Properties

Label 210.3.w.b.17.6
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-1.66769 - 2.49375i) q^{3} +(1.73205 + 1.00000i) q^{4} +(1.09236 + 4.87922i) q^{5} +(-1.36533 - 4.01695i) q^{6} +(-1.72310 + 6.78461i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-3.43763 + 8.31761i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-1.66769 - 2.49375i) q^{3} +(1.73205 + 1.00000i) q^{4} +(1.09236 + 4.87922i) q^{5} +(-1.36533 - 4.01695i) q^{6} +(-1.72310 + 6.78461i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-3.43763 + 8.31761i) q^{9} +(-0.293729 + 7.06496i) q^{10} +(5.25762 + 3.03549i) q^{11} +(-0.394767 - 5.98700i) q^{12} +(4.95646 + 4.95646i) q^{13} +(-4.83714 + 8.63725i) q^{14} +(10.3459 - 10.8611i) q^{15} +(2.00000 + 3.46410i) q^{16} +(24.7338 - 6.62741i) q^{17} +(-7.74035 + 10.1038i) q^{18} +(-8.47334 - 14.6763i) q^{19} +(-2.98720 + 9.54341i) q^{20} +(19.7928 - 7.01762i) q^{21} +(6.07098 + 6.07098i) q^{22} +(-7.44889 + 27.7996i) q^{23} +(1.65213 - 8.32289i) q^{24} +(-22.6135 + 10.6597i) q^{25} +(4.95646 + 8.58484i) q^{26} +(26.4750 - 5.29859i) q^{27} +(-9.76911 + 10.0282i) q^{28} +29.7644 q^{29} +(18.1081 - 11.0497i) q^{30} +(-36.5762 - 21.1173i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-1.19831 - 18.1735i) q^{33} +36.2128 q^{34} +(-34.9858 - 0.996180i) q^{35} +(-14.2718 + 10.9689i) q^{36} +(-12.4034 + 46.2903i) q^{37} +(-6.20292 - 23.1496i) q^{38} +(4.09437 - 20.6260i) q^{39} +(-7.57372 + 11.9431i) q^{40} -2.99309 q^{41} +(29.6060 - 2.34159i) q^{42} +(22.2278 - 22.2278i) q^{43} +(6.07098 + 10.5152i) q^{44} +(-44.3386 - 7.68712i) q^{45} +(-20.3508 + 35.2485i) q^{46} +(16.3896 - 61.1668i) q^{47} +(5.30324 - 10.7646i) q^{48} +(-43.0618 - 23.3812i) q^{49} +(-34.7923 + 6.28430i) q^{50} +(-57.7754 - 50.6276i) q^{51} +(3.62838 + 13.5413i) q^{52} +(1.70301 - 0.456319i) q^{53} +(38.1049 + 2.45251i) q^{54} +(-9.06761 + 28.9689i) q^{55} +(-17.0154 + 10.1230i) q^{56} +(-22.4681 + 45.6059i) q^{57} +(40.6589 + 10.8945i) q^{58} +(-72.6479 - 41.9433i) q^{59} +(28.7806 - 8.46610i) q^{60} +(-18.0258 + 10.4072i) q^{61} +(-42.2346 - 42.2346i) q^{62} +(-50.5084 - 37.6551i) q^{63} +8.00000i q^{64} +(-18.7694 + 29.5979i) q^{65} +(5.01503 - 25.2640i) q^{66} +(32.1572 - 8.61650i) q^{67} +(49.4676 + 13.2548i) q^{68} +(81.7479 - 27.7854i) q^{69} +(-47.4269 - 14.1665i) q^{70} -10.6074i q^{71} +(-23.5105 + 9.75997i) q^{72} +(94.5508 - 25.3348i) q^{73} +(-33.8869 + 58.6937i) q^{74} +(64.2950 + 38.6155i) q^{75} -33.8934i q^{76} +(-29.6540 + 30.4404i) q^{77} +(13.1427 - 26.6771i) q^{78} +(74.6747 - 43.1134i) q^{79} +(-14.7174 + 13.5425i) q^{80} +(-57.3654 - 57.1857i) q^{81} +(-4.08863 - 1.09555i) q^{82} +(47.0984 - 47.0984i) q^{83} +(41.2997 + 7.63788i) q^{84} +(59.3547 + 113.442i) q^{85} +(38.4997 - 22.2278i) q^{86} +(-49.6377 - 74.2250i) q^{87} +(4.44427 + 16.5862i) q^{88} +(138.660 - 80.0552i) q^{89} +(-57.7539 - 26.7298i) q^{90} +(-42.1682 + 25.0872i) q^{91} +(-40.7015 + 40.7015i) q^{92} +(8.33641 + 126.429i) q^{93} +(44.7772 - 77.5564i) q^{94} +(62.3527 - 57.3750i) q^{95} +(11.1845 - 12.7635i) q^{96} +(-81.7792 + 81.7792i) q^{97} +(-50.2654 - 47.7010i) q^{98} +(-43.3218 + 33.2960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −1.66769 2.49375i −0.555896 0.831252i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 1.09236 + 4.87922i 0.218472 + 0.975843i
\(6\) −1.36533 4.01695i −0.227555 0.669492i
\(7\) −1.72310 + 6.78461i −0.246158 + 0.969230i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −3.43763 + 8.31761i −0.381959 + 0.924179i
\(10\) −0.293729 + 7.06496i −0.0293729 + 0.706496i
\(11\) 5.25762 + 3.03549i 0.477966 + 0.275954i 0.719568 0.694422i \(-0.244340\pi\)
−0.241603 + 0.970375i \(0.577673\pi\)
\(12\) −0.394767 5.98700i −0.0328972 0.498917i
\(13\) 4.95646 + 4.95646i 0.381266 + 0.381266i 0.871558 0.490292i \(-0.163110\pi\)
−0.490292 + 0.871558i \(0.663110\pi\)
\(14\) −4.83714 + 8.63725i −0.345510 + 0.616946i
\(15\) 10.3459 10.8611i 0.689724 0.724072i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 24.7338 6.62741i 1.45493 0.389847i 0.557195 0.830382i \(-0.311878\pi\)
0.897736 + 0.440534i \(0.145211\pi\)
\(18\) −7.74035 + 10.1038i −0.430019 + 0.561323i
\(19\) −8.47334 14.6763i −0.445965 0.772435i 0.552154 0.833742i \(-0.313806\pi\)
−0.998119 + 0.0613078i \(0.980473\pi\)
\(20\) −2.98720 + 9.54341i −0.149360 + 0.477170i
\(21\) 19.7928 7.01762i 0.942512 0.334172i
\(22\) 6.07098 + 6.07098i 0.275954 + 0.275954i
\(23\) −7.44889 + 27.7996i −0.323865 + 1.20868i 0.591583 + 0.806244i \(0.298503\pi\)
−0.915448 + 0.402436i \(0.868163\pi\)
\(24\) 1.65213 8.32289i 0.0688388 0.346787i
\(25\) −22.6135 + 10.6597i −0.904540 + 0.426388i
\(26\) 4.95646 + 8.58484i 0.190633 + 0.330186i
\(27\) 26.4750 5.29859i 0.980555 0.196244i
\(28\) −9.76911 + 10.0282i −0.348897 + 0.358149i
\(29\) 29.7644 1.02636 0.513179 0.858282i \(-0.328468\pi\)
0.513179 + 0.858282i \(0.328468\pi\)
\(30\) 18.1081 11.0497i 0.603605 0.368322i
\(31\) −36.5762 21.1173i −1.17988 0.681203i −0.223892 0.974614i \(-0.571876\pi\)
−0.955986 + 0.293411i \(0.905210\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −1.19831 18.1735i −0.0363124 0.550711i
\(34\) 36.2128 1.06508
\(35\) −34.9858 0.996180i −0.999595 0.0284623i
\(36\) −14.2718 + 10.9689i −0.396438 + 0.304692i
\(37\) −12.4034 + 46.2903i −0.335228 + 1.25109i 0.568393 + 0.822757i \(0.307565\pi\)
−0.903621 + 0.428332i \(0.859101\pi\)
\(38\) −6.20292 23.1496i −0.163235 0.609200i
\(39\) 4.09437 20.6260i 0.104984 0.528873i
\(40\) −7.57372 + 11.9431i −0.189343 + 0.298579i
\(41\) −2.99309 −0.0730021 −0.0365011 0.999334i \(-0.511621\pi\)
−0.0365011 + 0.999334i \(0.511621\pi\)
\(42\) 29.6060 2.34159i 0.704905 0.0557522i
\(43\) 22.2278 22.2278i 0.516926 0.516926i −0.399714 0.916640i \(-0.630891\pi\)
0.916640 + 0.399714i \(0.130891\pi\)
\(44\) 6.07098 + 10.5152i 0.137977 + 0.238983i
\(45\) −44.3386 7.68712i −0.985301 0.170825i
\(46\) −20.3508 + 35.2485i −0.442408 + 0.766273i
