Properties

Label 210.3.w.b.17.5
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.5

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-1.72513 + 2.45437i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.34013 + 4.41857i) q^{5} +(-3.25493 + 2.72129i) q^{6} +(-6.07917 + 3.47039i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-3.04785 - 8.46821i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-1.72513 + 2.45437i) q^{3} +(1.73205 + 1.00000i) q^{4} +(2.34013 + 4.41857i) q^{5} +(-3.25493 + 2.72129i) q^{6} +(-6.07917 + 3.47039i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-3.04785 - 8.46821i) q^{9} +(1.57936 + 6.89243i) q^{10} +(5.23131 + 3.02030i) q^{11} +(-5.44238 + 2.52596i) q^{12} +(-7.33446 - 7.33446i) q^{13} +(-9.57456 + 2.51551i) q^{14} +(-14.8818 - 1.87909i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-22.5211 + 6.03451i) q^{17} +(-1.06386 - 12.6834i) q^{18} +(17.0920 + 29.6042i) q^{19} +(-0.365356 + 9.99332i) q^{20} +(1.96974 - 20.9074i) q^{21} +(6.04060 + 6.04060i) q^{22} +(7.11456 - 26.5519i) q^{23} +(-8.35900 + 1.45848i) q^{24} +(-14.0476 + 20.6801i) q^{25} +(-7.33446 - 12.7037i) q^{26} +(26.0420 + 7.12823i) q^{27} +(-13.9998 - 0.0682753i) q^{28} +6.86667 q^{29} +(-19.6412 - 8.01401i) q^{30} +(38.9114 + 22.4655i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-16.4376 + 7.62915i) q^{33} -32.9732 q^{34} +(-29.5602 - 18.7401i) q^{35} +(3.18919 - 17.7152i) q^{36} +(-9.14352 + 34.1241i) q^{37} +(12.5122 + 46.6962i) q^{38} +(30.6544 - 5.34857i) q^{39} +(-4.15690 + 13.5174i) q^{40} -18.2221 q^{41} +(10.3434 - 27.8391i) q^{42} +(17.2571 - 17.2571i) q^{43} +(6.04060 + 10.4626i) q^{44} +(30.2851 - 33.2838i) q^{45} +(19.4373 - 33.6664i) q^{46} +(6.24890 - 23.3212i) q^{47} +(-11.9524 - 1.06729i) q^{48} +(24.9127 - 42.1943i) q^{49} +(-26.7588 + 23.1077i) q^{50} +(24.0409 - 65.6854i) q^{51} +(-5.36920 - 20.0381i) q^{52} +(77.2906 - 20.7100i) q^{53} +(32.9650 + 19.2694i) q^{54} +(-1.10348 + 30.1828i) q^{55} +(-19.0991 - 5.21756i) q^{56} +(-102.145 - 9.12106i) q^{57} +(9.38005 + 2.51338i) q^{58} +(97.9689 + 56.5624i) q^{59} +(-23.8970 - 18.1365i) q^{60} +(16.8856 - 9.74888i) q^{61} +(44.9310 + 44.9310i) q^{62} +(47.9164 + 40.9025i) q^{63} +8.00000i q^{64} +(15.2443 - 49.5715i) q^{65} +(-25.2467 + 4.40503i) q^{66} +(10.9297 - 2.92860i) q^{67} +(-45.0422 - 12.0690i) q^{68} +(52.8946 + 63.2672i) q^{69} +(-33.5207 - 36.4193i) q^{70} -80.6556i q^{71} +(10.8407 - 23.0321i) q^{72} +(-1.93873 + 0.519481i) q^{73} +(-24.9805 + 43.2676i) q^{74} +(-26.5225 - 70.1538i) q^{75} +68.3679i q^{76} +(-42.2837 - 0.206212i) q^{77} +(43.8324 + 3.91400i) q^{78} +(-73.1841 + 42.2528i) q^{79} +(-10.6261 + 16.9436i) q^{80} +(-62.4212 + 51.6196i) q^{81} +(-24.8919 - 6.66976i) q^{82} +(4.56113 - 4.56113i) q^{83} +(24.3191 - 34.2430i) q^{84} +(-79.3662 - 85.3897i) q^{85} +(29.8902 - 17.2571i) q^{86} +(-11.8459 + 16.8533i) q^{87} +(4.42202 + 16.5032i) q^{88} +(21.5716 - 12.4544i) q^{89} +(53.5529 - 34.3815i) q^{90} +(70.0410 + 19.1340i) q^{91} +(38.8747 - 38.8747i) q^{92} +(-122.266 + 56.7469i) q^{93} +(17.0723 - 29.5701i) q^{94} +(-90.8109 + 144.800i) q^{95} +(-15.9367 - 5.83284i) q^{96} +(38.4454 - 38.4454i) q^{97} +(49.4756 - 48.5197i) q^{98} +(9.63229 - 53.5053i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −1.72513 + 2.45437i −0.575044 + 0.818123i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 2.34013 + 4.41857i 0.468025 + 0.883715i
\(6\) −3.25493 + 2.72129i −0.542489 + 0.453548i
\(7\) −6.07917 + 3.47039i −0.868454 + 0.495771i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) −3.04785 8.46821i −0.338650 0.940913i
\(10\) 1.57936 + 6.89243i 0.157936 + 0.689243i
\(11\) 5.23131 + 3.02030i 0.475574 + 0.274573i 0.718570 0.695455i \(-0.244797\pi\)
−0.242996 + 0.970027i \(0.578130\pi\)
\(12\) −5.44238 + 2.52596i −0.453532 + 0.210497i
\(13\) −7.33446 7.33446i −0.564189 0.564189i 0.366305 0.930495i \(-0.380623\pi\)
−0.930495 + 0.366305i \(0.880623\pi\)
\(14\) −9.57456 + 2.51551i −0.683897 + 0.179680i
\(15\) −14.8818 1.87909i −0.992122 0.125272i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −22.5211 + 6.03451i −1.32477 + 0.354971i −0.850763 0.525549i \(-0.823860\pi\)
−0.474008 + 0.880520i \(0.657193\pi\)
\(18\) −1.06386 12.6834i −0.0591032 0.704632i
\(19\) 17.0920 + 29.6042i 0.899578 + 1.55811i 0.828034 + 0.560678i \(0.189459\pi\)
0.0715438 + 0.997437i \(0.477207\pi\)
\(20\) −0.365356 + 9.99332i −0.0182678 + 0.499666i
\(21\) 1.96974 20.9074i 0.0937974 0.995591i
\(22\) 6.04060 + 6.04060i 0.274573 + 0.274573i
\(23\) 7.11456 26.5519i 0.309329 1.15443i −0.619826 0.784739i \(-0.712797\pi\)
0.929155 0.369691i \(-0.120536\pi\)
\(24\) −8.35900 + 1.45848i −0.348292 + 0.0607698i
\(25\) −14.0476 + 20.6801i −0.561904 + 0.827202i
\(26\) −7.33446 12.7037i −0.282095 0.488602i
\(27\) 26.0420 + 7.12823i 0.964520 + 0.264009i
\(28\) −13.9998 0.0682753i −0.499994 0.00243840i
\(29\) 6.86667 0.236782 0.118391 0.992967i \(-0.462226\pi\)
0.118391 + 0.992967i \(0.462226\pi\)
\(30\) −19.6412 8.01401i −0.654706 0.267134i
\(31\) 38.9114 + 22.4655i 1.25520 + 0.724693i 0.972138 0.234407i \(-0.0753150\pi\)
0.283066 + 0.959100i \(0.408648\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) −16.4376 + 7.62915i −0.498110 + 0.231186i
\(34\) −32.9732 −0.969800
\(35\) −29.5602 18.7401i −0.844578 0.535432i
\(36\) 3.18919 17.7152i 0.0885885 0.492090i
\(37\) −9.14352 + 34.1241i −0.247122 + 0.922272i 0.725183 + 0.688556i \(0.241755\pi\)
−0.972305 + 0.233716i \(0.924911\pi\)
\(38\) 12.5122 + 46.6962i 0.329268 + 1.22885i
\(39\) 30.6544 5.34857i 0.786010 0.137143i
\(40\) −4.15690 + 13.5174i −0.103922 + 0.337935i
\(41\) −18.2221 −0.444442 −0.222221 0.974996i \(-0.571331\pi\)
−0.222221 + 0.974996i \(0.571331\pi\)
\(42\) 10.3434 27.8391i 0.246271 0.662835i
\(43\) 17.2571 17.2571i 0.401329 0.401329i −0.477372 0.878701i \(-0.658411\pi\)
0.878701 + 0.477372i \(0.158411\pi\)
\(44\) 6.04060 + 10.4626i 0.137286 + 0.237787i
\(45\) 30.2851 33.2838i 0.673002 0.739641i
