Properties

Label 210.3.w.b.17.4
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.4
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.20828 - 2.03064i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.28576 + 2.57532i) q^{5} +(-2.27330 - 3.58219i) q^{6} +(-1.16075 - 6.90309i) q^{7} +(2.00000 + 2.00000i) q^{8} +(0.752986 + 8.96845i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.20828 - 2.03064i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-4.28576 + 2.57532i) q^{5} +(-2.27330 - 3.58219i) q^{6} +(-1.16075 - 6.90309i) q^{7} +(2.00000 + 2.00000i) q^{8} +(0.752986 + 8.96845i) q^{9} +(-6.79709 + 1.94926i) q^{10} +(-7.83418 - 4.52306i) q^{11} +(-1.79421 - 5.72545i) q^{12} +(-15.3607 - 15.3607i) q^{13} +(0.941098 - 9.85466i) q^{14} +(14.6937 + 3.01581i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-25.1750 + 6.74562i) q^{17} +(-2.25408 + 12.5267i) q^{18} +(-0.500582 - 0.867034i) q^{19} +(-9.99847 + 0.174832i) q^{20} +(-11.4545 + 17.6010i) q^{21} +(-9.04613 - 9.04613i) q^{22} +(-3.42602 + 12.7861i) q^{23} +(-0.355273 - 8.47784i) q^{24} +(11.7354 - 22.0744i) q^{25} +(-15.3607 - 26.6055i) q^{26} +(16.5489 - 21.3339i) q^{27} +(4.89262 - 13.1173i) q^{28} -8.69269 q^{29} +(18.9681 + 9.49794i) q^{30} +(29.5586 + 17.0656i) q^{31} +(1.46410 + 5.46410i) q^{32} +(8.11532 + 25.8966i) q^{33} -36.8588 q^{34} +(22.7524 + 26.5957i) q^{35} +(-7.66423 + 16.2868i) q^{36} +(4.54478 - 16.9613i) q^{37} +(-0.366452 - 1.36762i) q^{38} +(2.72862 + 65.1128i) q^{39} +(-13.7222 - 3.42087i) q^{40} +18.4160 q^{41} +(-22.0895 + 19.8508i) q^{42} +(24.0320 - 24.0320i) q^{43} +(-9.04613 - 15.6684i) q^{44} +(-26.3238 - 36.4974i) q^{45} +(-9.36005 + 16.2121i) q^{46} +(8.15043 - 30.4178i) q^{47} +(2.61779 - 11.7110i) q^{48} +(-46.3053 + 16.0255i) q^{49} +(24.1107 - 25.8587i) q^{50} +(69.2914 + 36.2252i) q^{51} +(-11.2448 - 41.9662i) q^{52} +(48.0000 - 12.8616i) q^{53} +(30.4150 - 23.0853i) q^{54} +(45.2237 - 0.790777i) q^{55} +(11.4847 - 16.1277i) q^{56} +(-0.655210 + 2.93115i) q^{57} +(-11.8744 - 3.18175i) q^{58} +(-78.7190 - 45.4484i) q^{59} +(22.4344 + 19.9172i) q^{60} +(56.9490 - 32.8795i) q^{61} +(34.1313 + 34.1313i) q^{62} +(61.0360 - 15.6080i) q^{63} +8.00000i q^{64} +(105.391 + 26.2735i) q^{65} +(1.60692 + 38.3458i) q^{66} +(-13.1252 + 3.51690i) q^{67} +(-50.3500 - 13.4912i) q^{68} +(33.5295 - 21.2782i) q^{69} +(21.3456 + 44.6583i) q^{70} +86.5925i q^{71} +(-16.4309 + 19.4429i) q^{72} +(-100.506 + 26.9306i) q^{73} +(12.4166 - 21.5061i) q^{74} +(-70.7403 + 24.9160i) q^{75} -2.00233i q^{76} +(-22.1296 + 59.3302i) q^{77} +(-20.1056 + 89.9444i) q^{78} +(-69.3172 + 40.0203i) q^{79} +(-17.4927 - 9.69565i) q^{80} +(-79.8660 + 13.5062i) q^{81} +(25.1568 + 6.74074i) q^{82} +(11.6859 - 11.6859i) q^{83} +(-37.4407 + 19.0314i) q^{84} +(90.5218 - 93.7439i) q^{85} +(41.6247 - 24.0320i) q^{86} +(19.1959 + 17.6518i) q^{87} +(-6.62222 - 24.7145i) q^{88} +(62.2002 - 35.9113i) q^{89} +(-22.5999 - 59.4915i) q^{90} +(-88.2064 + 123.866i) q^{91} +(-18.7201 + 18.7201i) q^{92} +(-30.6193 - 97.7085i) q^{93} +(22.2674 - 38.5682i) q^{94} +(4.37826 + 2.42674i) q^{95} +(7.86249 - 15.0393i) q^{96} +(5.41316 - 5.41316i) q^{97} +(-69.1200 + 4.94228i) q^{98} +(34.6658 - 73.6662i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −2.20828 2.03064i −0.736093 0.676881i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −4.28576 + 2.57532i −0.857151 + 0.515064i
\(6\) −2.27330 3.58219i −0.378883 0.597032i
\(7\) −1.16075 6.90309i −0.165821 0.986156i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0.752986 + 8.96845i 0.0836651 + 0.996494i
\(10\) −6.79709 + 1.94926i −0.679709 + 0.194926i
\(11\) −7.83418 4.52306i −0.712198 0.411188i 0.0996765 0.995020i \(-0.468219\pi\)
−0.811874 + 0.583832i \(0.801553\pi\)
\(12\) −1.79421 5.72545i −0.149517 0.477121i
\(13\) −15.3607 15.3607i −1.18159 1.18159i −0.979332 0.202260i \(-0.935171\pi\)
−0.202260 0.979332i \(-0.564829\pi\)
\(14\) 0.941098 9.85466i 0.0672213 0.703904i
\(15\) 14.6937 + 3.01581i 0.979580 + 0.201054i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −25.1750 + 6.74562i −1.48088 + 0.396801i −0.906648 0.421889i \(-0.861367\pi\)
−0.574235 + 0.818690i \(0.694701\pi\)
\(18\) −2.25408 + 12.5267i −0.125227 + 0.695930i
\(19\) −0.500582 0.867034i −0.0263464 0.0456333i 0.852552 0.522643i \(-0.175054\pi\)
−0.878898 + 0.477010i \(0.841721\pi\)
\(20\) −9.99847 + 0.174832i −0.499924 + 0.00874161i
\(21\) −11.4545 + 17.6010i −0.545450 + 0.838143i
\(22\) −9.04613 9.04613i −0.411188 0.411188i
\(23\) −3.42602 + 12.7861i −0.148957 + 0.555916i 0.850590 + 0.525829i \(0.176245\pi\)
−0.999547 + 0.0300867i \(0.990422\pi\)
\(24\) −0.355273 8.47784i −0.0148030 0.353243i
\(25\) 11.7354 22.0744i 0.469417 0.882977i
\(26\) −15.3607 26.6055i −0.590796 1.02329i
\(27\) 16.5489 21.3339i 0.612922 0.790143i
\(28\) 4.89262 13.1173i 0.174736 0.468473i
\(29\) −8.69269 −0.299748 −0.149874 0.988705i \(-0.547887\pi\)
−0.149874 + 0.988705i \(0.547887\pi\)
\(30\) 18.9681 + 9.49794i 0.632270 + 0.316598i
\(31\) 29.5586 + 17.0656i 0.953502 + 0.550504i 0.894167 0.447734i \(-0.147769\pi\)
0.0593347 + 0.998238i \(0.481102\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 8.11532 + 25.8966i 0.245919 + 0.784745i
\(34\) −36.8588 −1.08408
\(35\) 22.7524 + 26.5957i 0.650068 + 0.759876i
\(36\) −7.66423 + 16.2868i −0.212895 + 0.452411i
\(37\) 4.54478 16.9613i 0.122832 0.458414i −0.876921 0.480634i \(-0.840407\pi\)
0.999753 + 0.0222195i \(0.00707326\pi\)
\(38\) −0.366452 1.36762i −0.00964346 0.0359899i
\(39\) 2.72862 + 65.1128i 0.0699645 + 1.66956i
\(40\) −13.7222 3.42087i −0.343054 0.0855217i
\(41\) 18.4160 0.449172 0.224586 0.974454i \(-0.427897\pi\)
0.224586 + 0.974454i \(0.427897\pi\)
\(42\) −22.0895 + 19.8508i −0.525940 + 0.472638i
\(43\) 24.0320 24.0320i 0.558885 0.558885i −0.370105 0.928990i \(-0.620678\pi\)
0.928990 + 0.370105i \(0.120678\pi\)