\(47\) 16.3896 61.1668i 0.348715 1.30142i −0.539498 0.841987i \(-0.681386\pi\)
0.888212 0.459434i \(-0.151948\pi\)
\(48\) 5.30324 10.7646i 0.110484 0.224262i
\(49\) −43.0618 23.3812i −0.878813 0.477167i
\(50\) −34.7923 + 6.28430i −0.695847 + 0.125686i
\(51\) −57.7754 50.6276i −1.13285 0.992699i
\(52\) 3.62838 + 13.5413i 0.0697766 + 0.260410i
\(53\) 1.70301 0.456319i 0.0321322 0.00860980i −0.242717 0.970097i \(-0.578039\pi\)
0.274849 + 0.961487i \(0.411372\pi\)
\(54\) 38.1049 + 2.45251i 0.705647 + 0.0454168i
\(55\) −9.06761 + 28.9689i −0.164866 + 0.526708i
\(56\) −17.0154 + 10.1230i −0.303847 + 0.180768i
\(57\) −22.4681 + 45.6059i −0.394177 + 0.800103i
\(58\) 40.6589 + 10.8945i 0.701015 + 0.187836i
\(59\) −72.6479 41.9433i −1.23132 0.710903i −0.264015 0.964519i \(-0.585047\pi\)
−0.967305 + 0.253615i \(0.918380\pi\)
\(60\) 28.7806 8.46610i 0.479677 0.141102i
\(61\) −18.0258 + 10.4072i −0.295505 + 0.170610i −0.640422 0.768023i \(-0.721240\pi\)
0.344917 + 0.938633i \(0.387907\pi\)
\(62\) −42.2346 42.2346i −0.681203 0.681203i
\(63\) −50.5084 37.6551i −0.801720 0.597700i
\(64\) 8.00000i 0.125000i
\(65\) −18.7694 + 29.5979i −0.288760 + 0.455352i
\(66\) 5.01503 25.2640i 0.0759853 0.382788i
\(67\) 32.1572 8.61650i 0.479958 0.128604i −0.0107249 0.999942i \(-0.503414\pi\)
0.490683 + 0.871338i \(0.336747\pi\)
\(68\) 49.4676 + 13.2548i 0.727465 + 0.194924i
\(69\) 81.7479 27.7854i 1.18475 0.402688i
\(70\) −47.4269 14.1665i −0.677527 0.202379i
\(71\) 10.6074i 0.149400i −0.997206 0.0747002i \(-0.976200\pi\)
0.997206 0.0747002i \(-0.0238000\pi\)
\(72\) −23.5105 + 9.75997i −0.326535 + 0.135555i
\(73\) 94.5508 25.3348i 1.29522 0.347052i 0.455577 0.890197i \(-0.349433\pi\)
0.839639 + 0.543145i \(0.182766\pi\)
\(74\) −33.8869 + 58.6937i −0.457930 + 0.793159i
\(75\) 64.2950 + 38.6155i 0.857266 + 0.514873i
\(76\) 33.8934i 0.445965i
\(77\) −29.6540 + 30.4404i −0.385117 + 0.395330i
\(78\) 13.1427 26.6771i 0.168496 0.342013i
\(79\) 74.6747 43.1134i 0.945249 0.545740i 0.0536472 0.998560i \(-0.482915\pi\)
0.891602 + 0.452820i \(0.149582\pi\)
\(80\) −14.7174 + 13.5425i −0.183967 + 0.169281i
\(81\) −57.3654 57.1857i −0.708215 0.705997i
\(82\) −4.08863 1.09555i −0.0498614 0.0133603i
\(83\) 47.0984 47.0984i 0.567450 0.567450i −0.363963 0.931413i \(-0.618577\pi\)
0.931413 + 0.363963i \(0.118577\pi\)
\(84\) 41.2997 + 7.63788i 0.491663 + 0.0909272i
\(85\) 59.3547 + 113.442i 0.698291 + 1.33461i
\(86\) 38.4997 22.2278i 0.447671 0.258463i
\(87\) −49.6377 74.2250i −0.570548 0.853161i
\(88\) 4.44427 + 16.5862i 0.0505030 + 0.188480i
\(89\) 138.660 80.0552i 1.55797 0.899496i 0.560522 0.828139i \(-0.310600\pi\)
0.997451 0.0713568i \(-0.0227329\pi\)
\(90\) −57.7539 26.7298i −0.641710 0.296998i
\(91\) −42.1682 + 25.0872i −0.463386 + 0.275683i
\(92\) −40.7015 + 40.7015i −0.442408 + 0.442408i
\(93\) 8.33641 + 126.429i 0.0896388 + 1.35945i
\(94\) 44.7772 77.5564i 0.476353 0.825068i
\(95\) 62.3527 57.3750i 0.656344 0.603947i
\(96\) 11.1845 12.7635i 0.116505 0.132953i
\(97\) −81.7792 + 81.7792i −0.843085 + 0.843085i −0.989259 0.146174i \(-0.953304\pi\)
0.146174 + 0.989259i \(0.453304\pi\)
\(98\) −50.2654 47.7010i −0.512913 0.486745i
\(99\) −43.3218 + 33.2960i −0.437594 + 0.336323i
\(100\) −49.8274 4.15037i −0.498274 0.0415037i
\(101\) 12.5884 21.8038i 0.124638 0.215879i −0.796953 0.604041i \(-0.793556\pi\)
0.921591 + 0.388162i \(0.126890\pi\)
\(102\) −60.3917 90.3059i −0.592076 0.885352i
\(103\) −37.8541 + 141.274i −0.367516 + 1.37159i 0.496462 + 0.868058i \(0.334632\pi\)
−0.863978 + 0.503529i \(0.832035\pi\)
\(104\) 19.8258i 0.190633i
\(105\) 55.8612 + 88.9074i 0.532012 + 0.846737i
\(106\) 2.49337 0.0235224
\(107\) 79.1821 + 21.2168i 0.740020 + 0.198288i 0.609087 0.793104i \(-0.291536\pi\)
0.130933 + 0.991391i \(0.458203\pi\)
\(108\) 51.1546 + 17.2976i 0.473654 + 0.160163i
\(109\) −14.2005 8.19866i −0.130280 0.0752171i 0.433444 0.901181i \(-0.357298\pi\)
−0.563723 + 0.825964i \(0.690632\pi\)
\(110\) −22.9899 + 36.2533i −0.208999 + 0.329575i
\(111\) 136.122 46.2667i 1.22632 0.416817i
\(112\) −26.9488 + 7.60021i −0.240614 + 0.0678590i
\(113\) −115.892 115.892i −1.02560 1.02560i −0.999664 0.0259326i \(-0.991744\pi\)
−0.0259326 0.999664i \(-0.508256\pi\)
\(114\) −47.3849 + 54.0749i −0.415657 + 0.474341i
\(115\) −143.777 5.97761i −1.25024 0.0519792i
\(116\) 51.5534 + 29.7644i 0.444426 + 0.256589i
\(117\) −58.2644 + 24.1875i −0.497986 + 0.206731i
\(118\) −83.8866 83.8866i −0.710903 0.710903i
\(119\) 2.34542 + 179.229i 0.0197094 + 1.50613i
\(120\) 42.4139 1.03046i 0.353449 0.00858715i
\(121\) −42.0716 72.8702i −0.347699 0.602233i
\(122\) −28.4330 + 7.61860i −0.233057 + 0.0624475i
\(123\) 4.99154 + 7.46403i 0.0405816 + 0.0606831i
\(124\) −42.2346 73.1525i −0.340602 0.589939i
\(125\) −76.7130 98.6920i −0.613704 0.789536i
\(126\) −55.2130 69.9251i −0.438198 0.554961i
\(127\) 30.6273 + 30.6273i 0.241160 + 0.241160i 0.817330 0.576170i \(-0.195453\pi\)
−0.576170 + 0.817330i \(0.695453\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −92.4998 18.3616i −0.717053 0.142338i
\(130\) −36.4731 + 33.5614i −0.280562 + 0.258164i
\(131\) −55.8066 96.6599i −0.426005 0.737862i 0.570509 0.821291i \(-0.306746\pi\)
−0.996514 + 0.0834295i \(0.973413\pi\)
\(132\) 16.0979 32.6757i 0.121954 0.247543i
\(133\) 114.173 32.1996i 0.858444 0.242102i
\(134\) 47.0814 0.351354
\(135\) 54.7731 + 123.389i 0.405727 + 0.913994i
\(136\) 62.7225 + 36.2128i 0.461195 + 0.266271i
\(137\) 34.9263 + 130.347i 0.254936 + 0.951435i 0.968126 + 0.250464i \(0.0805832\pi\)
−0.713190 + 0.700971i \(0.752750\pi\)
\(138\) 121.840 8.03380i 0.882898 0.0582160i
\(139\) 94.2009 0.677704 0.338852 0.940840i \(-0.389961\pi\)
0.338852 + 0.940840i \(0.389961\pi\)
\(140\) −59.6010 36.7113i −0.425722 0.262223i
\(141\) −179.868 + 61.1355i −1.27566 + 0.433585i
\(142\) 3.88259 14.4900i 0.0273422 0.102042i
\(143\) 11.0139 + 41.1045i 0.0770204 + 0.287444i
\(144\) −35.6883 + 4.72694i −0.247836 + 0.0328260i
\(145\) 32.5133 + 145.227i 0.224230 + 1.00156i