\(46\) 19.4373 33.6664i 0.422551 0.731879i
\(47\) 6.24890 23.3212i 0.132955 0.496196i −0.867043 0.498234i \(-0.833982\pi\)
0.999998 + 0.00203792i \(0.000648691\pi\)
\(48\) −11.9524 1.06729i −0.249009 0.0222352i
\(49\) 24.9127 42.1943i 0.508423 0.861107i
\(50\) −26.7588 + 23.1077i −0.535176 + 0.462154i
\(51\) 24.0409 65.6854i 0.471391 1.28795i
\(52\) −5.36920 20.0381i −0.103254 0.385349i
\(53\) 77.2906 20.7100i 1.45831 0.390754i 0.559407 0.828893i \(-0.311029\pi\)
0.898907 + 0.438139i \(0.144362\pi\)
\(54\) 32.9650 + 19.2694i 0.610463 + 0.356841i
\(55\) −1.10348 + 30.1828i −0.0200633 + 0.548779i
\(56\) −19.0991 5.21756i −0.341056 0.0931707i
\(57\) −102.145 9.12106i −1.79203 0.160019i
\(58\) 9.38005 + 2.51338i 0.161725 + 0.0433341i
\(59\) 97.9689 + 56.5624i 1.66049 + 0.958684i 0.972481 + 0.232982i \(0.0748484\pi\)
0.688009 + 0.725702i \(0.258485\pi\)
\(60\) −23.8970 18.1365i −0.398284 0.302275i
\(61\) 16.8856 9.74888i 0.276812 0.159818i −0.355167 0.934803i \(-0.615576\pi\)
0.631979 + 0.774985i \(0.282243\pi\)
\(62\) 44.9310 + 44.9310i 0.724693 + 0.724693i
\(63\) 47.9164 + 40.9025i 0.760578 + 0.649246i
\(64\) 8.00000i 0.125000i
\(65\) 15.2443 49.5715i 0.234528 0.762638i
\(66\) −25.2467 + 4.40503i −0.382525 + 0.0667429i
\(67\) 10.9297 2.92860i 0.163130 0.0437104i −0.176330 0.984331i \(-0.556423\pi\)
0.339459 + 0.940621i \(0.389756\pi\)
\(68\) −45.0422 12.0690i −0.662386 0.177486i
\(69\) 52.8946 + 63.2672i 0.766588 + 0.916916i
\(70\) −33.5207 36.4193i −0.478867 0.520275i
\(71\) 80.6556i 1.13599i −0.823030 0.567997i \(-0.807718\pi\)
0.823030 0.567997i \(-0.192282\pi\)
\(72\) 10.8407 23.0321i 0.150566 0.319891i
\(73\) −1.93873 + 0.519481i −0.0265579 + 0.00711618i −0.272074 0.962276i \(-0.587709\pi\)
0.245516 + 0.969393i \(0.421043\pi\)
\(74\) −24.9805 + 43.2676i −0.337575 + 0.584697i
\(75\) −26.5225 70.1538i −0.353633 0.935384i
\(76\) 68.3679i 0.899578i
\(77\) −42.2837 0.206212i −0.549139 0.00267807i
\(78\) 43.8324 + 3.91400i 0.561954 + 0.0501796i
\(79\) −73.1841 + 42.2528i −0.926381 + 0.534846i −0.885665 0.464325i \(-0.846297\pi\)
−0.0407156 + 0.999171i \(0.512964\pi\)
\(80\) −10.6261 + 16.9436i −0.132827 + 0.211795i
\(81\) −62.4212 + 51.6196i −0.770633 + 0.637280i
\(82\) −24.8919 6.66976i −0.303559 0.0813385i
\(83\) 4.56113 4.56113i 0.0549533 0.0549533i −0.679096 0.734049i \(-0.737628\pi\)
0.734049 + 0.679096i \(0.237628\pi\)
\(84\) 24.3191 34.2430i 0.289513 0.407654i
\(85\) −79.3662 85.3897i −0.933720 1.00458i
\(86\) 29.8902 17.2571i 0.347561 0.200664i
\(87\) −11.8459 + 16.8533i −0.136160 + 0.193717i
\(88\) 4.42202 + 16.5032i 0.0502503 + 0.187537i
\(89\) 21.5716 12.4544i 0.242377 0.139937i −0.373892 0.927472i \(-0.621977\pi\)
0.616269 + 0.787536i \(0.288643\pi\)
\(90\) 53.5529 34.3815i 0.595032 0.382016i
\(91\) 70.0410 + 19.1340i 0.769681 + 0.210264i
\(92\) 38.8747 38.8747i 0.422551 0.422551i
\(93\) −122.266 + 56.7469i −1.31469 + 0.610182i
\(94\) 17.0723 29.5701i 0.181620 0.314576i
\(95\) −90.8109 + 144.800i −0.955904 + 1.52421i
\(96\) −15.9367 5.83284i −0.166007 0.0607588i
\(97\) 38.4454 38.4454i 0.396345 0.396345i −0.480597 0.876942i \(-0.659580\pi\)
0.876942 + 0.480597i \(0.159580\pi\)
\(98\) 49.4756 48.5197i 0.504853 0.495099i
\(99\) 9.63229 53.5053i 0.0972959 0.540457i
\(100\) −45.0112 + 21.7713i −0.450112 + 0.217713i
\(101\) 11.7303 20.3175i 0.116142 0.201163i −0.802094 0.597198i \(-0.796281\pi\)
0.918235 + 0.396035i \(0.129614\pi\)
\(102\) 56.8831 80.9284i 0.557677 0.793416i
\(103\) −48.6683 + 181.632i −0.472507 + 1.76342i 0.158207 + 0.987406i \(0.449429\pi\)
−0.630714 + 0.776015i \(0.717238\pi\)
\(104\) 29.3379i 0.282095i
\(105\) 96.9904 40.2226i 0.923719 0.383072i
\(106\) 113.161 1.06756
\(107\) −80.3041 21.5174i −0.750506 0.201097i −0.136763 0.990604i \(-0.543670\pi\)
−0.613742 + 0.789506i \(0.710337\pi\)
\(108\) 37.9779 + 38.3885i 0.351647 + 0.355449i
\(109\) 28.9994 + 16.7428i 0.266049 + 0.153604i 0.627091 0.778946i \(-0.284245\pi\)
−0.361042 + 0.932550i \(0.617579\pi\)
\(110\) −12.5551 + 40.8266i −0.114137 + 0.371151i
\(111\) −67.9793 81.3100i −0.612426 0.732523i
\(112\) −24.1801 14.1181i −0.215894 0.126054i
\(113\) −12.6123 12.6123i −0.111613 0.111613i 0.649095 0.760708i \(-0.275148\pi\)
−0.760708 + 0.649095i \(0.775148\pi\)
\(114\) −136.195 49.8474i −1.19469 0.437258i
\(115\) 133.970 30.6986i 1.16496 0.266944i
\(116\) 11.8934 + 6.86667i 0.102530 + 0.0591954i
\(117\) −39.7555 + 84.4641i −0.339790 + 0.721916i
\(118\) 113.125 + 113.125i 0.958684 + 0.958684i
\(119\) 115.968 114.842i 0.974518 0.965059i
\(120\) −26.0055 33.5218i −0.216713 0.279349i
\(121\) −42.2556 73.1888i −0.349220 0.604866i
\(122\) 26.6344 7.13668i 0.218315 0.0584973i
\(123\) 31.4355 44.7238i 0.255573 0.363608i
\(124\) 44.9310 + 77.8227i 0.362346 + 0.627602i
\(125\) −124.250 13.6764i −0.993997 0.109412i
\(126\) 50.4837 + 73.4125i 0.400664 + 0.582639i
\(127\) 147.938 + 147.938i 1.16486 + 1.16486i 0.983397 + 0.181467i \(0.0580847\pi\)
0.181467 + 0.983397i \(0.441915\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 12.5846 + 72.1262i 0.0975547 + 0.559118i
\(130\) 38.9685 62.1361i 0.299758 0.477970i
\(131\) −74.8356 129.619i −0.571264 0.989459i −0.996436 0.0843465i \(-0.973120\pi\)
0.425172 0.905113i \(-0.360214\pi\)
\(132\) −36.0999 3.22354i −0.273484 0.0244207i
\(133\) −206.643 120.653i −1.55371 0.907166i
\(134\) 16.0022 0.119419
\(135\) 29.4451 + 131.750i 0.218112 + 0.975924i
\(136\) −57.1113 32.9732i −0.419936 0.242450i
\(137\) −6.54134 24.4126i −0.0477470 0.178194i 0.937934 0.346813i \(-0.112736\pi\)
−0.985681 + 0.168619i \(0.946069\pi\)
\(138\) 49.0979 + 105.785i 0.355782 + 0.766561i
\(139\) −237.437 −1.70818 −0.854090 0.520125i \(-0.825885\pi\)
−0.854090 + 0.520125i \(0.825885\pi\)
\(140\) −32.4597 62.0191i −0.231855 0.442993i
\(141\) 46.4587 + 55.5693i 0.329494 + 0.394108i
\(142\) 29.5220 110.178i 0.207901 0.775899i
\(143\) −16.2166 60.5211i −0.113403 0.423225i
\(144\) 23.2391 27.4945i 0.161382 0.190934i