\(44\) −9.04613 15.6684i −0.205594 0.356099i
\(45\) −26.3238 36.4974i −0.584972 0.811053i
\(46\) −9.36005 + 16.2121i −0.203479 + 0.352437i
\(47\) 8.15043 30.4178i 0.173413 0.647188i −0.823403 0.567457i \(-0.807927\pi\)
0.996816 0.0797306i \(-0.0254060\pi\)
\(48\) 2.61779 11.7110i 0.0545374 0.243979i
\(49\) −46.3053 + 16.0255i −0.945007 + 0.327051i
\(50\) 24.1107 25.8587i 0.482214 0.517175i
\(51\) 69.2914 + 36.2252i 1.35865 + 0.710298i
\(52\) −11.2448 41.9662i −0.216246 0.807042i
\(53\) 48.0000 12.8616i 0.905660 0.242671i 0.224214 0.974540i \(-0.428018\pi\)
0.681445 + 0.731869i \(0.261352\pi\)
\(54\) 30.4150 23.0853i 0.563240 0.427505i
\(55\) 45.2237 0.790777i 0.822249 0.0143778i
\(56\) 11.4847 16.1277i 0.205084 0.287994i
\(57\) −0.655210 + 2.93115i −0.0114949 + 0.0514238i
\(58\) −11.8744 3.18175i −0.204732 0.0548577i
\(59\) −78.7190 45.4484i −1.33422 0.770312i −0.348277 0.937392i \(-0.613233\pi\)
−0.985943 + 0.167079i \(0.946566\pi\)
\(60\) 22.4344 + 19.9172i 0.373907 + 0.331954i
\(61\) 56.9490 32.8795i 0.933589 0.539008i 0.0456445 0.998958i \(-0.485466\pi\)
0.887945 + 0.459950i \(0.152133\pi\)
\(62\) 34.1313 + 34.1313i 0.550504 + 0.550504i
\(63\) 61.0360 15.6080i 0.968825 0.247746i
\(64\) 8.00000i 0.125000i
\(65\) 105.391 + 26.2735i 1.62140 + 0.404207i
\(66\) 1.60692 + 38.3458i 0.0243473 + 0.580997i
\(67\) −13.1252 + 3.51690i −0.195899 + 0.0524910i −0.355434 0.934701i \(-0.615667\pi\)
0.159535 + 0.987192i \(0.449000\pi\)
\(68\) −50.3500 13.4912i −0.740441 0.198401i
\(69\) 33.5295 21.2782i 0.485935 0.308380i
\(70\) 21.3456 + 44.6583i 0.304937 + 0.637976i
\(71\) 86.5925i 1.21961i 0.792551 + 0.609806i \(0.208753\pi\)
−0.792551 + 0.609806i \(0.791247\pi\)
\(72\) −16.4309 + 19.4429i −0.228207 + 0.270040i
\(73\) −100.506 + 26.9306i −1.37680 + 0.368913i −0.869958 0.493126i \(-0.835854\pi\)
−0.506843 + 0.862039i \(0.669187\pi\)
\(74\) 12.4166 21.5061i 0.167791 0.290623i
\(75\) −70.7403 + 24.9160i −0.943204 + 0.332213i
\(76\) 2.00233i 0.0263464i
\(77\) −22.1296 + 59.3302i −0.287398 + 0.770521i
\(78\) −20.1056 + 89.9444i −0.257764 + 1.15313i
\(79\) −69.3172 + 40.0203i −0.877433 + 0.506586i −0.869811 0.493385i \(-0.835760\pi\)
−0.00762204 + 0.999971i \(0.502426\pi\)
\(80\) −17.4927 9.69565i −0.218659 0.121196i
\(81\) −79.8660 + 13.5062i −0.986000 + 0.166744i
\(82\) 25.1568 + 6.74074i 0.306790 + 0.0822041i
\(83\) 11.6859 11.6859i 0.140794 0.140794i −0.633197 0.773991i \(-0.718258\pi\)
0.773991 + 0.633197i \(0.218258\pi\)
\(84\) −37.4407 + 19.0314i −0.445723 + 0.226564i
\(85\) 90.5218 93.7439i 1.06496 1.10287i
\(86\) 41.6247 24.0320i 0.484008 0.279442i
\(87\) 19.1959 + 17.6518i 0.220642 + 0.202894i
\(88\) −6.62222 24.7145i −0.0752525 0.280846i
\(89\) 62.2002 35.9113i 0.698879 0.403498i −0.108051 0.994145i \(-0.534461\pi\)
0.806930 + 0.590648i \(0.201128\pi\)
\(90\) −22.5999 59.4915i −0.251110 0.661017i
\(91\) −88.2064 + 123.866i −0.969301 + 1.36117i
\(92\) −18.7201 + 18.7201i −0.203479 + 0.203479i