\(146\) 138.432 0.948164
\(147\) 13.5068 + 146.378i 0.0918830 + 0.995770i
\(148\) −67.7737 + 67.7737i −0.457930 + 0.457930i
\(149\) 100.290 + 173.707i 0.673085 + 1.16582i 0.977025 + 0.213126i \(0.0683646\pi\)
−0.303939 + 0.952691i \(0.598302\pi\)
\(150\) 73.6943 + 76.2833i 0.491295 + 0.508556i
\(151\) 132.934 230.249i 0.880361 1.52483i 0.0294207 0.999567i \(-0.490634\pi\)
0.850940 0.525263i \(-0.176033\pi\)
\(152\) 12.4058 46.2992i 0.0816173 0.304600i
\(153\) −29.9014 + 228.509i −0.195434 + 1.49352i
\(154\) −51.6501 + 30.7283i −0.335391 + 0.199534i
\(155\) 63.0815 201.531i 0.406978 1.30020i
\(156\) 27.7177 31.6310i 0.177677 0.202763i
\(157\) 4.79975 + 17.9129i 0.0305717 + 0.114095i 0.979526 0.201320i \(-0.0645230\pi\)
−0.948954 + 0.315415i \(0.897856\pi\)
\(158\) 117.788 31.5612i 0.745494 0.199755i
\(159\) −3.97803 3.48588i −0.0250191 0.0219238i
\(160\) −25.0612 + 13.1124i −0.156633 + 0.0819526i
\(161\) −175.775 98.4395i −1.09177 0.611426i
\(162\) −57.4312 99.1144i −0.354514 0.611817i
\(163\) −80.8800 21.6717i −0.496196 0.132955i 0.00203783 0.999998i \(-0.499351\pi\)
−0.498234 + 0.867043i \(0.666018\pi\)
\(164\) −5.18418 2.99309i −0.0316108 0.0182505i
\(165\) 87.3633 25.6987i 0.529475 0.155750i
\(166\) 81.5768 47.0984i 0.491427 0.283725i
\(167\) 146.343 + 146.343i 0.876304 + 0.876304i 0.993150 0.116846i \(-0.0372784\pi\)
−0.116846 + 0.993150i \(0.537278\pi\)
\(168\) 53.6207 + 25.5503i 0.319171 + 0.152085i
\(169\) 119.867i 0.709272i
\(170\) 39.5574 + 176.690i 0.232690 + 1.03935i
\(171\) 151.200 20.0265i 0.884208 0.117114i
\(172\) 60.7275 16.2719i 0.353067 0.0946040i
\(173\) 239.295 + 64.1188i 1.38321 + 0.370629i 0.872285 0.488998i \(-0.162638\pi\)
0.510922 + 0.859627i \(0.329304\pi\)
\(174\) −40.6381 119.562i −0.233552 0.687138i
\(175\) −33.3564 171.792i −0.190608 0.981666i
\(176\) 24.2839i 0.137977i
\(177\) 16.5578 + 251.114i 0.0935470 + 1.41873i
\(178\) 218.715 58.6044i 1.22873 0.329238i
\(179\) 20.0007 34.6423i 0.111736 0.193532i −0.804734 0.593635i \(-0.797692\pi\)
0.916470 + 0.400103i \(0.131026\pi\)
\(180\) −69.1095 57.6530i −0.383942 0.320295i
\(181\) 210.145i 1.16102i 0.814253 + 0.580510i \(0.197147\pi\)
−0.814253 + 0.580510i \(0.802853\pi\)
\(182\) −66.7853 + 18.8351i −0.366952 + 0.103489i
\(183\) 56.0144 + 27.5959i 0.306090 + 0.150798i
\(184\) −70.4971 + 40.7015i −0.383136 + 0.221204i
\(185\) −239.409 9.95356i −1.29410 0.0538030i
\(186\) −34.8886 + 175.757i −0.187573 + 0.944929i
\(187\) 150.159 + 40.2349i 0.802987 + 0.215160i
\(188\) 89.5544 89.5544i 0.476353 0.476353i
\(189\) −9.67029 + 188.752i −0.0511655 + 0.998690i
\(190\) 106.176 55.5530i 0.558822 0.292384i
\(191\) −161.722 + 93.3702i −0.846712 + 0.488849i −0.859540 0.511068i \(-0.829250\pi\)
0.0128282 + 0.999918i \(0.495917\pi\)
\(192\) 19.9500 13.3415i 0.103906 0.0694870i
\(193\) −45.3096 169.098i −0.234765 0.876155i −0.978255 0.207407i \(-0.933497\pi\)
0.743490 0.668747i \(-0.233169\pi\)
\(194\) −141.646 + 81.7792i −0.730133 + 0.421542i
\(195\) 105.111 2.55371i 0.539033 0.0130960i
\(196\) −51.2041 83.5592i −0.261245 0.426322i
\(197\) −32.6753 + 32.6753i −0.165865 + 0.165865i −0.785159 0.619294i \(-0.787419\pi\)
0.619294 + 0.785159i \(0.287419\pi\)
\(198\) −71.3658 + 29.6263i −0.360433 + 0.149628i
\(199\) 19.7740 34.2496i 0.0993670 0.172109i −0.812056 0.583580i \(-0.801652\pi\)
0.911423 + 0.411471i \(0.134985\pi\)
\(200\) −66.5464 23.9076i −0.332732 0.119538i
\(201\) −75.1156 65.8225i −0.373710 0.327475i
\(202\) 25.1768 25.1768i 0.124638 0.124638i
\(203\) −51.2871 + 201.940i −0.252646 + 0.994776i
\(204\) −49.4424 145.465i −0.242365 0.713064i
\(205\) −3.26952 14.6039i −0.0159489 0.0712386i
\(206\) −103.419 + 179.128i −0.502036 + 0.869552i
\(207\) −205.620 157.522i −0.993334 0.760975i
\(208\) −7.25676 + 27.0826i −0.0348883 + 0.130205i
\(209\) 102.883i 0.492263i
\(210\) 43.7655 + 141.896i 0.208407 + 0.675697i
\(211\) −145.662 −0.690341 −0.345170 0.938540i \(-0.612179\pi\)
−0.345170 + 0.938540i \(0.612179\pi\)
\(212\) 3.40601 + 0.912638i 0.0160661 + 0.00430490i
\(213\) −26.4523 + 17.6899i −0.124189 + 0.0830511i
\(214\) 100.399 + 57.9653i 0.469154 + 0.270866i
\(215\) 132.735 + 84.1736i 0.617372 + 0.391505i
\(216\) 63.5472 + 42.3528i 0.294200 + 0.196078i
\(217\) 206.297 211.768i 0.950679 0.975890i
\(218\) −16.3973 16.3973i −0.0752171 0.0752171i
\(219\) −220.860 193.536i −1.00849 0.883725i
\(220\) −44.6745 + 41.1080i −0.203066 + 0.186855i
\(221\) 155.441 + 89.7438i 0.703352 + 0.406080i
\(222\) 202.881 13.3774i 0.913876 0.0602586i
\(223\) −202.781 202.781i −0.909331 0.909331i 0.0868873 0.996218i \(-0.472308\pi\)
−0.996218 + 0.0868873i \(0.972308\pi\)
\(224\) −39.5946 + 0.518140i −0.176762 + 0.00231313i
\(225\) −10.9264 224.735i −0.0485619 0.998820i
\(226\) −115.892 200.731i −0.512798 0.888192i
\(227\) 55.3013 14.8179i 0.243618 0.0652773i −0.134944 0.990853i \(-0.543085\pi\)
0.378562 + 0.925576i \(0.376419\pi\)
\(228\) −84.5217 + 56.5236i −0.370709 + 0.247910i
\(229\) 33.1909 + 57.4883i 0.144938 + 0.251041i 0.929350 0.369200i \(-0.120368\pi\)
−0.784412 + 0.620241i \(0.787035\pi\)
\(230\) −194.216 60.7917i −0.844416 0.264312i
\(231\) 125.365 + 23.1847i 0.542704 + 0.100367i
\(232\) 59.5287 + 59.5287i 0.256589 + 0.256589i
\(233\) 92.6893 345.921i 0.397808 1.48464i −0.419135 0.907924i \(-0.637667\pi\)
0.816944 0.576717i \(-0.195667\pi\)
\(234\) −88.4439 + 11.7144i −0.377965 + 0.0500617i
\(235\) 316.349 + 13.1524i 1.34617 + 0.0559675i
\(236\) −83.8866 145.296i −0.355452 0.615660i
\(237\) −232.049 114.321i −0.979108 0.482365i
\(238\) −62.3985 + 245.690i −0.262178 + 1.03231i
\(239\) 97.3879 0.407481 0.203740 0.979025i \(-0.434690\pi\)
0.203740 + 0.979025i \(0.434690\pi\)
\(240\) 58.3156 + 14.1169i 0.242982 + 0.0588205i
\(241\) 44.6777 + 25.7947i 0.185385 + 0.107032i 0.589820 0.807535i \(-0.299199\pi\)
−0.404436 + 0.914567i \(0.632532\pi\)
\(242\) −30.7986 114.942i −0.127267 0.474966i
\(243\) −46.9395 + 238.423i −0.193167 + 0.981166i
\(244\) −41.6288 −0.170610