\(145\) 16.0689 + 30.3409i 0.110820 + 0.209248i
\(146\) −2.83850 −0.0194418
\(147\) 60.5826 + 133.936i 0.412126 + 0.911127i
\(148\) −49.9611 + 49.9611i −0.337575 + 0.337575i
\(149\) −19.6566 34.0462i −0.131924 0.228498i 0.792494 0.609879i \(-0.208782\pi\)
−0.924418 + 0.381381i \(0.875449\pi\)
\(150\) −10.5523 105.540i −0.0703490 0.703599i
\(151\) −19.0601 + 33.0130i −0.126226 + 0.218629i −0.922211 0.386686i \(-0.873620\pi\)
0.795986 + 0.605315i \(0.206953\pi\)
\(152\) −25.0244 + 93.3923i −0.164634 + 0.614423i
\(153\) 119.742 + 172.321i 0.782631 + 1.12628i
\(154\) −57.6851 15.7586i −0.374579 0.102329i
\(155\) −8.20789 + 224.505i −0.0529541 + 1.44842i
\(156\) 58.4435 + 21.3904i 0.374638 + 0.137118i
\(157\) 15.5225 + 57.9306i 0.0988692 + 0.368985i 0.997578 0.0695618i \(-0.0221601\pi\)
−0.898708 + 0.438547i \(0.855493\pi\)
\(158\) −115.437 + 30.9312i −0.730613 + 0.195767i
\(159\) −82.5066 + 225.427i −0.518909 + 1.41778i
\(160\) −20.7174 + 19.2559i −0.129483 + 0.120350i
\(161\) 48.8949 + 186.104i 0.303695 + 1.15592i
\(162\) −104.163 + 47.6660i −0.642982 + 0.294234i
\(163\) 5.64718 + 1.51316i 0.0346453 + 0.00928317i 0.276100 0.961129i \(-0.410958\pi\)
−0.241455 + 0.970412i \(0.577625\pi\)
\(164\) −31.5616 18.2221i −0.192449 0.111110i
\(165\) −72.1761 54.7777i −0.437431 0.331986i
\(166\) 7.90010 4.56113i 0.0475910 0.0274767i
\(167\) 6.13829 + 6.13829i 0.0367562 + 0.0367562i 0.725246 0.688490i \(-0.241726\pi\)
−0.688490 + 0.725246i \(0.741726\pi\)
\(168\) 45.7543 37.8753i 0.272347 0.225448i
\(169\) 61.4113i 0.363381i
\(170\) −77.1615 145.695i −0.453891 0.857027i
\(171\) 198.601 234.968i 1.16141 1.37408i
\(172\) 47.1474 12.6331i 0.274113 0.0734483i
\(173\) −194.574 52.1359i −1.12470 0.301363i −0.351918 0.936031i \(-0.614470\pi\)
−0.772785 + 0.634668i \(0.781137\pi\)
\(174\) −22.3506 + 18.6862i −0.128451 + 0.107392i
\(175\) 13.6299 174.468i 0.0778852 0.996962i
\(176\) 24.1624i 0.137286i
\(177\) −307.834 + 142.874i −1.73918 + 0.807199i
\(178\) 34.0259 9.11722i 0.191157 0.0512203i
\(179\) 17.6436 30.5596i 0.0985676 0.170724i −0.812524 0.582927i \(-0.801907\pi\)
0.911092 + 0.412203i \(0.135241\pi\)
\(180\) 85.7391 27.3642i 0.476329 0.152023i
\(181\) 194.579i 1.07502i −0.843258 0.537510i \(-0.819365\pi\)
0.843258 0.537510i \(-0.180635\pi\)
\(182\) 88.6742 + 51.7743i 0.487221 + 0.284474i
\(183\) −5.20245 + 58.2615i −0.0284287 + 0.318369i
\(184\) 67.3329 38.8747i 0.365940 0.211275i
\(185\) −172.177 + 39.4533i −0.930685 + 0.213261i
\(186\) −187.789 + 32.7653i −1.00962 + 0.176158i
\(187\) −136.041 36.4521i −0.727492 0.194931i
\(188\) 34.1446 34.1446i 0.181620 0.181620i
\(189\) −183.052 + 47.0424i −0.968529 + 0.248902i
\(190\) −177.050 + 164.561i −0.931844 + 0.866111i
\(191\) 114.428 66.0651i 0.599100 0.345890i −0.169588 0.985515i \(-0.554244\pi\)
0.768687 + 0.639625i \(0.220910\pi\)
\(192\) −19.6349 13.8010i −0.102265 0.0718804i
\(193\) 54.3985 + 203.018i 0.281858 + 1.05191i 0.951105 + 0.308867i \(0.0999498\pi\)
−0.669248 + 0.743039i \(0.733383\pi\)
\(194\) 66.5894 38.4454i 0.343244 0.198172i
\(195\) 95.3682 + 122.932i 0.489068 + 0.630422i
\(196\) 85.3444 48.1699i 0.435430 0.245765i
\(197\) 94.5121 94.5121i 0.479757 0.479757i −0.425297 0.905054i \(-0.639830\pi\)
0.905054 + 0.425297i \(0.139830\pi\)
\(198\) 32.7422 69.5639i 0.165365 0.351333i
\(199\) 182.775 316.575i 0.918465 1.59083i 0.116717 0.993165i \(-0.462763\pi\)
0.801748 0.597663i \(-0.203904\pi\)
\(200\) −69.4553 + 13.2649i −0.347277 + 0.0663245i
\(201\) −11.6673 + 31.8777i −0.0580461 + 0.158595i
\(202\) 23.4606 23.4606i 0.116142 0.116142i
\(203\) −41.7437 + 23.8301i −0.205634 + 0.117389i
\(204\) 107.326 89.7296i 0.526106 0.439851i
\(205\) −42.6421 80.5158i −0.208010 0.392760i
\(206\) −132.964 + 230.301i −0.645457 + 1.11796i
\(207\) −246.531 + 20.6785i −1.19097 + 0.0998963i
\(208\) 10.7384 40.0763i 0.0516269 0.192674i
\(209\) 206.492i 0.987998i
\(210\) 147.214 19.4441i 0.701019 0.0925908i
\(211\) 49.4419 0.234322 0.117161 0.993113i \(-0.462621\pi\)
0.117161 + 0.993113i \(0.462621\pi\)
\(212\) 154.581 + 41.4199i 0.729157 + 0.195377i
\(213\) 197.959 + 139.141i 0.929383 + 0.653246i
\(214\) −101.822 58.7867i −0.475801 0.274704i
\(215\) 116.636 + 35.8681i 0.542492 + 0.166828i
\(216\) 37.8276 + 66.3406i 0.175128 + 0.307132i
\(217\) −314.513 1.53384i −1.44937 0.00706837i
\(218\) 33.4856 + 33.4856i 0.153604 + 0.153604i
\(219\) 2.06956 5.65453i 0.00945006 0.0258198i
\(220\) −32.0941 + 51.1747i −0.145882 + 0.232612i
\(221\) 209.440 + 120.920i 0.947693 + 0.547151i
\(222\) −63.0999 135.954i −0.284234 0.612404i
\(223\) −147.669 147.669i −0.662195 0.662195i 0.293702 0.955897i \(-0.405113\pi\)
−0.955897 + 0.293702i \(0.905113\pi\)
\(224\) −27.8631 28.1362i −0.124389 0.125608i
\(225\) 217.938 + 55.9285i 0.968614 + 0.248571i
\(226\) −12.6123 21.8451i −0.0558066 0.0966599i
\(227\) 212.531 56.9475i 0.936259 0.250870i 0.241738 0.970342i \(-0.422283\pi\)
0.694522 + 0.719472i \(0.255616\pi\)
\(228\) −167.800 117.944i −0.735965 0.517297i
\(229\) 149.624 + 259.157i 0.653380 + 1.13169i 0.982297 + 0.187329i \(0.0599831\pi\)
−0.328917 + 0.944359i \(0.606684\pi\)
\(230\) 194.244 + 7.10154i 0.844537 + 0.0308762i
\(231\) 73.4510 103.424i 0.317970 0.447723i
\(232\) 13.7333 + 13.7333i 0.0591954 + 0.0591954i
\(233\) 31.0526 115.890i 0.133273 0.497381i −0.866726 0.498784i \(-0.833780\pi\)
0.999999 + 0.00140324i \(0.000446666\pi\)
\(234\) −85.2230 + 100.829i −0.364201 + 0.430892i
\(235\) 117.670 26.9634i 0.500722 0.114738i
\(236\) 113.125 + 195.938i 0.479342 + 0.830245i
\(237\) 22.5481 252.512i 0.0951395 1.06545i
\(238\) 200.450 114.430i 0.842226 0.480798i
\(239\) 395.609 1.65527 0.827634 0.561268i \(-0.189686\pi\)
0.827634 + 0.561268i \(0.189686\pi\)
\(240\) −23.2543 55.3104i −0.0968930 0.230460i
\(241\) −191.579 110.608i −0.794934 0.458956i 0.0467624 0.998906i \(-0.485110\pi\)
−0.841697 + 0.539950i \(0.818443\pi\)
\(242\) −30.9332 115.444i −0.127823 0.477043i
\(243\) −19.0088 242.255i −0.0782256 0.996936i
\(244\) 38.9955 0.159818