\(93\) −30.6193 97.7085i −0.329240 1.05063i
\(94\) 22.2674 38.5682i 0.236887 0.410301i
\(95\) 4.37826 + 2.42674i 0.0460870 + 0.0255446i
\(96\) 7.86249 15.0393i 0.0819009 0.156660i
\(97\) 5.41316 5.41316i 0.0558058 0.0558058i −0.678653 0.734459i \(-0.737436\pi\)
0.734459 + 0.678653i \(0.237436\pi\)
\(98\) −69.1200 + 4.94228i −0.705306 + 0.0504314i
\(99\) 34.6658 73.6662i 0.350160 0.744103i
\(100\) 42.4008 26.4986i 0.424008 0.264986i
\(101\) −77.7709 + 134.703i −0.770009 + 1.33370i 0.167548 + 0.985864i \(0.446415\pi\)
−0.937557 + 0.347831i \(0.886918\pi\)
\(102\) 81.3944 + 74.8470i 0.797985 + 0.733794i
\(103\) −15.4924 + 57.8186i −0.150412 + 0.561345i 0.849043 + 0.528324i \(0.177179\pi\)
−0.999455 + 0.0330210i \(0.989487\pi\)
\(104\) 61.4428i 0.590796i
\(105\) 3.76275 104.933i 0.0358357 0.999358i
\(106\) 70.2768 0.662989
\(107\) 93.8880 + 25.1572i 0.877458 + 0.235114i 0.669310 0.742983i \(-0.266590\pi\)
0.208148 + 0.978097i \(0.433256\pi\)
\(108\) 49.9974 20.4024i 0.462939 0.188912i
\(109\) −180.188 104.032i −1.65310 0.954419i −0.975786 0.218726i \(-0.929810\pi\)
−0.677315 0.735693i \(-0.736857\pi\)
\(110\) 62.0662 + 15.4728i 0.564238 + 0.140662i
\(111\) −44.4785 + 28.2265i −0.400707 + 0.254293i
\(112\) 21.5915 17.8271i 0.192781 0.159171i
\(113\) −36.4626 36.4626i −0.322678 0.322678i 0.527115 0.849794i \(-0.323274\pi\)
−0.849794 + 0.527115i \(0.823274\pi\)
\(114\) −1.96791 + 3.76421i −0.0172624 + 0.0330194i
\(115\) −18.2452 63.6211i −0.158654 0.553227i
\(116\) −15.0562 8.69269i −0.129795 0.0749370i
\(117\) 126.195 149.328i 1.07859 1.27631i
\(118\) −90.8969 90.8969i −0.770312 0.770312i
\(119\) 75.7874 + 165.955i 0.636869 + 1.39458i
\(120\) 23.3558 + 35.4190i 0.194632 + 0.295159i
\(121\) −19.5838 33.9201i −0.161850 0.280332i
\(122\) 89.8285 24.0695i 0.736299 0.197291i
\(123\) −40.6677 37.3964i −0.330632 0.304036i
\(124\) 34.1313 + 59.1171i 0.275252 + 0.476751i
\(125\) 6.55354 + 124.828i 0.0524283 + 0.998625i
\(126\) 89.0896 + 1.01976i 0.707060 + 0.00809334i
\(127\) −18.3314 18.3314i −0.144342 0.144342i 0.631243 0.775585i \(-0.282545\pi\)
−0.775585 + 0.631243i \(0.782545\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −101.870 + 4.26896i −0.789689 + 0.0330927i
\(130\) 134.350 + 74.4660i 1.03346 + 0.572815i
\(131\) −82.2663 142.489i −0.627987 1.08771i −0.987955 0.154741i \(-0.950546\pi\)
0.359968 0.932965i \(-0.382788\pi\)
\(132\) −11.8404 + 52.9695i −0.0897003 + 0.401284i
\(133\) −5.40416 + 4.46197i −0.0406328 + 0.0335486i
\(134\) −19.2167 −0.143408
\(135\) −15.9830 + 134.051i −0.118392 + 0.992967i
\(136\) −63.8413 36.8588i −0.469421 0.271020i
\(137\) −60.3021 225.051i −0.440162 1.64271i −0.728404 0.685148i \(-0.759738\pi\)
0.288243 0.957557i \(-0.406929\pi\)
\(138\) 53.5906 16.7939i 0.388337 0.121695i
\(139\) 254.372 1.83002 0.915008 0.403436i \(-0.132184\pi\)
0.915008 + 0.403436i \(0.132184\pi\)
\(140\) 12.8126 + 68.8174i 0.0915184 + 0.491553i