\(245\) 67.0429 235.649i 0.273644 0.961831i
\(246\) 4.08654 + 12.0231i 0.0166120 + 0.0488743i
\(247\) 30.7445 114.740i 0.124472 0.464535i
\(248\) −30.9179 115.387i −0.124669 0.465270i
\(249\) −195.997 38.9064i −0.787138 0.156251i
\(250\) −68.6681 162.895i −0.274673 0.651579i
\(251\) −328.831 −1.31009 −0.655043 0.755592i \(-0.727349\pi\)
−0.655043 + 0.755592i \(0.727349\pi\)
\(252\) −49.8280 115.729i −0.197730 0.459242i
\(253\) −123.549 + 123.549i −0.488336 + 0.488336i
\(254\) 30.6273 + 53.0481i 0.120580 + 0.208851i
\(255\) 183.912 337.202i 0.721223 1.32236i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 7.24061 27.0223i 0.0281736 0.105145i −0.950407 0.311008i \(-0.899333\pi\)
0.978581 + 0.205863i \(0.0660000\pi\)
\(258\) −119.636 58.9398i −0.463706 0.228449i
\(259\) −292.689 163.916i −1.13007 0.632879i
\(260\) −62.1075 + 32.4956i −0.238875 + 0.124983i
\(261\) −102.319 + 247.568i −0.392026 + 0.948538i
\(262\) −40.8533 152.467i −0.155929 0.581933i
\(263\) −58.4662 + 15.6660i −0.222305 + 0.0595664i −0.368252 0.929726i \(-0.620044\pi\)
0.145947 + 0.989292i \(0.453377\pi\)
\(264\) 33.9503 38.7436i 0.128600 0.146756i
\(265\) 4.08677 + 7.81087i 0.0154218 + 0.0294750i
\(266\) 167.749 2.19519i 0.630636 0.00825260i
\(267\) −430.879 212.276i −1.61378 0.795041i
\(268\) 64.3144 + 17.2330i 0.239979 + 0.0643022i
\(269\) −223.312 128.929i −0.830154 0.479290i 0.0237511 0.999718i \(-0.492439\pi\)
−0.853906 + 0.520428i \(0.825772\pi\)
\(270\) 29.6579 + 188.601i 0.109844 + 0.698523i
\(271\) 163.182 94.2131i 0.602147 0.347650i −0.167739 0.985831i \(-0.553647\pi\)
0.769886 + 0.638182i \(0.220313\pi\)
\(272\) 72.4257 + 72.4257i 0.266271 + 0.266271i
\(273\) 132.885 + 63.3195i 0.486757 + 0.231939i
\(274\) 190.841i 0.696499i
\(275\) −151.251 12.5984i −0.550003 0.0458124i
\(276\) 169.377 + 33.6221i 0.613685 + 0.121819i
\(277\) −262.100 + 70.2296i −0.946211 + 0.253536i −0.698754 0.715362i \(-0.746262\pi\)
−0.247457 + 0.968899i \(0.579595\pi\)
\(278\) 128.681 + 34.4799i 0.462881 + 0.124029i
\(279\) 301.381 231.634i 1.08022 0.830228i
\(280\) −67.9793 71.9640i −0.242783 0.257014i
\(281\) 265.329i 0.944230i 0.881537 + 0.472115i \(0.156509\pi\)
−0.881537 + 0.472115i \(0.843491\pi\)
\(282\) −268.081 + 17.6765i −0.950642 + 0.0626828i
\(283\) −401.740 + 107.646i −1.41958 + 0.380374i −0.885334 0.464956i \(-0.846070\pi\)
−0.534243 + 0.845331i \(0.679403\pi\)
\(284\) 10.6074 18.3726i 0.0373501 0.0646923i
\(285\) −247.064 59.8088i −0.866892 0.209855i
\(286\) 60.1812i 0.210424i
\(287\) 5.15740 20.3069i 0.0179700 0.0707558i
\(288\) −50.4813 6.60571i −0.175282 0.0229365i
\(289\) 317.558 183.342i 1.09882 0.634402i
\(290\) −8.74266 + 210.284i −0.0301471 + 0.725118i
\(291\) 340.320 + 67.5550i 1.16948 + 0.232148i
\(292\) 189.102 + 50.6696i 0.647608 + 0.173526i
\(293\) −15.6606 + 15.6606i −0.0534491 + 0.0534491i −0.733326 0.679877i \(-0.762033\pi\)
0.679877 + 0.733326i \(0.262033\pi\)
\(294\) −35.1275 + 204.900i −0.119481 + 0.696939i
\(295\) 125.293 400.282i 0.424722 1.35689i
\(296\) −117.387 + 67.7737i −0.396579 + 0.228965i
\(297\) 155.279 + 52.5066i 0.522826 + 0.176790i
\(298\) 73.4172 + 273.997i 0.246366 + 0.919452i
\(299\) −174.708 + 100.868i −0.584308 + 0.337350i
\(300\) 72.7467 + 131.179i 0.242489 + 0.437263i
\(301\) 112.506 + 189.108i 0.373775 + 0.628265i
\(302\) 265.869 265.869i 0.880361 0.880361i
\(303\) −75.3669 + 4.96949i −0.248736 + 0.0164010i
\(304\) 33.8934 58.7050i 0.111491 0.193109i
\(305\) −70.4696 76.5834i −0.231048 0.251093i
\(306\) −124.486 + 301.204i −0.406818 + 0.984328i
\(307\) −222.516 + 222.516i −0.724809 + 0.724809i −0.969581 0.244772i \(-0.921287\pi\)
0.244772 + 0.969581i \(0.421287\pi\)
\(308\) −81.8027 + 23.0704i −0.265593 + 0.0749038i
\(309\) 415.431 141.201i 1.34444 0.456962i
\(310\) 159.936 252.207i 0.515924 0.813571i
\(311\) −92.6420 + 160.461i −0.297884 + 0.515951i −0.975652 0.219326i \(-0.929614\pi\)
0.677767 + 0.735276i \(0.262948\pi\)
\(312\) 49.4408 33.0633i 0.158464 0.105972i
\(313\) 23.4325 87.4513i 0.0748642 0.279397i −0.918338 0.395796i \(-0.870469\pi\)
0.993202 + 0.116399i \(0.0371352\pi\)
\(314\) 26.2263i 0.0835234i
\(315\) 128.554 287.574i 0.408108 0.912934i
\(316\) 172.454 0.545740
\(317\) 450.963 + 120.835i 1.42260 + 0.381183i 0.886404 0.462913i \(-0.153196\pi\)
0.536192 + 0.844096i \(0.319862\pi\)
\(318\) −4.15817 6.21787i −0.0130760 0.0195530i
\(319\) 156.490 + 90.3494i 0.490564 + 0.283227i
\(320\) −39.0337 + 8.73886i −0.121980 + 0.0273089i
\(321\) −79.1417 232.844i −0.246547 0.725370i
\(322\) −204.081 198.809i −0.633792 0.617419i
\(323\) −306.844 306.844i −0.949980 0.949980i
\(324\) −42.1741 156.414i −0.130167 0.482759i
\(325\) −164.917 59.2486i −0.507438 0.182303i
\(326\) −102.552 59.2083i −0.314576 0.181620i
\(327\) 3.23656 + 49.0854i 0.00989774 + 0.150108i
\(328\) −5.98617 5.98617i −0.0182505 0.0182505i
\(329\) 386.752 + 216.594i 1.17554 + 0.658339i
\(330\) 128.747 3.12794i 0.390142 0.00947862i
\(331\) 184.281 + 319.184i 0.556740 + 0.964302i 0.997766 + 0.0668078i \(0.0212814\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(332\) 128.675 34.4784i 0.387576 0.103851i
\(333\) −342.386 262.296i −1.02819 0.787675i
\(334\) 146.343 + 253.473i 0.438152 + 0.758902i
\(335\) 77.1689 + 147.490i 0.230355 + 0.440268i
\(336\) 63.8952 + 54.5289i 0.190164 + 0.162288i
\(337\) 424.870 + 424.870i 1.26074 + 1.26074i 0.950734 + 0.310009i \(0.100332\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(338\) 43.8744 163.741i 0.129806 0.484442i
\(339\) −95.7348 + 482.280i −0.282403 + 1.42265i
\(340\) −10.6368 + 255.842i −0.0312846 + 0.752477i
\(341\) −128.203 222.054i −0.375961 0.651183i
\(342\) 213.873 + 27.9862i 0.625359 + 0.0818311i
\(343\) 232.832 251.869i 0.678811 0.734313i
\(344\) 88.9113 0.258463
\(345\) 224.869 + 368.514i 0.651795 + 1.06816i
\(346\) 303.413 + 175.176i 0.876918 + 0.506289i
\(347\) −15.5792 58.1423i −0.0448968 0.167557i 0.939837 0.341622i \(-0.110976\pi\)
−0.984734 + 0.174065i \(0.944310\pi\)