\(245\) 244.737 + 11.3388i 0.998928 + 0.0462808i
\(246\) 59.3118 49.5876i 0.241105 0.201576i
\(247\) 91.7703 342.491i 0.371540 1.38660i
\(248\) 32.8917 + 122.754i 0.132628 + 0.494974i
\(249\) 3.32615 + 19.0632i 0.0133580 + 0.0765591i
\(250\) −164.722 64.1609i −0.658889 0.256644i
\(251\) −231.794 −0.923482 −0.461741 0.887015i \(-0.652775\pi\)
−0.461741 + 0.887015i \(0.652775\pi\)
\(252\) 42.0912 + 118.762i 0.167029 + 0.471276i
\(253\) 117.413 117.413i 0.464083 0.464083i
\(254\) 147.938 + 256.236i 0.582432 + 1.00880i
\(255\) 346.495 47.4856i 1.35880 0.186218i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −8.34872 + 31.1578i −0.0324853 + 0.121237i −0.980264 0.197691i \(-0.936656\pi\)
0.947779 + 0.318927i \(0.103323\pi\)
\(258\) −9.20920 + 103.132i −0.0356946 + 0.399738i
\(259\) −62.8389 239.178i −0.242621 0.923466i
\(260\) 75.9753 70.6160i 0.292213 0.271600i
\(261\) −20.9286 58.1484i −0.0801861 0.222791i
\(262\) −54.7835 204.455i −0.209097 0.780362i
\(263\) 161.425 43.2538i 0.613785 0.164463i 0.0614840 0.998108i \(-0.480417\pi\)
0.552301 + 0.833645i \(0.313750\pi\)
\(264\) −48.1335 17.6169i −0.182324 0.0667308i
\(265\) 272.378 + 293.051i 1.02784 + 1.10585i
\(266\) −238.118 240.452i −0.895180 0.903954i
\(267\) −6.64621 + 74.4300i −0.0248922 + 0.278764i
\(268\) 21.8594 + 5.85720i 0.0815648 + 0.0218552i
\(269\) −302.162 174.453i −1.12328 0.648526i −0.181043 0.983475i \(-0.557947\pi\)
−0.942236 + 0.334949i \(0.891281\pi\)
\(270\) −8.00101 + 190.751i −0.0296334 + 0.706486i
\(271\) 17.0749 9.85817i 0.0630068 0.0363770i −0.468166 0.883641i \(-0.655085\pi\)
0.531172 + 0.847264i \(0.321752\pi\)
\(272\) −65.9464 65.9464i −0.242450 0.242450i
\(273\) −167.792 + 138.898i −0.614622 + 0.508783i
\(274\) 35.7425i 0.130447i
\(275\) −135.947 + 65.7558i −0.494354 + 0.239112i
\(276\) 28.3489 + 162.477i 0.102713 + 0.588683i
\(277\) 216.453 57.9983i 0.781417 0.209380i 0.154008 0.988070i \(-0.450782\pi\)
0.627409 + 0.778690i \(0.284115\pi\)
\(278\) −324.345 86.9080i −1.16671 0.312619i
\(279\) 71.6466 397.981i 0.256798 1.42646i
\(280\) −21.6402 96.6007i −0.0772865 0.345003i
\(281\) 226.986i 0.807780i −0.914808 0.403890i \(-0.867658\pi\)
0.914808 0.403890i \(-0.132342\pi\)
\(282\) 43.1240 + 92.9141i 0.152922 + 0.329483i
\(283\) −92.5997 + 24.8120i −0.327208 + 0.0876750i −0.418683 0.908132i \(-0.637508\pi\)
0.0914758 + 0.995807i \(0.470842\pi\)
\(284\) 80.6556 139.700i 0.283999 0.491900i
\(285\) −198.731 472.682i −0.697303 1.65853i
\(286\) 88.6091i 0.309822i
\(287\) 110.775 63.2379i 0.385977 0.220341i
\(288\) 41.8088 29.0521i 0.145169 0.100875i
\(289\) 220.504 127.308i 0.762989 0.440512i
\(290\) 10.8450 + 47.3281i 0.0373964 + 0.163200i
\(291\) 28.0358 + 160.683i 0.0963431 + 0.552174i
\(292\) −3.87746 1.03896i −0.0132790 0.00355809i
\(293\) 190.809 190.809i 0.651224 0.651224i −0.302064 0.953288i \(-0.597675\pi\)
0.953288 + 0.302064i \(0.0976755\pi\)
\(294\) 33.7335 + 205.134i 0.114740 + 0.697735i
\(295\) −20.6654 + 565.246i −0.0700521 + 1.91609i
\(296\) −86.5352 + 49.9611i −0.292349 + 0.168787i
\(297\) 114.705 + 115.945i 0.386211 + 0.390386i
\(298\) −14.3896 53.7028i −0.0482874 0.180211i
\(299\) −246.925 + 142.562i −0.825837 + 0.476797i
\(300\) 24.2155 148.032i 0.0807182 0.493442i
\(301\) −45.0201 + 164.798i −0.149568 + 0.547502i
\(302\) −38.1201 + 38.1201i −0.126226 + 0.126226i
\(303\) 29.6303 + 63.8407i 0.0977896 + 0.210696i
\(304\) −68.3679 + 118.417i −0.224895 + 0.389529i
\(305\) 82.5905 + 51.7965i 0.270789 + 0.169824i
\(306\) 100.497 + 279.224i 0.328423 + 0.912497i
\(307\) −34.1553 + 34.1553i −0.111255 + 0.111255i −0.760543 0.649288i \(-0.775067\pi\)
0.649288 + 0.760543i \(0.275067\pi\)
\(308\) −73.0313 42.6408i −0.237114 0.138444i
\(309\) −361.834 432.789i −1.17098 1.40061i
\(310\) −93.3866 + 303.675i −0.301247 + 0.979597i
\(311\) −272.168 + 471.409i −0.875139 + 1.51579i −0.0185247 + 0.999828i \(0.505897\pi\)
−0.856614 + 0.515957i \(0.827436\pi\)
\(312\) 72.0059 + 50.6116i 0.230788 + 0.162217i
\(313\) 118.989 444.072i 0.380155 1.41876i −0.465509 0.885043i \(-0.654129\pi\)
0.845664 0.533716i \(-0.179205\pi\)
\(314\) 84.8163i 0.270116i
\(315\) −68.6002 + 307.439i −0.217779 + 0.975998i
\(316\) −169.011 −0.534846
\(317\) −17.9678 4.81445i −0.0566806 0.0151875i 0.230367 0.973104i \(-0.426007\pi\)
−0.287048 + 0.957916i \(0.592674\pi\)
\(318\) −195.218 + 277.740i −0.613894 + 0.873395i
\(319\) 35.9217 + 20.7394i 0.112607 + 0.0650138i
\(320\) −35.3486 + 18.7210i −0.110464 + 0.0585032i
\(321\) 191.347 159.975i 0.596096 0.498366i
\(322\) −1.32709 + 272.119i −0.00412139 + 0.845091i
\(323\) −563.577 563.577i −1.74482 1.74482i
\(324\) −159.736 + 26.9866i −0.493014 + 0.0832920i
\(325\) 254.709 48.6454i 0.783719 0.149678i
\(326\) 7.16033 + 4.13402i 0.0219642 + 0.0126810i
\(327\) −91.1208 + 42.2917i −0.278657 + 0.129332i
\(328\) −36.4442 36.4442i −0.111110 0.111110i
\(329\) 42.9457 + 163.460i 0.130534 + 0.496839i
\(330\) −78.5444 101.246i −0.238013 0.306806i
\(331\) −82.1070 142.213i −0.248057 0.429648i 0.714929 0.699197i \(-0.246459\pi\)
−0.962987 + 0.269549i \(0.913125\pi\)
\(332\) 12.4612 3.33898i 0.0375338 0.0100572i
\(333\) 316.838 26.5757i 0.951465 0.0798070i
\(334\) 6.13829 + 10.6318i 0.0183781 + 0.0318318i
\(335\) 38.5171 + 41.4403i 0.114976 + 0.123702i
\(336\) 76.3649 34.9914i 0.227277 0.104141i
\(337\) 182.945 + 182.945i 0.542865 + 0.542865i 0.924368 0.381503i \(-0.124593\pi\)
−0.381503 + 0.924368i \(0.624593\pi\)
\(338\) 22.4781 83.8894i 0.0665033 0.248194i
\(339\) 52.7131 9.19736i 0.155496 0.0271309i
\(340\) −52.0766 227.266i −0.153167 0.668428i
\(341\) 135.705 + 235.048i 0.397962 + 0.689290i
\(342\) 357.298 248.279i 1.04473 0.725961i
\(343\) −5.01807 + 342.963i −0.0146300 + 0.999893i
\(344\) 69.0285 0.200664
\(345\) −155.771 + 381.772i −0.451510 + 1.10659i
\(346\) −246.710 142.438i −0.713033 0.411670i
\(347\) 19.7736 + 73.7960i 0.0569844 + 0.212669i 0.988547 0.150912i \(-0.0482209\pi\)
−0.931563 + 0.363580i \(0.881554\pi\)