\(141\) −79.7661 + 50.6204i −0.565717 + 0.359010i
\(142\) −31.6950 + 118.288i −0.223205 + 0.833011i
\(143\) 50.8610 + 189.816i 0.355671 + 1.32738i
\(144\) −29.5616 + 20.5453i −0.205289 + 0.142676i
\(145\) 37.2548 22.3865i 0.256930 0.154390i
\(146\) −147.152 −1.00789
\(147\) 134.797 + 58.6409i 0.916987 + 0.398917i
\(148\) 24.8331 24.8331i 0.167791 0.167791i
\(149\) −56.7486 98.2914i −0.380863 0.659674i 0.610323 0.792153i \(-0.291040\pi\)
−0.991186 + 0.132479i \(0.957706\pi\)
\(150\) −105.753 + 8.14313i −0.705020 + 0.0542875i
\(151\) 52.1826 90.3830i 0.345580 0.598563i −0.639879 0.768476i \(-0.721015\pi\)
0.985459 + 0.169913i \(0.0543488\pi\)
\(152\) 0.732903 2.73523i 0.00482173 0.0179949i
\(153\) −79.4542 220.701i −0.519308 1.44249i
\(154\) −51.9460 + 72.9465i −0.337312 + 0.473679i
\(155\) −170.630 + 2.98362i −1.10084 + 0.0192492i
\(156\) −60.3867 + 115.507i −0.387094 + 0.740431i
\(157\) −52.0236 194.155i −0.331361 1.23666i −0.907761 0.419488i \(-0.862210\pi\)
0.576400 0.817168i \(-0.304457\pi\)
\(158\) −109.338 + 29.2969i −0.692010 + 0.185423i
\(159\) −132.114 69.0689i −0.830909 0.434395i
\(160\) −20.3466 19.6473i −0.127166 0.122795i
\(161\) 92.2402 + 8.80873i 0.572920 + 0.0547126i
\(162\) −114.043 10.7831i −0.703967 0.0665626i
\(163\) 108.249 + 29.0052i 0.664103 + 0.177946i 0.575097 0.818085i \(-0.304964\pi\)
0.0890058 + 0.996031i \(0.471631\pi\)
\(164\) 31.8975 + 18.4160i 0.194497 + 0.112293i
\(165\) −101.472 90.0869i −0.614984 0.545981i
\(166\) 20.2405 11.6859i 0.121931 0.0703968i
\(167\) −226.123 226.123i −1.35403 1.35403i −0.881103 0.472925i \(-0.843198\pi\)
−0.472925 0.881103i \(-0.656802\pi\)
\(168\) −58.1109 + 12.2931i −0.345898 + 0.0731732i
\(169\) 302.902i 1.79232i
\(170\) 157.968 94.9232i 0.929222 0.558372i
\(171\) 7.39901 5.14231i 0.0432691 0.0300720i
\(172\) 65.6568 17.5927i 0.381725 0.102283i
\(173\) −107.227 28.7313i −0.619808 0.166077i −0.0647675 0.997900i \(-0.520631\pi\)
−0.555040 + 0.831823i \(0.687297\pi\)
\(174\) 19.7611 + 31.1389i 0.113569 + 0.178959i
\(175\) −166.004 55.3879i −0.948592 0.316503i
\(176\) 36.1845i 0.205594i
\(177\) 81.5440 + 260.213i 0.460700 + 1.47013i
\(178\) 98.1115 26.2889i 0.551188 0.147690i
\(179\) 97.3690 168.648i 0.543961 0.942168i −0.454711 0.890639i \(-0.650257\pi\)
0.998672 0.0515286i \(-0.0164093\pi\)
\(180\) −9.09668 89.5391i −0.0505371 0.497439i
\(181\) 252.910i 1.39729i 0.715468 + 0.698645i \(0.246213\pi\)
−0.715468 + 0.698645i \(0.753787\pi\)
\(182\) −165.830 + 136.919i −0.911156 + 0.752299i
\(183\) −192.526 43.0359i −1.05205 0.235169i
\(184\) −32.4242 + 18.7201i −0.176218 + 0.101740i
\(185\) 24.2031 + 84.3964i 0.130828 + 0.456197i
\(186\) −6.06295 144.680i −0.0325965 0.777848i
\(187\) 227.736 + 61.0218i 1.21784 + 0.326320i
\(188\) 44.5348 44.5348i 0.236887 0.236887i
\(189\) −166.479 89.4753i −0.880840 0.473415i
\(190\) 5.09257 + 4.91754i 0.0268030 + 0.0258818i
\(191\) −34.4963 + 19.9164i −0.180609 + 0.104274i −0.587579 0.809167i \(-0.699919\pi\)