\(348\) −11.7500 178.199i −0.0337643 0.512067i
\(349\) −544.766 −1.56093 −0.780467 0.625197i \(-0.785019\pi\)
−0.780467 + 0.625197i \(0.785019\pi\)
\(350\) 17.3143 246.881i 0.0494695 0.705374i
\(351\) 157.485 + 104.960i 0.448674 + 0.299031i
\(352\) −8.88853 + 33.1724i −0.0252515 + 0.0942399i
\(353\) −80.4748 300.336i −0.227974 0.850811i −0.981191 0.193039i \(-0.938166\pi\)
0.753217 0.657772i \(-0.228501\pi\)
\(354\) −69.2958 + 349.089i −0.195751 + 0.986128i
\(355\) 51.7560 11.5871i 0.145791 0.0326397i
\(356\) 320.221 0.899496
\(357\) 443.042 304.747i 1.24101 0.853633i
\(358\) 40.0014 40.0014i 0.111736 0.111736i
\(359\) −184.699 319.907i −0.514481 0.891106i −0.999859 0.0168022i \(-0.994651\pi\)
0.485378 0.874304i \(-0.338682\pi\)
\(360\) −73.3029 104.051i −0.203619 0.289032i
\(361\) 36.9050 63.9213i 0.102230 0.177067i
\(362\) −76.9183 + 287.063i −0.212482 + 0.792992i
\(363\) −111.558 + 226.441i −0.307322 + 0.623804i
\(364\) −98.1245 + 1.28407i −0.269573 + 0.00352767i
\(365\) 226.897 + 433.659i 0.621636 + 1.18811i
\(366\) 66.4163 + 58.1995i 0.181465 + 0.159015i
\(367\) −160.700 599.740i −0.437874 1.63417i −0.734093 0.679049i \(-0.762392\pi\)
0.296218 0.955120i \(-0.404274\pi\)
\(368\) −111.199 + 29.7956i −0.302170 + 0.0809662i
\(369\) 10.2891 24.8953i 0.0278838 0.0674671i
\(370\) −323.396 101.227i −0.874043 0.273586i
\(371\) 0.161490 + 12.3405i 0.000435282 + 0.0332629i
\(372\) −111.990 + 227.318i −0.301049 + 0.611071i
\(373\) −138.928 37.2257i −0.372462 0.0998008i 0.0677323 0.997704i \(-0.478424\pi\)
−0.440194 + 0.897903i \(0.645090\pi\)
\(374\) 190.393 + 109.924i 0.509073 + 0.293914i
\(375\) −118.180 + 355.891i −0.315147 + 0.949043i
\(376\) 155.113 89.5544i 0.412534 0.238177i
\(377\) 147.526 + 147.526i 0.391315 + 0.391315i
\(378\) −82.2980 + 254.301i −0.217720 + 0.672754i
\(379\) 743.787i 1.96250i 0.192741 + 0.981250i \(0.438262\pi\)
−0.192741 + 0.981250i \(0.561738\pi\)
\(380\) 165.373 37.0237i 0.435192 0.0974307i
\(381\) 25.3002 127.454i 0.0664047 0.334525i
\(382\) −255.092 + 68.3517i −0.667781 + 0.178931i
\(383\) −177.428 47.5416i −0.463258 0.124130i 0.0196383 0.999807i \(-0.493749\pi\)
−0.482896 + 0.875678i \(0.660415\pi\)
\(384\) 32.1356 10.9226i 0.0836864 0.0284443i
\(385\) −180.918 111.437i −0.469918 0.289446i
\(386\) 247.576i 0.641390i
\(387\) 108.471 + 261.293i 0.280288 + 0.675177i
\(388\) −223.425 + 59.8665i −0.575838 + 0.154295i
\(389\) −216.669 + 375.281i −0.556989 + 0.964734i 0.440757 + 0.897627i \(0.354710\pi\)
−0.997746 + 0.0671069i \(0.978623\pi\)
\(390\) 144.520 + 34.9850i 0.370563 + 0.0897052i
\(391\) 736.958i 1.88480i
\(392\) −39.3613 132.886i −0.100411 0.338995i
\(393\) −147.978 + 300.367i −0.376534 + 0.764292i
\(394\) −56.5953 + 32.6753i −0.143643 + 0.0829323i
\(395\) 291.931 + 317.259i 0.739067 + 0.803186i
\(396\) −108.332 + 14.3486i −0.273564 + 0.0362338i
\(397\) −365.291 97.8793i −0.920128 0.246547i −0.232488 0.972599i \(-0.574687\pi\)
−0.687640 + 0.726052i \(0.741353\pi\)
\(398\) 39.5481 39.5481i 0.0993670 0.0993670i
\(399\) −270.703 231.021i −0.678454 0.579000i
\(400\) −82.1533 57.0161i −0.205383 0.142540i
\(401\) 144.925 83.6723i 0.361408 0.208659i −0.308290 0.951292i \(-0.599757\pi\)
0.669698 + 0.742633i \(0.266423\pi\)
\(402\) −78.5171 117.410i −0.195316 0.292063i
\(403\) −76.6216 285.956i −0.190128 0.709568i
\(404\) 43.6076 25.1768i 0.107940 0.0623189i
\(405\) 216.358 342.366i 0.534217 0.845347i
\(406\) −143.974 + 257.082i −0.354617 + 0.633207i
\(407\) −205.726 + 205.726i −0.505470 + 0.505470i
\(408\) −14.2956 216.806i −0.0350383 0.531388i
\(409\) −282.764 + 489.761i −0.691353 + 1.19746i 0.280041 + 0.959988i \(0.409652\pi\)
−0.971395 + 0.237471i \(0.923681\pi\)
\(410\) 0.879157 21.1461i 0.00214428 0.0515757i
\(411\) 266.806 304.475i 0.649164 0.740816i
\(412\) −206.839 + 206.839i −0.502036 + 0.502036i
\(413\) 409.749 420.615i 0.992127 1.01844i
\(414\) −223.225 290.441i −0.539192 0.701549i
\(415\) 281.252 + 178.355i 0.677715 + 0.429771i
\(416\) −19.8258 + 34.3394i −0.0476583 + 0.0825466i
\(417\) −157.098 234.914i −0.376733 0.563343i
\(418\) 37.6578 140.541i 0.0900904 0.336222i
\(419\) 431.753i 1.03044i 0.857059 + 0.515218i \(0.172289\pi\)
−0.857059 + 0.515218i \(0.827711\pi\)
\(420\) 7.84711 + 209.853i 0.0186836 + 0.499651i
\(421\) −408.628 −0.970613 −0.485307 0.874344i \(-0.661292\pi\)
−0.485307 + 0.874344i \(0.661292\pi\)
\(422\) −198.978 53.3160i −0.471512 0.126341i
\(423\) 452.420 + 346.591i 1.06955 + 0.819364i
\(424\) 4.31865 + 2.49337i 0.0101855 + 0.00588060i
\(425\) −488.672 + 413.524i −1.14982 + 0.972998i
\(426\) −42.6095 + 14.4826i −0.100022 + 0.0339968i
\(427\) −39.5484 140.231i −0.0926193 0.328409i
\(428\) 115.931 + 115.931i 0.270866 + 0.270866i
\(429\) 84.1368 96.0155i 0.196123 0.223812i
\(430\) 150.510 + 163.568i 0.350023 + 0.380390i
\(431\) 282.743 + 163.241i 0.656015 + 0.378751i 0.790757 0.612130i \(-0.209687\pi\)
−0.134742 + 0.990881i \(0.543020\pi\)
\(432\) 71.3048 + 81.1149i 0.165057 + 0.187766i
\(433\) 135.145 + 135.145i 0.312114 + 0.312114i 0.845728 0.533614i \(-0.179167\pi\)
−0.533614 + 0.845728i \(0.679167\pi\)
\(434\) 359.320 213.771i 0.827926 0.492559i
\(435\) 307.938 323.273i 0.707903 0.743157i
\(436\) −16.3973 28.4010i −0.0376085 0.0651399i
\(437\) 471.112 126.234i 1.07806 0.288865i
\(438\) −230.861 345.215i −0.527081 0.788163i
\(439\) −308.876 534.989i −0.703590 1.21865i −0.967198 0.254023i \(-0.918246\pi\)
0.263608 0.964630i \(-0.415087\pi\)
\(440\) −76.0731 + 39.8026i −0.172893 + 0.0904605i
\(441\) 342.506 277.796i 0.776658 0.629923i
\(442\) 179.488 + 179.488i 0.406080 + 0.406080i
\(443\) 99.2276 370.322i 0.223990 0.835942i −0.758817 0.651304i \(-0.774222\pi\)
0.982807 0.184638i \(-0.0591112\pi\)
\(444\) 282.036 + 55.9856i 0.635217 + 0.126094i
\(445\) 542.072 + 589.101i 1.21814 + 1.32382i
\(446\) −202.781 351.227i −0.454665 0.787504i
\(447\) 265.930 539.787i 0.594922 1.20758i
\(448\) −54.2769 13.7848i −0.121154 0.0307697i
\(449\) 38.5058 0.0857590 0.0428795 0.999080i \(-0.486347\pi\)