\(348\) −37.3710 + 17.3449i −0.107388 + 0.0498418i
\(349\) −601.421 −1.72327 −0.861634 0.507529i \(-0.830559\pi\)
−0.861634 + 0.507529i \(0.830559\pi\)
\(350\) 82.4787 233.339i 0.235653 0.666684i
\(351\) −138.723 243.286i −0.395221 0.693123i
\(352\) −8.84405 + 33.0064i −0.0251251 + 0.0937683i
\(353\) −117.673 439.162i −0.333351 1.24408i −0.905645 0.424036i \(-0.860613\pi\)
0.572294 0.820048i \(-0.306054\pi\)
\(354\) −472.805 + 82.4948i −1.33561 + 0.233036i
\(355\) 356.383 188.744i 1.00390 0.531674i
\(356\) 49.8174 0.139937
\(357\) 81.8053 + 482.745i 0.229146 + 1.35223i
\(358\) 35.2872 35.2872i 0.0985676 0.0985676i
\(359\) 99.2457 + 171.899i 0.276450 + 0.478826i 0.970500 0.241101i \(-0.0775085\pi\)
−0.694050 + 0.719927i \(0.744175\pi\)
\(360\) 127.138 5.99752i 0.353161 0.0166598i
\(361\) −403.772 + 699.353i −1.11848 + 1.93727i
\(362\) 71.2207 265.799i 0.196742 0.734252i
\(363\) 252.529 + 22.5495i 0.695672 + 0.0621199i
\(364\) 102.180 + 103.182i 0.280716 + 0.283467i
\(365\) −6.83224 7.35077i −0.0187185 0.0201391i
\(366\) −28.4319 + 77.6824i −0.0776827 + 0.212247i
\(367\) 121.793 + 454.536i 0.331860 + 1.23852i 0.907233 + 0.420628i \(0.138190\pi\)
−0.575373 + 0.817891i \(0.695143\pi\)
\(368\) 106.208 28.4582i 0.288607 0.0773321i
\(369\) 55.5382 + 154.309i 0.150510 + 0.418181i
\(370\) −249.639 9.12678i −0.674699 0.0246670i
\(371\) −397.992 + 394.129i −1.07275 + 1.06234i
\(372\) −268.517 23.9772i −0.721821 0.0644549i
\(373\) 261.696 + 70.1213i 0.701599 + 0.187993i 0.591947 0.805977i \(-0.298360\pi\)
0.109652 + 0.993970i \(0.465026\pi\)
\(374\) −172.493 99.5889i −0.461211 0.266281i
\(375\) 247.914 281.361i 0.661103 0.750295i
\(376\) 59.1402 34.1446i 0.157288 0.0908102i
\(377\) −50.3633 50.3633i −0.133590 0.133590i
\(378\) −267.272 2.74053i −0.707070 0.00725009i
\(379\) 478.536i 1.26263i 0.775528 + 0.631314i \(0.217484\pi\)
−0.775528 + 0.631314i \(0.782516\pi\)
\(380\) −302.089 + 159.990i −0.794971 + 0.421025i
\(381\) −618.306 + 107.882i −1.62285 + 0.283154i
\(382\) 180.493 48.3630i 0.472495 0.126605i
\(383\) 412.087 + 110.418i 1.07595 + 0.288299i 0.752934 0.658096i \(-0.228638\pi\)
0.323012 + 0.946395i \(0.395305\pi\)
\(384\) −21.7703 26.0395i −0.0566935 0.0678111i
\(385\) −98.0380 187.316i −0.254644 0.486535i
\(386\) 297.239i 0.770049i
\(387\) −198.734 93.5400i −0.513525 0.241705i
\(388\) 105.035 28.1440i 0.270708 0.0725361i
\(389\) −116.515 + 201.810i −0.299524 + 0.518791i −0.976027 0.217649i \(-0.930161\pi\)
0.676503 + 0.736440i \(0.263495\pi\)
\(390\) 85.2790 + 202.836i 0.218664 + 0.520092i
\(391\) 640.911i 1.63916i
\(392\) 134.214 34.5631i 0.342383 0.0881711i
\(393\) 447.234 + 39.9357i 1.13800 + 0.101618i
\(394\) 163.700 94.5121i 0.415482 0.239878i
\(395\) −357.957 224.492i −0.906221 0.568335i
\(396\) 70.1889 83.0415i 0.177245 0.209701i
\(397\) 52.8700 + 14.1665i 0.133174 + 0.0356838i 0.324790 0.945786i \(-0.394706\pi\)
−0.191616 + 0.981470i \(0.561373\pi\)
\(398\) 365.549 365.549i 0.918465 0.918465i
\(399\) 652.614 299.037i 1.63562 0.749465i
\(400\) −99.7330 7.30223i −0.249333 0.0182556i
\(401\) 396.262 228.782i 0.988184 0.570528i 0.0834527 0.996512i \(-0.473405\pi\)
0.904731 + 0.425984i \(0.140072\pi\)
\(402\) −27.6058 + 39.2752i −0.0686712 + 0.0976995i
\(403\) −120.622 450.166i −0.299309 1.11704i
\(404\) 40.6349 23.4606i 0.100582 0.0580708i
\(405\) −374.159 155.016i −0.923849 0.382757i
\(406\) −65.7453 + 17.2732i −0.161934 + 0.0425449i
\(407\) −150.897 + 150.897i −0.370755 + 0.370755i
\(408\) 179.453 83.2890i 0.439835 0.204140i
\(409\) −166.436 + 288.276i −0.406935 + 0.704832i −0.994545 0.104312i \(-0.966736\pi\)
0.587609 + 0.809145i \(0.300069\pi\)
\(410\) −28.7793 125.595i −0.0701935 0.306329i
\(411\) 71.2022 + 26.0601i 0.173241 + 0.0634066i
\(412\) −265.928 + 265.928i −0.645457 + 0.645457i
\(413\) −791.864 3.86181i −1.91735 0.00935064i
\(414\) −344.337 61.9892i −0.831731 0.149732i
\(415\) 30.8273 + 9.48006i 0.0742827 + 0.0228435i
\(416\) 29.3379 50.8146i 0.0705237 0.122151i
\(417\) 409.610 582.758i 0.982278 1.39750i
\(418\) −75.5812 + 282.073i −0.180816 + 0.674815i
\(419\) 377.243i 0.900341i 0.892943 + 0.450171i \(0.148637\pi\)
−0.892943 + 0.450171i \(0.851363\pi\)
\(420\) 208.215 + 27.3229i 0.495750 + 0.0650546i
\(421\) 197.759 0.469736 0.234868 0.972027i \(-0.424534\pi\)
0.234868 + 0.972027i \(0.424534\pi\)
\(422\) 67.5389 + 18.0970i 0.160045 + 0.0428839i
\(423\) −216.535 + 18.1625i −0.511902 + 0.0429374i
\(424\) 196.001 + 113.161i 0.462267 + 0.266890i
\(425\) 191.574 550.508i 0.450762 1.29531i
\(426\) 219.487 + 262.529i 0.515228 + 0.616265i
\(427\) −68.8178 + 117.865i −0.161166 + 0.276030i
\(428\) −117.573 117.573i −0.274704 0.274704i
\(429\) 176.517 + 64.6054i 0.411461 + 0.150595i
\(430\) 146.199 + 91.6883i 0.339997 + 0.213229i
\(431\) 142.518 + 82.2828i 0.330668 + 0.190911i 0.656138 0.754641i \(-0.272189\pi\)
−0.325469 + 0.945553i \(0.605522\pi\)
\(432\) 27.3912 + 104.469i 0.0634055 + 0.241826i
\(433\) −346.623 346.623i −0.800515 0.800515i 0.182661 0.983176i \(-0.441529\pi\)
−0.983176 + 0.182661i \(0.941529\pi\)
\(434\) −429.071 117.215i −0.988644 0.270081i
\(435\) −102.189 12.9031i −0.234916 0.0296622i
\(436\) 33.4856 + 57.9988i 0.0768019 + 0.133025i
\(437\) 907.649 243.204i 2.07700 0.556530i
\(438\) 4.89678 6.96672i 0.0111799 0.0159057i
\(439\) −269.647 467.043i −0.614230 1.06388i −0.990519 0.137376i \(-0.956133\pi\)
0.376289 0.926502i \(-0.377200\pi\)
\(440\) −62.5726 + 58.1587i −0.142210 + 0.132179i
\(441\) −433.240 82.3646i −0.982404 0.186768i
\(442\) 241.841 + 241.841i 0.547151 + 0.547151i
\(443\) −91.4437 + 341.272i −0.206419 + 0.770367i 0.782593 + 0.622533i \(0.213897\pi\)
−0.989012 + 0.147833i \(0.952770\pi\)
\(444\) −36.4335 208.812i −0.0820575 0.470298i
\(445\) 105.511 + 66.1709i 0.237103 + 0.148699i
\(446\) −147.669 255.771i −0.331097 0.573478i
\(447\) 117.472 + 10.4897i 0.262801 + 0.0234668i
\(448\) −27.7632 48.6334i −0.0619713 0.108557i
\(449\) −436.761 −0.972742 −0.486371 0.873752i \(-0.661680\pi\)