0.406970 + 0.913442i \(0.366585\pi\)
\(192\) 16.2451 17.6662i 0.0846101 0.0920116i
\(193\) 0.418109 + 1.56040i 0.00216637 + 0.00808500i 0.967001 0.254774i \(-0.0820012\pi\)
−0.964834 + 0.262859i \(0.915335\pi\)
\(194\) 9.37587 5.41316i 0.0483292 0.0279029i
\(195\) −179.381 272.030i −0.919900 1.39503i
\(196\) −96.2287 18.5484i −0.490963 0.0946347i
\(197\) −61.6336 + 61.6336i −0.312861 + 0.312861i −0.846017 0.533156i \(-0.821006\pi\)
0.533156 + 0.846017i \(0.321006\pi\)
\(198\) 74.3181 87.9413i 0.375344 0.444148i
\(199\) −95.7953 + 165.922i −0.481383 + 0.833781i −0.999772 0.0213648i \(-0.993199\pi\)
0.518388 + 0.855145i \(0.326532\pi\)
\(200\) 67.6197 20.6780i 0.338098 0.103390i
\(201\) 36.1258 + 18.8864i 0.179730 + 0.0939621i
\(202\) −155.542 + 155.542i −0.770009 + 0.770009i
\(203\) 10.0900 + 60.0065i 0.0497045 + 0.295598i
\(204\) 83.7910 + 132.035i 0.410740 + 0.647232i
\(205\) −78.9266 + 47.4272i −0.385008 + 0.231352i
\(206\) −42.3261 + 73.3110i −0.205467 + 0.355879i
\(207\) −117.251 21.0983i −0.566430 0.101924i
\(208\) 22.4896 83.9324i 0.108123 0.403521i
\(209\) 9.05666i 0.0433333i
\(210\) 43.5480 141.963i 0.207371 0.676016i
\(211\) −339.969 −1.61123 −0.805614 0.592441i \(-0.798164\pi\)
−0.805614 + 0.592441i \(0.798164\pi\)
\(212\) 95.9999 + 25.7231i 0.452830 + 0.121335i
\(213\) 175.838 191.220i 0.825532 0.897748i
\(214\) 119.045 + 68.7308i 0.556286 + 0.321172i
\(215\) −41.1052 + 164.886i −0.191187 + 0.766910i
\(216\) 75.7655 9.56994i 0.350766 0.0443053i
\(217\) 83.4957 223.854i 0.384773 1.03159i
\(218\) −208.063 208.063i −0.954419 0.954419i
\(219\) 276.633 + 144.622i 1.26316 + 0.660376i
\(220\) 79.1206 + 43.8541i 0.359639 + 0.199337i
\(221\) 490.323 + 283.088i 2.21866 + 1.28094i
\(222\) −71.0904 + 22.2779i −0.320227 + 0.100351i
\(223\) 214.803 + 214.803i 0.963244 + 0.963244i 0.999348 0.0361038i \(-0.0114947\pi\)
−0.0361038 + 0.999348i \(0.511495\pi\)
\(224\) 36.0197 16.4493i 0.160802 0.0734342i
\(225\) 206.810 + 88.6268i 0.919155 + 0.393897i
\(226\) −36.4626 63.1551i −0.161339 0.279448i
\(227\) 115.836 31.0382i 0.510292 0.136732i 0.00551960 0.999985i \(-0.498243\pi\)
0.504772 + 0.863252i \(0.331576\pi\)
\(228\) −4.06601 + 4.42170i −0.0178334 + 0.0193934i
\(229\) 3.87396 + 6.70989i 0.0169168 + 0.0293008i 0.874360 0.485278i \(-0.161282\pi\)
−0.857443 + 0.514579i \(0.827948\pi\)
\(230\) −1.63644 93.5862i −0.00711495 0.406897i
\(231\) 169.347 86.0801i 0.733103 0.372641i
\(232\) −17.3854 17.3854i −0.0749370 0.0749370i
\(233\) 24.7867 92.5053i 0.106381 0.397018i −0.892117 0.451804i \(-0.850781\pi\)
0.998498 + 0.0547853i \(0.0174474\pi\)
\(234\) 227.044 157.795i 0.970272 0.674338i
\(235\) 43.4049 + 151.353i 0.184702 + 0.644057i
\(236\) −90.8969 157.438i −0.385156 0.667110i
\(237\) 234.339 + 52.3825i 0.988771 + 0.221023i
\(238\) 42.7837 + 254.439i 0.179763 + 1.06907i
\(239\) 22.0230 0.0921463 0.0460732 0.998938i \(-0.485329\pi\)
0.0460732 + 0.998938i \(0.485329\pi\)