0.0428795 + 0.999080i \(0.486347\pi\)
\(450\) 67.3328 310.992i 0.149628 0.691094i
\(451\) −15.7365 9.08548i −0.0348925 0.0201452i
\(452\) −84.8391 316.624i −0.187697 0.700495i
\(453\) −795.879 + 52.4781i −1.75691 + 0.115846i
\(454\) 80.9667 0.178341
\(455\) −168.468 178.343i −0.370260 0.391964i
\(456\) −136.148 + 46.2755i −0.298570 + 0.101481i
\(457\) 165.470 617.544i 0.362080 1.35130i −0.509257 0.860615i \(-0.670080\pi\)
0.871337 0.490686i \(-0.163254\pi\)
\(458\) 24.2974 + 90.6793i 0.0530512 + 0.197990i
\(459\) 619.712 306.515i 1.35013 0.667789i
\(460\) −243.052 154.131i −0.528374 0.335067i
\(461\) 142.328 0.308737 0.154369 0.988013i \(-0.450666\pi\)
0.154369 + 0.988013i \(0.450666\pi\)
\(462\) 162.765 + 77.5576i 0.352306 + 0.167874i
\(463\) 62.1843 62.1843i 0.134307 0.134307i −0.636757 0.771064i \(-0.719725\pi\)
0.771064 + 0.636757i \(0.219725\pi\)
\(464\) 59.5287 + 103.107i 0.128295 + 0.222213i
\(465\) −607.769 + 178.781i −1.30703 + 0.384475i
\(466\) 253.232 438.611i 0.543416 0.941225i
\(467\) −144.105 + 537.808i −0.308577 + 1.15162i 0.621246 + 0.783616i \(0.286627\pi\)
−0.929823 + 0.368008i \(0.880040\pi\)
\(468\) −125.104 16.3705i −0.267317 0.0349797i
\(469\) 3.04935 + 233.021i 0.00650181 + 0.496847i
\(470\) 427.327 + 133.758i 0.909206 + 0.284592i
\(471\) 36.6659 41.8426i 0.0778470 0.0888378i
\(472\) −61.4092 229.182i −0.130104 0.485556i
\(473\) 184.338 49.3932i 0.389720 0.104425i
\(474\) −275.140 241.100i −0.580464 0.508651i
\(475\) 348.056 + 241.558i 0.732750 + 0.508544i
\(476\) −175.167 + 312.779i −0.367997 + 0.657099i
\(477\) −2.05881 + 15.7336i −0.00431617 + 0.0329845i
\(478\) 133.034 + 35.6464i 0.278314 + 0.0745741i
\(479\) −32.8860 18.9867i −0.0686554 0.0396382i 0.465279 0.885164i \(-0.345954\pi\)
−0.533935 + 0.845526i \(0.679287\pi\)
\(480\) 74.4935 + 40.6291i 0.155195 + 0.0846439i
\(481\) −290.913 + 167.959i −0.604809 + 0.349187i
\(482\) 51.5893 + 51.5893i 0.107032 + 0.107032i
\(483\) 47.6532 + 602.505i 0.0986608 + 1.24742i
\(484\) 168.286i 0.347699i
\(485\) −488.351 309.686i −1.00691 0.638529i
\(486\) −151.390 + 308.511i −0.311501 + 0.634797i
\(487\) −469.334 + 125.758i −0.963726 + 0.258230i −0.706177 0.708036i \(-0.749582\pi\)
−0.257549 + 0.966265i \(0.582915\pi\)
\(488\) −56.8660 15.2372i −0.116529 0.0312238i
\(489\) 80.8387 + 237.837i 0.165314 + 0.486373i
\(490\) 177.836 297.363i 0.362930 0.606862i
\(491\) 170.670i 0.347596i 0.984781 + 0.173798i \(0.0556040\pi\)
−0.984781 + 0.173798i \(0.944396\pi\)
\(492\) 1.18157 + 17.9196i 0.00240157 + 0.0364220i
\(493\) 736.186 197.261i 1.49328 0.400123i
\(494\) 83.9956 145.485i 0.170032 0.294503i
\(495\) −209.781 175.005i −0.423800 0.353546i
\(496\) 168.938i 0.340602i
\(497\) 71.9673 + 18.2777i 0.144803 + 0.0367761i
\(498\) −253.497 124.887i −0.509029 0.250777i
\(499\) 7.72541 4.46027i 0.0154818 0.00893841i −0.492239 0.870460i \(-0.663821\pi\)
0.507721 + 0.861522i \(0.330488\pi\)
\(500\) −34.1788 247.653i −0.0683576 0.495305i
\(501\) 120.889 608.997i 0.241295 1.21556i
\(502\) −449.192 120.361i −0.894805 0.239762i
\(503\) −256.753 + 256.753i −0.510443 + 0.510443i −0.914662 0.404219i \(-0.867543\pi\)
0.404219 + 0.914662i \(0.367543\pi\)
\(504\) −25.7066 176.327i −0.0510051 0.349855i
\(505\) 120.136 + 37.6041i 0.237894 + 0.0744636i
\(506\) −213.993 + 123.549i −0.422911 + 0.244168i
\(507\) −298.919 + 199.901i −0.589583 + 0.394282i
\(508\) 22.4208 + 83.6754i 0.0441353 + 0.164715i
\(509\) 460.998 266.157i 0.905693 0.522902i 0.0266499 0.999645i \(-0.491516\pi\)
0.879043 + 0.476743i \(0.158183\pi\)
\(510\) 374.653 393.311i 0.734613 0.771197i
\(511\) 8.96590 + 685.144i 0.0175458 + 1.34079i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −302.095 343.657i −0.588879 0.669897i
\(514\) 19.7817 34.2630i 0.0384859 0.0666594i
\(515\) −730.654 30.3773i −1.41875 0.0589850i
\(516\) −141.853 124.303i −0.274908 0.240898i
\(517\) 271.841 271.841i 0.525805 0.525805i
\(518\) −339.824 331.044i −0.656030 0.639082i
\(519\) −239.172 703.673i −0.460833 1.35582i
\(520\) −96.7346 + 21.6569i −0.186028 + 0.0416479i
\(521\) −241.082 + 417.566i −0.462730 + 0.801471i −0.999096 0.0425142i \(-0.986463\pi\)
0.536366 + 0.843985i \(0.319797\pi\)
\(522\) −230.386 + 300.734i −0.441353 + 0.576118i
\(523\) −238.196 + 888.960i −0.455442 + 1.69973i 0.231344 + 0.972872i \(0.425688\pi\)
−0.686786 + 0.726860i \(0.740979\pi\)
\(524\) 223.227i 0.426005i
\(525\) −372.778 + 369.678i −0.710053 + 0.704148i
\(526\) −85.6004 −0.162738
\(527\) −1044.62 279.906i −1.98221 0.531131i
\(528\) 60.5581 40.4980i 0.114693 0.0767008i
\(529\) −259.207 149.653i −0.489994 0.282898i
\(530\) 2.72366 + 12.1657i 0.00513897 + 0.0229542i
\(531\) 598.604 460.072i 1.12732 0.866425i
\(532\) 229.953 + 58.4018i 0.432243 + 0.109778i
\(533\) −14.8351 14.8351i −0.0278333 0.0278333i
\(534\) −510.893 447.687i −0.956729 0.838365i
\(535\) −17.0261 + 409.523i −0.0318245 + 0.765463i
\(536\) 81.5474 + 47.0814i 0.152141 + 0.0878385i
\(537\) −119.744 + 7.89562i −0.222987 + 0.0147032i
\(538\) −257.858 257.858i −0.479290 0.479290i
\(539\) −155.429 253.643i −0.288366 0.470581i
\(540\) −28.5194 + 268.490i −0.0528137 + 0.497203i
\(541\) −322.337 558.305i −0.595818 1.03199i −0.993431 0.114433i \(-0.963495\pi\)
0.397613 0.917553i \(-0.369839\pi\)
\(542\) 257.395 68.9688i 0.474898 0.127249i
\(543\) 524.049 350.456i 0.965100 0.645407i
\(544\) 72.4257 + 125.445i 0.133135 + 0.230597i
\(545\) 24.4910 78.2432i 0.0449377 0.143565i
\(546\) 158.347 + 135.135i 0.290013 + 0.247500i
\(547\) 753.854 + 753.854i 1.37816 + 1.37816i 0.847725 + 0.530436i \(0.177972\pi\)
0.530436 + 0.847725i \(0.322028\pi\)
\(548\) −69.8525 + 260.693i −0.127468 + 0.475718i
\(549\) −24.5971 185.708i −0.0448034 0.338265i
\(550\) −202.001 72.5713i −0.367274 0.131948i
\(551\) −252.204 436.829i −0.457720 0.792794i
\(552\) 219.067 + 107.925i 0.396860 + 0.195516i
\(553\) 163.836 + 580.927i 0.296267 + 1.05050i
\(554\) −383.742 −0.692674
\(555\) 374.439 + 613.628i 0.674664 + 1.10564i
