0.336861i
\(749\) −890.003 256.675i −1.18825 0.342690i
\(750\) 288.217 + 445.175i 0.384290 + 0.593567i
\(751\) −533.815 924.595i −0.710806 1.23115i −0.964555 0.263882i \(-0.914997\pi\)
0.253749 0.967270i \(-0.418336\pi\)
\(752\) −269.378 + 72.1796i −0.358215 + 0.0959835i
\(753\) −115.069 695.625i −0.152814 0.923805i
\(754\) −71.8441 124.438i −0.0952839 0.165037i
\(755\) 411.465 + 443.682i 0.544987 + 0.587659i
\(756\) −19.1856 + 377.513i −0.0253777 + 0.499356i
\(757\) 549.837 + 549.837i 0.726336 + 0.726336i 0.969888 0.243552i \(-0.0783125\pi\)
−0.243552 + 0.969888i \(0.578313\pi\)
\(758\) 103.263 385.382i 0.136230 0.508419i
\(759\) 344.523 + 246.721i 0.453918 + 0.325061i
\(760\) −25.0485