−0.486371 + 0.873752i \(0.661680\pi\)
\(450\) 277.238 + 156.171i 0.616084 + 0.347046i
\(451\) −95.3255 55.0362i −0.211365 0.122032i
\(452\) −9.23284 34.4574i −0.0204266 0.0762333i
\(453\) −48.1450 103.732i −0.106280 0.228989i
\(454\) 311.167 0.685389
\(455\) 79.3597 + 354.257i 0.174417 + 0.778587i
\(456\) −186.049 222.533i −0.408002 0.488011i
\(457\) −8.13289 + 30.3524i −0.0177963 + 0.0664166i −0.974253 0.225458i \(-0.927612\pi\)
0.956457 + 0.291874i \(0.0942789\pi\)
\(458\) 109.532 + 408.781i 0.239154 + 0.892534i
\(459\) −629.511 3.38462i −1.37148 0.00737389i
\(460\) 262.742 + 80.7989i 0.571179 + 0.175650i
\(461\) 154.115 0.334305 0.167152 0.985931i \(-0.446543\pi\)
0.167152 + 0.985931i \(0.446543\pi\)
\(462\) 138.192 114.395i 0.299116 0.247608i
\(463\) −200.474 + 200.474i −0.432989 + 0.432989i −0.889644 0.456655i \(-0.849047\pi\)
0.456655 + 0.889644i \(0.349047\pi\)
\(464\) 13.7333 + 23.7868i 0.0295977 + 0.0512648i
\(465\) −536.858 407.445i −1.15453 0.876227i
\(466\) 84.8372 146.942i 0.182054 0.315327i
\(467\) 25.0817 93.6060i 0.0537081 0.200441i −0.933858 0.357643i \(-0.883581\pi\)
0.987567 + 0.157202i \(0.0502472\pi\)
\(468\) −153.323 + 106.541i −0.327612 + 0.227651i
\(469\) −56.2800 + 55.7338i −0.120000 + 0.118835i
\(470\) 170.609 + 6.23747i 0.362998 + 0.0132712i
\(471\) −168.961 61.8400i −0.358729 0.131295i
\(472\) 82.8131 + 309.063i 0.175451 + 0.654794i
\(473\) 142.399 38.1557i 0.301055 0.0806675i
\(474\) 123.227 336.685i 0.259973 0.710306i
\(475\) −852.318 62.4048i −1.79435 0.131379i
\(476\) 315.704 82.9446i 0.663243 0.174253i
\(477\) −410.947 591.393i −0.861523 1.23982i
\(478\) 540.412 + 144.803i 1.13057 + 0.302935i
\(479\) 92.7005 + 53.5207i 0.193529 + 0.111734i 0.593634 0.804735i \(-0.297693\pi\)
−0.400104 + 0.916470i \(0.631026\pi\)
\(480\) −11.5210 84.0670i −0.0240021 0.175140i
\(481\) 317.344 183.219i 0.659760 0.380912i
\(482\) −221.217 221.217i −0.458956 0.458956i
\(483\) −541.117 201.047i −1.12033 0.416247i
\(484\) 169.022i 0.349220i
\(485\) 259.841 + 79.9068i 0.535755 + 0.164756i
\(486\) 62.7051 337.885i 0.129023 0.695236i
\(487\) 456.200 122.238i 0.936756 0.251003i 0.242023 0.970271i \(-0.422189\pi\)
0.694733 + 0.719268i \(0.255522\pi\)
\(488\) 53.2689 + 14.2734i 0.109158 + 0.0292487i
\(489\) −13.4560 + 11.2499i −0.0275173 + 0.0230059i
\(490\) 330.167 + 105.069i 0.673811 + 0.214427i
\(491\) 228.035i 0.464431i 0.972664 + 0.232215i \(0.0745974\pi\)
−0.972664 + 0.232215i \(0.925403\pi\)
\(492\) 99.1717 46.0283i 0.201569 0.0935535i
\(493\) −154.645 + 41.4370i −0.313682 + 0.0840508i
\(494\) 250.721 434.262i 0.507532 0.879072i
\(495\) 258.958 82.6481i 0.523147 0.166966i
\(496\) 179.724i 0.362346i
\(497\) 279.907 + 490.320i 0.563193 + 0.986559i
\(498\) −2.43403 + 27.2583i −0.00488760 + 0.0547356i
\(499\) 706.586 407.948i 1.41600 0.817530i 0.420059 0.907497i \(-0.362009\pi\)
0.995945 + 0.0899668i \(0.0286761\pi\)
\(500\) −201.530 147.938i −0.403060 0.295876i
\(501\) −25.6550 + 4.47627i −0.0512075 + 0.00893467i
\(502\) −316.636 84.8425i −0.630750 0.169009i
\(503\) −493.203 + 493.203i −0.980522 + 0.980522i −0.999814 0.0192915i \(-0.993859\pi\)
0.0192915 + 0.999814i \(0.493859\pi\)
\(504\) 14.0279 + 177.638i 0.0278330 + 0.352456i
\(505\) 117.225 + 4.28573i 0.232128 + 0.00848659i
\(506\) 203.365 117.413i 0.401908 0.232042i
\(507\) 150.726 + 105.943i 0.297290 + 0.208960i
\(508\) 108.298 + 404.174i 0.213185 + 0.795617i
\(509\) 715.344 413.004i 1.40539 0.811403i 0.410452 0.911882i \(-0.365371\pi\)
0.994939 + 0.100479i \(0.0320376\pi\)
\(510\) 490.702 + 61.9595i 0.962160 + 0.121489i
\(511\) 9.98307 9.88617i 0.0195363 0.0193467i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 234.085 + 892.789i 0.456306 + 1.74033i
\(514\) −22.8091 + 39.5066i −0.0443757 + 0.0768610i
\(515\) −916.446 + 209.999i −1.77951 + 0.407764i
\(516\) −50.3291 + 137.511i −0.0975370 + 0.266494i
\(517\) 103.127 103.127i 0.199472 0.199472i
\(518\) 1.70555 349.724i 0.00329258 0.675142i
\(519\) 463.626 387.614i 0.893306 0.746848i
\(520\) 129.631 68.6543i 0.249291 0.132028i
\(521\) 70.0727 121.369i 0.134497 0.232955i −0.790908 0.611934i \(-0.790392\pi\)
0.925405 + 0.378980i \(0.123725\pi\)
\(522\) −7.30515 87.0926i −0.0139945 0.166844i
\(523\) −44.3611 + 165.558i −0.0848204 + 0.316554i −0.995280 0.0970437i \(-0.969061\pi\)
0.910460 + 0.413598i \(0.135728\pi\)
\(524\) 299.343i 0.571264i
\(525\) 404.696 + 334.434i 0.770850 + 0.637016i
\(526\) 236.343 0.449322
\(527\) −1011.90 271.137i −1.92011 0.514491i
\(528\) −59.3034 41.6833i −0.112317 0.0789456i
\(529\) −196.258 113.310i −0.370999 0.214196i
\(530\) 264.812 + 500.012i 0.499645 + 0.943419i
\(531\) 180.388 1002.02i 0.339714 1.88703i
\(532\) −237.264 415.621i −0.445984 0.781242i
\(533\) 133.649 + 133.649i 0.250749 + 0.250749i
\(534\) −36.3222 + 99.2406i −0.0680190 + 0.185844i
\(535\) −92.8455 405.183i −0.173543 0.757352i
\(536\) 27.7166 + 16.0022i 0.0517100 + 0.0298548i
\(537\) 44.5670 + 96.0233i 0.0829926 + 0.178814i
\(538\) −348.907 348.907i −0.648526 0.648526i
\(539\) 257.765 145.487i 0.478229 0.269921i
\(540\) −80.7493 + 257.642i −0.149536 + 0.477115i
\(541\) 271.403 + 470.083i 0.501669 + 0.868916i 0.999998 + 0.00192801i \(0.000613704\pi\)
−0.498329 + 0.866988i \(0.666053\pi\)
\(542\) 26.9330 7.21668i 0.0496919 0.0133149i
\(543\) 477.567 + 335.673i 0.879498 + 0.618183i
\(544\) −65.9464 114.223i −0.121225 0.209968i
\(545\) −6.11708 + 167.316i −0.0112240 + 0.307002i
\(546\) −280.048 + 128.322i −0.512908 + 0.235021i
\(547\) −764.656 764.656i −1.39791 1.39791i −0.806017 0.591892i \(-0.798381\pi\)
−0.591892 0.806017i \(-0.701619\pi\)
\(548\) 13.0827 48.8252i 0.0238735 0.0890971i
\(549\) −134.020 113.277i −0.244117 0.206334i
\(550\) −209.776 + 40.0639i −0.381411 + 0.0728435i
\(551\) 117.365 + 203.282i 0.213004 + 0.368933i
\(552\) −20.7453 + 232.324i −0.0375821 + 0.420876i
\(553\) 298.265 510.840i 0.539358 0.923761i
\(554\) 316.909 0.572037
\(555\) 200.194 490.647i 0.360710 0.884049i