\(556\) 163.161 + 94.2009i 0.293455 + 0.169426i
\(557\) 4.65931 + 17.3888i 0.00836501 + 0.0312187i 0.969982 0.243176i \(-0.0781892\pi\)
−0.961617 + 0.274395i \(0.911523\pi\)
\(558\) 496.478 206.104i 0.889745 0.369362i
\(559\) 220.343 0.394173
\(560\) −66.5208 123.187i −0.118787 0.219976i
\(561\) −150.082 441.558i −0.267526 0.787090i
\(562\) −97.1170 + 362.445i −0.172806 + 0.644921i
\(563\) 212.599 + 793.429i 0.377617 + 1.40929i 0.849483 + 0.527617i \(0.176914\pi\)
−0.471865 + 0.881671i \(0.656419\pi\)
\(564\) −372.675 73.9778i −0.660772 0.131166i
\(565\) 438.868 692.060i 0.776758 1.22488i
\(566\) −588.188 −1.03920
\(567\) 486.829 290.665i 0.858606 0.512637i
\(568\) 21.2149 21.2149i 0.0373501 0.0373501i
\(569\) −306.103 530.186i −0.537967 0.931786i −0.999013 0.0444103i \(-0.985859\pi\)
0.461046 0.887376i \(-0.347474\pi\)
\(570\) −315.604 172.132i −0.553692 0.301986i
\(571\) −39.0173 + 67.5799i −0.0683315 + 0.118354i −0.898167 0.439655i \(-0.855101\pi\)
0.829835 + 0.558008i \(0.188434\pi\)
\(572\) −22.0278 + 82.2090i −0.0385102 + 0.143722i
\(573\) 502.544 + 247.582i 0.877041 + 0.432081i
\(574\) 14.4780 25.8520i 0.0252230 0.0450384i
\(575\) −127.890 708.051i −0.222418 1.23139i
\(576\) −66.5409 27.5010i −0.115522 0.0477448i
\(577\) −115.407 430.705i −0.200012 0.746456i −0.990912 0.134510i \(-0.957054\pi\)
0.790900 0.611946i \(-0.209613\pi\)
\(578\) 500.900 134.216i 0.866609 0.232207i
\(579\) −346.126 + 394.994i −0.597800 + 0.682200i
\(580\) −88.9120 + 284.053i −0.153297 + 0.489747i
\(581\) 238.389 + 400.700i 0.410308 + 0.689672i
\(582\) 440.158 + 216.848i 0.756286 + 0.372590i
\(583\) 10.3389 + 2.77030i 0.0177340 + 0.00475181i
\(584\) 239.771 + 138.432i 0.410567 + 0.237041i
\(585\) −181.661 257.863i −0.310532 0.440792i
\(586\) −27.1249 + 15.6606i −0.0462883 + 0.0267246i
\(587\) −774.944 774.944i −1.32018 1.32018i −0.913629 0.406549i \(-0.866732\pi\)
−0.406549 0.913629i \(-0.633268\pi\)
\(588\) −122.984 + 267.041i −0.209156 + 0.454152i
\(589\) 715.736i 1.21517i
\(590\) 317.667 500.935i 0.538418 0.849042i
\(591\) 135.977 + 26.9920i 0.230079 + 0.0456717i
\(592\) −185.161 + 49.6138i −0.312772 + 0.0838071i
\(593\) 165.220 + 44.2706i 0.278618 + 0.0746554i 0.395422 0.918500i \(-0.370598\pi\)
−0.116804 + 0.993155i \(0.537265\pi\)
\(594\) 192.897 + 128.561i 0.324742 + 0.216433i
\(595\) −871.935 + 207.226i −1.46544 + 0.348279i
\(596\) 401.159i 0.673085i
\(597\) −118.387 + 7.80613i −0.198303 + 0.0130756i
\(598\) −275.576 + 73.8403i −0.460829 + 0.123479i
\(599\) −291.458 + 504.819i −0.486574 + 0.842770i −0.999881 0.0154348i \(-0.995087\pi\)
0.513307 + 0.858205i \(0.328420\pi\)
\(600\) 51.3590 + 205.821i 0.0855983 + 0.343035i
\(601\) 831.971i 1.38431i −0.721749 0.692155i \(-0.756661\pi\)
0.721749 0.692155i \(-0.243339\pi\)
\(602\) 84.4680 + 299.506i 0.140312 + 0.497519i
\(603\) −38.8758 + 297.092i −0.0644706 + 0.492689i
\(604\) 460.499 265.869i 0.762415 0.440180i
\(605\) 309.592 284.877i 0.511722 0.470871i
\(606\) −104.772 20.7977i −0.172891 0.0343197i
\(607\) 676.244 + 181.199i 1.11408 + 0.298516i 0.768484 0.639869i \(-0.221012\pi\)
0.345592 + 0.938385i \(0.387678\pi\)
\(608\) 67.7867 67.7867i 0.111491 0.111491i
\(609\) 589.119 208.875i 0.967354 0.342980i
\(610\) −68.2318 130.408i −0.111855 0.213784i
\(611\) 384.405 221.936i 0.629141 0.363235i
\(612\) −280.300 + 365.888i −0.458006 + 0.597856i
\(613\) −257.420 960.706i −0.419935 1.56722i −0.774741 0.632279i \(-0.782120\pi\)
0.354805 0.934940i \(-0.384547\pi\)
\(614\) −385.410 + 222.516i −0.627703 + 0.362405i
\(615\) −30.9661 + 32.5082i −0.0503513 + 0.0528588i
\(616\) −120.189 + 1.57281i −0.195112 + 0.00255326i
\(617\) −78.0872 + 78.0872i −0.126559 + 0.126559i −0.767549 0.640990i \(-0.778524\pi\)
0.640990 + 0.767549i \(0.278524\pi\)
\(618\) 619.172 40.8266i 1.00190 0.0660624i
\(619\) 232.594 402.865i 0.375758 0.650832i −0.614682 0.788775i \(-0.710716\pi\)
0.990440 + 0.137943i \(0.0440491\pi\)
\(620\) 310.791 285.980i 0.501276 0.461259i
\(621\) −49.9104 + 775.464i −0.0803709 + 1.24873i
\(622\) −185.284 + 185.284i −0.297884 + 0.297884i
\(623\) 304.218 + 1078.69i 0.488311 + 1.73145i
\(624\) 79.6394 27.0688i 0.127627 0.0433795i
\(625\) 397.742 482.106i 0.636387 0.771370i
\(626\) 64.0188 110.884i 0.102266 0.177131i
\(627\) −256.565 + 171.577i −0.409194 + 0.273647i
\(628\) −9.59950 + 35.8258i −0.0152858 + 0.0570475i
\(629\) 1227.14i 1.95094i
\(630\) 280.868 345.779i 0.445821 0.548856i
\(631\) −547.403 −0.867516 −0.433758 0.901029i \(-0.642813\pi\)
−0.433758 + 0.901029i \(0.642813\pi\)
\(632\) 235.576 + 63.1225i 0.372747 + 0.0998773i
\(633\) 242.919 + 363.245i 0.383758 + 0.573847i
\(634\) 571.798 + 330.128i 0.901890 + 0.520706i
\(635\) −115.981 + 182.893i −0.182648 + 0.288021i
\(636\) −3.40427 10.0158i −0.00535263 0.0157480i
\(637\) −97.5464 329.322i −0.153134 0.516989i
\(638\) 180.699 + 180.699i 0.283227 + 0.283227i
\(639\) 88.2285 + 36.4644i 0.138073 + 0.0570648i
\(640\) −56.5197 2.34983i −0.0883121 0.00367161i
\(641\) 504.465 + 291.253i 0.786996 + 0.454372i 0.838904 0.544279i \(-0.183197\pi\)
−0.0519078 + 0.998652i \(0.516530\pi\)
\(642\) −22.8828 347.038i −0.0356430 0.540558i
\(643\) −111.140 111.140i −0.172847 0.172847i 0.615382 0.788229i \(-0.289002\pi\)
−0.788229 + 0.615382i \(0.789002\pi\)
\(644\) −206.011 346.277i −0.319893 0.537697i
\(645\) −11.4524 471.384i −0.0177557 0.730828i
\(646\) −306.844 531.469i −0.474990 0.822707i
\(647\) 692.021 185.427i 1.06958 0.286594i 0.319262 0.947666i \(-0.396565\pi\)
0.750322 + 0.661072i \(0.229898\pi\)
\(648\) −0.359407 229.102i −0.000554640 0.353553i
\(649\) −254.637 441.044i −0.392353 0.679575i
\(650\) −203.595 141.299i −0.313223 0.217383i
\(651\) −872.137 161.291i −1.33969 0.247760i
\(652\) −118.417 118.417i −0.181620 0.181620i
\(653\) 96.2164 359.084i 0.147345 0.549900i −0.852295 0.523062i \(-0.824790\pi\)
0.999640 0.0268376i \(-0.00854371\pi\)
\(654\) −13.5453 + 68.2365i −0.0207114 + 0.104337i