\(240\) 18.9403 + 56.9321i 0.0789181 + 0.237217i
\(241\) 245.178 + 141.553i 1.01733 + 0.587358i 0.913331 0.407218i \(-0.133501\pi\)
0.104004 + 0.994577i \(0.466835\pi\)
\(242\) −14.3363 53.5039i −0.0592411 0.221091i
\(243\) 203.793 + 132.354i 0.838653 + 0.544666i
\(244\) 131.518 0.539008
\(245\) 157.183 187.932i 0.641562 0.767071i
\(246\) −41.8651 65.9698i −0.170183 0.268170i
\(247\) −5.62895 + 21.0075i −0.0227893 + 0.0850507i
\(248\) 24.9858 + 93.2484i 0.100749 + 0.376002i
\(249\) −49.5355 + 2.07584i −0.198938 + 0.00833669i
\(250\) −36.7380 + 172.917i −0.146952 + 0.691668i
\(251\) 457.677 1.82341 0.911707 0.410841i \(-0.134765\pi\)
0.911707 + 0.410841i \(0.134765\pi\)
\(252\) 121.325 + 34.0021i 0.481450 + 0.134929i
\(253\) 84.6722 84.6722i 0.334673 0.334673i
\(254\) −18.3314 31.7510i −0.0721710 0.125004i
\(255\) −390.258 + 23.1951i −1.53042 + 0.0909614i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 4.46476 16.6627i 0.0173726 0.0648355i −0.956695 0.291091i \(-0.905982\pi\)
0.974068 + 0.226256i \(0.0726484\pi\)
\(258\) −140.719 31.4555i −0.545424 0.121920i
\(259\) −122.361 11.6852i −0.472436 0.0451166i
\(260\) 156.269 + 150.898i 0.601035 + 0.580377i
\(261\) −6.54548 77.9600i −0.0250785 0.298697i
\(262\) −60.2231 224.756i −0.229859 0.857847i
\(263\) −77.8737 + 20.8662i −0.296098 + 0.0793392i −0.403810 0.914843i \(-0.632314\pi\)
0.107712 + 0.994182i \(0.465648\pi\)
\(264\) −35.5625 + 68.0238i −0.134707 + 0.257666i
\(265\) −172.594 + 178.737i −0.651296 + 0.674479i
\(266\) −9.01542 + 4.11710i −0.0338926 + 0.0154778i
\(267\) −210.278 47.0042i −0.787560 0.176046i
\(268\) −26.2505 7.03380i −0.0979496 0.0262455i
\(269\) −324.065 187.099i −1.20470 0.695534i −0.243104 0.970000i \(-0.578166\pi\)
−0.961597 + 0.274466i \(0.911499\pi\)
\(270\) −70.8990 + 177.266i −0.262589 + 0.656542i
\(271\) 360.726 208.265i 1.33109 0.768506i 0.345624 0.938373i \(-0.387667\pi\)
0.985467 + 0.169867i \(0.0543339\pi\)
\(272\) −73.7175 73.7175i −0.271020 0.271020i
\(273\) 446.312 94.4153i 1.63484 0.345844i
\(274\) 329.497i 1.20254i
\(275\) −191.781 + 119.855i −0.697387 + 0.435835i
\(276\) 79.3530 3.32537i 0.287511 0.0120484i
\(277\) −137.721 + 36.9022i −0.497187 + 0.133221i −0.498694 0.866778i \(-0.666187\pi\)
0.00150717 + 0.999999i \(0.499520\pi\)
\(278\) 347.479 + 93.1067i 1.24992 + 0.334916i
\(279\) −130.795 + 277.944i −0.468799 + 0.996217i
\(280\) −7.68663 + 98.6961i −0.0274522 + 0.352486i
\(281\) 62.0801i 0.220926i −0.993880 0.110463i \(-0.964767\pi\)
0.993880 0.110463i \(-0.0352333\pi\)
\(282\) −127.491 + 39.9523i −0.452095 + 0.141675i
\(283\) 39.5986 10.6104i 0.139924 0.0374926i −0.188177 0.982135i \(-0.560258\pi\)
0.328101 + 0.944642i \(0.393591\pi\)
\(284\) −86.5925 + 149.983i −0.304903 + 0.528108i
\(285\) −4.74060 14.2496i −0.0166337 0.0499986i
\(286\) 277.910i 0.971712i
\(287\) −21.3763 127.128i −0.0744820 0.442953i
\(288\) −47.9020 + 17.2451i −0.166327 + 0.0598788i