\(556\) −411.253 237.437i −0.739664 0.427045i
\(557\) 0.745171 + 2.78102i 0.00133783 + 0.00499285i 0.966592 0.256322i \(-0.0825107\pi\)
−0.965254 + 0.261315i \(0.915844\pi\)
\(558\) 243.542 517.428i 0.436456 0.927290i
\(559\) −253.144 −0.452851
\(560\) 5.79721 139.880i 0.0103522 0.249786i
\(561\) 324.155 271.010i 0.577817 0.483084i
\(562\) 83.0827 310.069i 0.147834 0.551724i
\(563\) −58.0850 216.776i −0.103171 0.385038i 0.894961 0.446145i \(-0.147203\pi\)
−0.998131 + 0.0611074i \(0.980537\pi\)
\(564\) 24.8996 + 142.707i 0.0441481 + 0.253027i
\(565\) 26.2140 85.2428i 0.0463965 0.150872i
\(566\) −135.575 −0.239533
\(567\) 200.329 530.431i 0.353314 0.935505i
\(568\) 161.311 161.311i 0.283999 0.283999i
\(569\) 395.156 + 684.429i 0.694474 + 1.20286i 0.970358 + 0.241673i \(0.0776961\pi\)
−0.275884 + 0.961191i \(0.588971\pi\)
\(570\) −98.4584 718.436i −0.172734 1.26041i
\(571\) −124.910 + 216.351i −0.218757 + 0.378899i −0.954428 0.298440i \(-0.903534\pi\)
0.735671 + 0.677339i \(0.236867\pi\)
\(572\) 32.4332 121.042i 0.0567013 0.211612i
\(573\) −35.2553 + 394.820i −0.0615277 + 0.689039i
\(574\) 174.469 45.8380i 0.303953 0.0798571i
\(575\) 449.152 + 520.120i 0.781134 + 0.904556i
\(576\) 67.7457 24.3828i 0.117614 0.0423312i
\(577\) 22.1831 + 82.7885i 0.0384456 + 0.143481i 0.982481 0.186364i \(-0.0596703\pi\)
−0.944035 + 0.329845i \(0.893004\pi\)
\(578\) 347.812 93.1959i 0.601751 0.161239i
\(579\) −592.125 216.719i −1.02267 0.374298i
\(580\) −2.50878 + 68.6209i −0.00432548 + 0.118312i
\(581\) −11.8990 + 43.5568i −0.0204802 + 0.0749687i
\(582\) −20.5162 + 229.758i −0.0352513 + 0.394774i
\(583\) 466.882 + 125.101i 0.800826 + 0.214581i
\(584\) −4.91642 2.83850i −0.00841853 0.00486044i
\(585\) −466.244 + 21.9943i −0.796998 + 0.0375971i
\(586\) 330.490 190.809i 0.563977 0.325612i
\(587\) 198.002 + 198.002i 0.337312 + 0.337312i 0.855355 0.518043i \(-0.173339\pi\)
−0.518043 + 0.855355i \(0.673339\pi\)
\(588\) −29.0036 + 292.566i −0.0493258 + 0.497561i
\(589\) 1535.92i 2.60767i
\(590\) −235.124 + 764.577i −0.398515 + 1.29589i
\(591\) 68.9218 + 395.013i 0.116619 + 0.668381i
\(592\) −136.496 + 36.5741i −0.230568 + 0.0617805i
\(593\) 957.421 + 256.540i 1.61454 + 0.432614i 0.949391 0.314097i \(-0.101702\pi\)
0.665148 + 0.746712i \(0.268369\pi\)
\(594\) 114.251 + 200.368i 0.192341 + 0.337320i
\(595\) 778.817 + 243.667i 1.30894 + 0.409524i
\(596\) 78.6264i 0.131924i
\(597\) 461.681 + 994.729i 0.773335 + 1.66621i
\(598\) −389.488 + 104.363i −0.651317 + 0.174520i
\(599\) 58.5042 101.332i 0.0976698 0.169169i −0.813050 0.582194i \(-0.802194\pi\)
0.910720 + 0.413025i \(0.135528\pi\)
\(600\) 87.2626 193.353i 0.145438 0.322254i
\(601\) 258.350i 0.429867i 0.976629 + 0.214933i \(0.0689534\pi\)
−0.976629 + 0.214933i \(0.931047\pi\)
\(602\) −121.819 + 208.640i −0.202357 + 0.346578i
\(603\) −58.1120 83.6289i −0.0963715 0.138688i
\(604\) −66.0260 + 38.1201i −0.109315 + 0.0631128i
\(605\) 224.507 357.981i 0.371086 0.591704i
\(606\) 17.1083 + 98.0535i 0.0282316 + 0.161804i
\(607\) −920.381 246.615i −1.51628 0.406285i −0.597763 0.801673i \(-0.703944\pi\)
−0.918514 + 0.395387i \(0.870610\pi\)
\(608\) −136.736 + 136.736i −0.224895 + 0.224895i
\(609\) 13.5256 143.564i 0.0222095 0.235738i
\(610\) 93.8619 + 100.986i 0.153872 + 0.165550i
\(611\) −216.881 + 125.216i −0.354961 + 0.204937i
\(612\) 35.0788 + 418.212i 0.0573182 + 0.683353i
\(613\) 60.5569 + 226.001i 0.0987878 + 0.368681i 0.997566 0.0697216i \(-0.0222111\pi\)
−0.898779 + 0.438403i \(0.855544\pi\)
\(614\) −59.1587 + 34.1553i −0.0963497 + 0.0556275i
\(615\) 271.179 + 34.2409i 0.440941 + 0.0556763i
\(616\) −84.1549 84.9798i −0.136615 0.137954i
\(617\) −722.963 + 722.963i −1.17174 + 1.17174i −0.189945 + 0.981795i \(0.560831\pi\)
−0.981795 + 0.189945i \(0.939169\pi\)
\(618\) −335.862 723.642i −0.543466 1.17094i
\(619\) 164.472 284.874i 0.265706 0.460217i −0.702042 0.712135i \(-0.747728\pi\)
0.967748 + 0.251919i \(0.0810616\pi\)
\(620\) −238.721 + 380.646i −0.385034 + 0.613945i
\(621\) 374.546 640.751i 0.603133 1.03181i
\(622\) −544.337 + 544.337i −0.875139 + 0.875139i
\(623\) −87.9159 + 150.574i −0.141117 + 0.241692i
\(624\) 79.8367 + 95.4928i 0.127943 + 0.153033i
\(625\) −230.329 581.011i −0.368527 0.929617i
\(626\) 325.083 563.060i 0.519302 0.899457i
\(627\) −506.806 356.225i −0.808304 0.568142i
\(628\) −31.0449 + 115.861i −0.0494346 + 0.184492i
\(629\) 823.689i 1.30952i
\(630\) −206.240 + 394.861i −0.327366 + 0.626763i
\(631\) −184.344 −0.292145 −0.146073 0.989274i \(-0.546663\pi\)
−0.146073 + 0.989274i \(0.546663\pi\)
\(632\) −230.874 61.8625i −0.365307 0.0978836i
\(633\) −85.2938 + 121.349i −0.134745 + 0.191704i
\(634\) −22.7822 13.1533i −0.0359341 0.0207465i
\(635\) −307.481 + 999.867i −0.484222 + 1.57459i
\(636\) −368.333 + 307.945i −0.579139 + 0.484190i
\(637\) −492.194 + 126.751i −0.772675 + 0.198981i
\(638\) 41.4788 + 41.4788i 0.0650138 + 0.0650138i
\(639\) −683.009 + 245.826i −1.06887 + 0.384704i
\(640\) −55.1395 + 12.6349i −0.0861554 + 0.0197420i
\(641\) −706.892 408.124i −1.10280 0.636699i −0.165841 0.986152i \(-0.553034\pi\)
−0.936954 + 0.349453i \(0.886367\pi\)
\(642\) 319.940 148.493i 0.498348 0.231297i
\(643\) 18.6427 + 18.6427i 0.0289933 + 0.0289933i 0.721455 0.692462i \(-0.243474\pi\)
−0.692462 + 0.721455i \(0.743474\pi\)
\(644\) −101.415 + 371.236i −0.157477 + 0.576454i
\(645\) −289.245 + 224.390i −0.448443 + 0.347892i
\(646\) −563.577 976.145i −0.872411 1.51106i
\(647\) 936.314 250.884i 1.44716 0.387766i 0.552126 0.833761i \(-0.313817\pi\)
0.895036 + 0.445995i \(0.147150\pi\)
\(648\) −228.082 21.6032i −0.351978 0.0333383i
\(649\) 341.671 + 591.791i 0.526457 + 0.911850i
\(650\) 365.744 + 26.7790i 0.562683 + 0.0411984i
\(651\) 546.341 769.285i 0.839233 1.18170i
\(652\) 8.26804 + 8.26804i 0.0126810 + 0.0126810i
\(653\) −15.6346 + 58.3491i −0.0239427 + 0.0893554i −0.976863 0.213864i \(-0.931395\pi\)
0.952921 + 0.303220i \(0.0980616\pi\)
\(654\) −139.953 + 24.4190i −0.213996 + 0.0373379i