\(655\) 410.664 377.880i 0.626968 0.576916i
\(656\) −5.98617 10.3684i −0.00912526 0.0158054i
\(657\) −114.305 + 873.528i −0.173981 + 1.32957i
\(658\) 449.034 + 437.433i 0.682422 + 0.664792i
\(659\) −287.718 −0.436598 −0.218299 0.975882i \(-0.570051\pi\)
−0.218299 + 0.975882i \(0.570051\pi\)
\(660\) 177.016 + 42.8518i 0.268207 + 0.0649270i
\(661\) 358.917 + 207.221i 0.542991 + 0.313496i 0.746290 0.665621i \(-0.231833\pi\)
−0.203299 + 0.979117i \(0.565166\pi\)
\(662\) 134.903 + 503.465i 0.203781 + 0.760521i
\(663\) −35.4279 537.296i −0.0534357 0.810401i
\(664\) 188.394 0.283725
\(665\) 281.827 + 521.902i 0.423799 + 0.784815i
\(666\) −371.702 483.625i −0.558111 0.726164i
\(667\) −221.712 + 827.439i −0.332401 + 1.24054i
\(668\) 107.130 + 399.816i 0.160375 + 0.598527i
\(669\) −167.510 + 843.861i −0.250389 + 1.26138i
\(670\) 51.4297 + 229.720i 0.0767608 + 0.342866i
\(671\) −126.364 −0.188322
\(672\) 67.3236 + 97.8751i 0.100184 + 0.145647i
\(673\) 257.918 257.918i 0.383237 0.383237i −0.489030 0.872267i \(-0.662649\pi\)
0.872267 + 0.489030i \(0.162649\pi\)
\(674\) 424.870 + 735.897i 0.630371 + 1.09184i
\(675\) −542.211 + 402.035i −0.803276 + 0.595608i
\(676\) 119.867 207.616i 0.177318 0.307124i
\(677\) 151.079 563.836i 0.223160 0.832845i −0.759973 0.649955i \(-0.774788\pi\)
0.983133 0.182891i \(-0.0585454\pi\)
\(678\) −307.303 + 623.765i −0.453249 + 0.920007i
\(679\) −413.926 695.754i −0.609611 1.02467i
\(680\) −108.175 + 345.594i −0.159081 + 0.508226i
\(681\) −129.178 113.196i −0.189688 0.166221i
\(682\) −93.8509 350.256i −0.137611 0.513572i
\(683\) −399.678 + 107.093i −0.585180 + 0.156799i −0.539249 0.842146i \(-0.681292\pi\)
−0.0459306 + 0.998945i \(0.514625\pi\)
\(684\) 281.912 + 116.513i 0.412152 + 0.170340i
\(685\) −597.837 + 312.798i −0.872755 + 0.456639i
\(686\) 410.245 258.838i 0.598025 0.377314i
\(687\) 88.0097 178.643i 0.128107 0.260033i
\(688\) 121.455 + 32.5438i 0.176534 + 0.0473020i
\(689\) 10.7026 + 6.17916i 0.0155336 + 0.00896830i
\(690\) 172.291 + 585.708i 0.249698 + 0.848852i
\(691\) −446.192 + 257.609i −0.645720 + 0.372806i −0.786814 0.617190i \(-0.788271\pi\)
0.141095 + 0.989996i \(0.454938\pi\)
\(692\) 350.352 + 350.352i 0.506289 + 0.506289i
\(693\) −151.252 351.294i −0.218257 0.506917i
\(694\) 85.1262i 0.122660i
\(695\) 102.901 + 459.627i 0.148059 + 0.661333i
\(696\) 49.1747 247.725i 0.0706533 0.355927i
\(697\) −74.0305 + 19.8364i −0.106213 + 0.0284597i
\(698\) −744.164 199.398i −1.06614 0.285671i
\(699\) −1017.22 + 345.745i −1.45525 + 0.494628i
\(700\) 114.017 330.908i 0.162881 0.472726i
\(701\) 733.940i 1.04699i −0.852029 0.523495i \(-0.824628\pi\)
0.852029 0.523495i \(-0.175372\pi\)
\(702\) 176.710 + 201.021i 0.251723 + 0.286355i
\(703\) 784.467 210.197i 1.11588 0.299000i
\(704\) −24.2839 + 42.0610i −0.0344942 + 0.0597457i
\(705\) −494.773 810.832i −0.701806 1.15012i
\(706\) 439.723i 0.622837i
\(707\) 126.239 + 122.978i 0.178556 + 0.173943i
\(708\) −222.435 + 451.501i −0.314174 + 0.637713i
\(709\) 897.760 518.322i 1.26623 0.731061i 0.291961 0.956430i \(-0.405692\pi\)
0.974273 + 0.225369i \(0.0723588\pi\)
\(710\) 74.9411 + 3.11571i 0.105551 + 0.00438833i
\(711\) 101.897 + 769.323i 0.143315 + 1.08203i
\(712\) 437.430 + 117.209i 0.614367 + 0.164619i
\(713\) 859.506 859.506i 1.20548 1.20548i
\(714\) 716.752 254.128i 1.00385 0.355921i
\(715\) −188.527 + 98.6401i −0.263674 + 0.137958i
\(716\) 69.2845 40.0014i 0.0967661 0.0558679i
\(717\) −162.413 242.861i −0.226517 0.338719i
\(718\) −135.209 504.606i −0.188313 0.702793i
\(719\) 746.305 430.879i 1.03798 0.599276i 0.118716 0.992928i \(-0.462122\pi\)
0.919259 + 0.393653i \(0.128789\pi\)
\(720\) −62.0482 168.968i −0.0861780 0.234677i
\(721\) −893.259 500.254i −1.23892 0.693834i
\(722\) 73.8100 73.8100i 0.102230 0.102230i
\(723\) −10.1829 154.433i −0.0140842 0.213600i
\(724\) −210.145 + 363.981i −0.290255 + 0.502737i
\(725\) −673.077 + 317.279i −0.928382 + 0.437626i
\(726\) −235.274 + 268.491i −0.324069 + 0.369823i
\(727\) −381.491 + 381.491i −0.524747 + 0.524747i −0.919001 0.394255i \(-0.871003\pi\)
0.394255 + 0.919001i \(0.371003\pi\)
\(728\) −134.511 34.1620i −0.184767 0.0469258i
\(729\) 672.850 280.560i 0.922976 0.384856i
\(730\) 151.217 + 675.439i 0.207147 + 0.925259i
\(731\) 402.466 697.092i 0.550569 0.953614i
\(732\) 69.4239 + 103.812i 0.0948413 + 0.141820i
\(733\) 137.212 512.084i 0.187193 0.698614i −0.806957 0.590610i \(-0.798887\pi\)
0.994150 0.108004i \(-0.0344460\pi\)
\(734\) 878.081i 1.19629i
\(735\) −699.456 + 225.800i −0.951641 + 0.307211i
\(736\) −162.806 −0.221204
\(737\) 195.226 + 52.3106i 0.264892 + 0.0709777i
\(738\) 23.1675 30.2416i 0.0313923 0.0409778i
\(739\) 607.558 + 350.774i 0.822135 + 0.474660i 0.851152 0.524919i \(-0.175904\pi\)
−0.0290169 + 0.999579i \(0.509238\pi\)
\(740\) −404.716 256.649i −0.546913 0.346824i
\(741\) −337.406 + 114.682i −0.455339 + 0.154766i
\(742\) −4.29634 + 16.9166i −0.00579022 + 0.0227986i
\(743\) 701.159 + 701.159i 0.943687 + 0.943687i 0.998497 0.0548100i \(-0.0174553\pi\)
−0.0548100 + 0.998497i \(0.517455\pi\)
\(744\) −236.186 + 269.531i −0.317454 + 0.362273i
\(745\) −738.001 + 679.085i −0.990606 + 0.911524i
\(746\) −176.154 101.702i −0.236131 0.136330i
\(747\) 229.840 + 553.653i 0.307683 + 0.741169i
\(748\) 219.847 + 219.847i 0.293914 + 0.293914i
\(749\) −280.387 + 500.661i −0.374348 + 0.668439i
\(750\) −291.702 + 442.899i −0.388937 + 0.590532i
\(751\) −257.969 446.816i −0.343501 0.594962i 0.641579 0.767057i \(-0.278280\pi\)
−0.985080 + 0.172095i \(0.944946\pi\)
\(752\) 244.667 65.5584i 0.325355 0.0871787i
\(753\) 548.389 + 820.025i 0.728272 + 1.08901i
\(754\) 147.526 + 255.522i 0.195658 + 0.338889i
\(755\) 1268.65 + 397.102i 1.68033 + 0.525962i
\(756\) −205.502 + 317.259i −0.271828 + 0.419654i
\(757\) 787.928 + 787.928i 1.04086 + 1.04086i 0.999129 + 0.0417273i \(0.0132861\pi\)
0.0417273 + 0.999129i \(0.486714\pi\)
\(758\) −272.245 + 1016.03i −0.359162 + 1.34041i
\(759\) 514.142 + 102.060i 0.677394 + 0.134466i
\(760\)