\(655\) 397.607 633.992i 0.607033 0.967927i
\(656\) −36.4442 63.1233i −0.0555552 0.0962245i
\(657\) 10.3080 + 14.8343i 0.0156895 + 0.0225788i
\(658\) −1.16562 + 239.010i −0.00177145 + 0.363236i
\(659\) −397.461 −0.603127 −0.301564 0.953446i \(-0.597509\pi\)
−0.301564 + 0.953446i \(0.597509\pi\)
\(660\) −70.2350 167.054i −0.106417 0.253112i
\(661\) 417.970 + 241.315i 0.632330 + 0.365076i 0.781654 0.623712i \(-0.214376\pi\)
−0.149324 + 0.988788i \(0.547710\pi\)
\(662\) −60.1065 224.320i −0.0907953 0.338853i
\(663\) −658.095 + 305.440i −0.992602 + 0.460694i
\(664\) 18.2445 0.0274767
\(665\) 49.5429 1195.41i 0.0745007 1.79761i
\(666\) 442.536 + 79.6676i 0.664468 + 0.119621i
\(667\) 48.8533 182.323i 0.0732434 0.273348i
\(668\) 4.49354 + 16.7701i 0.00672685 + 0.0251050i
\(669\) 617.184 107.686i 0.922548 0.160966i
\(670\) 37.4471 + 70.7068i 0.0558912 + 0.105532i
\(671\) 117.778 0.175526
\(672\) 117.124 19.8477i 0.174292 0.0295353i
\(673\) 594.528 594.528i 0.883400 0.883400i −0.110479 0.993879i \(-0.535238\pi\)
0.993879 + 0.110479i \(0.0352384\pi\)
\(674\) 182.945 + 316.871i 0.271432 + 0.470135i
\(675\) −513.241 + 438.416i −0.760357 + 0.649506i
\(676\) 61.4113 106.368i 0.0908451 0.157348i
\(677\) −28.8163 + 107.544i −0.0425647 + 0.158854i −0.983937 0.178516i \(-0.942870\pi\)
0.941372 + 0.337369i \(0.109537\pi\)
\(678\) 75.3739 + 6.73050i 0.111171 + 0.00992699i
\(679\) −100.296 + 367.137i −0.147711 + 0.540703i
\(680\) 12.0469 329.512i 0.0177161 0.484576i
\(681\) −226.873 + 619.871i −0.333147 + 0.910236i
\(682\) 99.3429 + 370.753i 0.145664 + 0.543626i
\(683\) −380.211 + 101.877i −0.556678 + 0.149161i −0.526180 0.850373i \(-0.676376\pi\)
−0.0304984 + 0.999535i \(0.509709\pi\)
\(684\) 578.954 208.375i 0.846424 0.304642i
\(685\) 92.5614 86.0320i 0.135126 0.125594i
\(686\) −132.388 + 466.660i −0.192986 + 0.680262i
\(687\) −894.187 79.8463i −1.30158 0.116225i
\(688\) 94.2947 + 25.2662i 0.137056 + 0.0367241i
\(689\) −718.782 414.989i −1.04322 0.602306i
\(690\) −352.525 + 464.494i −0.510906 + 0.673180i
\(691\) 675.459 389.977i 0.977510 0.564366i 0.0759924 0.997108i \(-0.475788\pi\)
0.901517 + 0.432743i \(0.142454\pi\)
\(692\) −284.876 284.876i −0.411670 0.411670i
\(693\) 127.128 + 358.696i 0.183446 + 0.517598i
\(694\) 108.045i 0.155684i
\(695\) −555.633 1049.13i −0.799472 1.50954i
\(696\) −57.3985 + 10.0149i −0.0824691 + 0.0143892i
\(697\) 410.382 109.962i 0.588784 0.157764i
\(698\) −821.556 220.135i −1.17701 0.315380i
\(699\) 230.866 + 276.139i 0.330281 + 0.395049i
\(700\) 198.076 288.558i 0.282966 0.412226i
\(701\) 1193.31i 1.70229i −0.524928 0.851147i \(-0.675908\pi\)
0.524928 0.851147i \(-0.324092\pi\)
\(702\) −100.450 383.111i −0.143091 0.545742i
\(703\) −1166.50 + 312.562i −1.65931 + 0.444611i
\(704\) −24.1624 + 41.8505i −0.0343216 + 0.0594467i
\(705\) −136.818 + 335.320i −0.194068 + 0.475632i
\(706\) 642.977i 0.910733i
\(707\) −0.800889 + 164.222i −0.00113280 + 0.232280i
\(708\) −676.059 60.3685i −0.954885 0.0852663i
\(709\) −787.987 + 454.944i −1.11141 + 0.641671i −0.939193 0.343389i \(-0.888425\pi\)
−0.172213 + 0.985060i \(0.555092\pi\)
\(710\) 555.913 127.384i 0.782977 0.179415i
\(711\) 580.860 + 490.958i 0.816962 + 0.690518i
\(712\) 68.0519 + 18.2344i 0.0955785 + 0.0256102i
\(713\) 873.338 873.338i 1.22488 1.22488i
\(714\) −64.9488 + 689.384i −0.0909647 + 0.965525i
\(715\) 229.468 213.281i 0.320935 0.298296i
\(716\) 61.1192 35.2872i 0.0853621 0.0492838i
\(717\) −682.478 + 970.971i −0.951852 + 1.35421i
\(718\) 72.6529 + 271.144i 0.101188 + 0.377638i
\(719\) 276.671 159.736i 0.384800 0.222164i −0.295105 0.955465i \(-0.595355\pi\)
0.679905 + 0.733301i \(0.262021\pi\)
\(720\) 175.869 + 38.3429i 0.244262 + 0.0532540i
\(721\) −334.473 1273.07i −0.463902 1.76570i
\(722\) −807.544 + 807.544i −1.11848 + 1.11848i
\(723\) 601.973 279.392i 0.832604 0.386435i
\(724\) 194.579 337.020i 0.268755 0.465497i
\(725\) −96.4603 + 142.003i −0.133049 + 0.195866i
\(726\) 336.707 + 123.235i 0.463784 + 0.169745i
\(727\) 962.101 962.101i 1.32338 1.32338i 0.412367 0.911018i \(-0.364702\pi\)
0.911018 0.412367i \(-0.135298\pi\)
\(728\) 101.814 + 178.350i 0.139854 + 0.244986i
\(729\) 627.377 + 371.268i 0.860599 + 0.509283i
\(730\) −6.64244 12.5421i −0.00909924 0.0171810i
\(731\) −284.511 + 492.788i −0.389209 + 0.674129i
\(732\) −67.2724 + 95.7094i −0.0919021 + 0.130751i
\(733\) −101.038 + 377.079i −0.137842 + 0.514433i 0.862128 + 0.506690i \(0.169131\pi\)
−0.999970 + 0.00774251i \(0.997535\pi\)
\(734\) 665.487i 0.906658i
\(735\) −450.034 + 581.115i −0.612291 + 0.790633i
\(736\) 155.499 0.211275
\(737\) 66.0218 + 17.6905i 0.0895818 + 0.0240034i
\(738\) 19.3857 + 231.118i 0.0262679 + 0.313168i
\(739\) −665.653 384.315i −0.900749 0.520047i −0.0233056 0.999728i \(-0.507419\pi\)
−0.877443 + 0.479681i \(0.840752\pi\)
\(740\) −337.672 103.842i −0.456314 0.140326i
\(741\) 682.284 + 816.080i 0.920761 + 1.10132i
\(742\) −687.928 + 392.715i −0.927126 + 0.529265i
\(743\) 411.294 + 411.294i 0.553559 + 0.553559i 0.927466 0.373907i \(-0.121982\pi\)
−0.373907 + 0.927466i \(0.621982\pi\)
\(744\) −358.025 131.038i −0.481217 0.176126i
\(745\) 104.437 166.527i 0.140184 0.223526i
\(746\) 331.818 + 191.575i 0.444796 + 0.256803i
\(747\) −52.5262 24.7230i −0.0703162 0.0330963i
\(748\) −199.178 199.178i −0.266281 0.266281i
\(749\) 562.857 147.879i 0.751477 0.197435i
\(750\) 441.642 293.603i 0.588856 0.391471i
\(751\) 569.327 + 986.103i 0.758091 + 1.31305i 0.943823 + 0.330452i \(0.107201\pi\)
−0.185731 + 0.982601i \(0.559465\pi\)
\(752\) 93.2849 24.9956i 0.124049 0.0332388i
\(753\) 399.875 568.908i 0.531042 0.755522i
\(754\) −50.3633 87.2319i −0.0667949 0.115692i
\(755\) −190.473 6.96370i −0.252283 0.00922345i
\(756\) −364.098 101.572i −0.481611 0.134355i
\(757\) −264.443 264.443i −0.349331 0.349331i 0.510530 0.859860i \(-0.329449\pi\)
−0.859860 + 0.510530i \(0.829449\pi\)
\(758\) −175.156 + 653.692i −0.231077 + 0.862390i
\(759\) 85.6220 + 490.728i 0.112809 + 0.646545i
\(760\) −471.221 + 107.978i