\(289\) 337.996 195.142i 1.16954 0.675233i
\(290\) 59.0850 16.9443i 0.203741 0.0584287i
\(291\) −22.9460 + 0.961574i −0.0788521 + 0.00330438i
\(292\) −201.013 53.8612i −0.688400 0.184456i
\(293\) −368.013 + 368.013i −1.25602 + 1.25602i −0.303038 + 0.952978i \(0.598001\pi\)
−0.952978 + 0.303038i \(0.901999\pi\)
\(294\) 162.672 + 129.444i 0.553307 + 0.440286i
\(295\) 454.415 7.94585i 1.54039 0.0269351i
\(296\) 43.0122 24.8331i 0.145312 0.0838957i
\(297\) −226.141 + 92.2816i −0.761419 + 0.310712i
\(298\) −41.5428 155.040i −0.139406 0.520268i
\(299\) 249.029 143.777i 0.832873 0.480859i
\(300\) −147.442 27.5846i −0.491473 0.0919485i
\(301\) −193.790 138.000i −0.643822 0.458473i
\(302\) 104.365 104.365i 0.345580 0.345580i
\(303\) 445.274 139.537i 1.46955 0.460519i
\(304\) 2.00233 3.46813i 0.00658661 0.0114083i
\(305\) −159.394 + 287.575i −0.522604 + 0.942870i
\(306\) −27.7541 330.566i −0.0906998 1.08028i
\(307\) −50.8387 + 50.8387i −0.165598 + 0.165598i −0.785042 0.619443i \(-0.787358\pi\)
0.619443 + 0.785042i \(0.287358\pi\)
\(308\) −97.6598 + 80.6332i −0.317077 + 0.261796i
\(309\) 151.620 96.2199i 0.490681 0.311391i
\(310\) −234.177 58.3793i −0.755411 0.188320i
\(311\) 49.3893 85.5448i 0.158808 0.275064i −0.775631 0.631187i \(-0.782568\pi\)
0.934439 + 0.356123i \(0.115902\pi\)
\(312\) −124.768 + 135.683i −0.399898 + 0.434881i
\(313\) −98.5456 + 367.777i −0.314842 + 1.17501i 0.609294 + 0.792944i \(0.291453\pi\)
−0.924136 + 0.382063i \(0.875214\pi\)
\(314\) 284.262i 0.905295i
\(315\) −221.390 + 224.079i −0.702824 + 0.711363i
\(316\) −160.081 −0.506586
\(317\) −195.717 52.4421i −0.617402 0.165432i −0.0634558 0.997985i \(-0.520212\pi\)
−0.553947 + 0.832552i \(0.686879\pi\)
\(318\) −155.191 142.707i −0.488021 0.448764i
\(319\) 68.1001 + 39.3176i 0.213480 + 0.123253i
\(320\) −20.6026 34.2861i −0.0643831 0.107144i
\(321\) −156.246 246.207i −0.486746 0.767000i
\(322\) 122.778 + 45.7952i 0.381299 + 0.142221i
\(323\) 18.4508 + 18.4508i 0.0571233 + 0.0571233i
\(324\) −151.838 56.4725i −0.468637 0.174298i
\(325\) −519.343 + 158.814i −1.59798 + 0.488658i
\(326\) 137.254 + 79.2436i 0.421024 + 0.243078i
\(327\) 186.654 + 595.628i 0.570809 + 1.82149i
\(328\) 36.8321 + 36.8321i 0.112293 + 0.112293i
\(329\) −219.438 20.9558i −0.666983 0.0636954i
\(330\) −105.640 160.202i −0.320120 0.485462i
\(331\) −260.425 451.069i −0.786782 1.36275i −0.927929 0.372758i \(-0.878412\pi\)
0.141147 0.989989i \(-0.454921\pi\)
\(332\) 31.9264 8.55465i 0.0961639 0.0257670i
\(333\) 155.539 + 27.9879i 0.467084 + 0.0840478i
\(334\) −226.123 391.656i −0.677014 1.17262i
\(335\) 47.1945 48.8743i 0.140879 0.145893i
\(336\) −83.8806 4.47739i −0.249645 0.0133256i
\(337\) 319.919 + 319.919i 0.949314 + 0.949314i 0.998776 0.0494620i \(-0.0157507\pi\)
−0.0494620 + 0.998776i \(0.515751\pi\)
\(338\) −110.870 + 413.772i −0.328017 + 1.22418i
\(339\) 6.47709 + 154.562i 0.0191065 + 0.455936i
\(340\) 250.532 71.8473i 0.736860 0.211316i
\(341\) −154.378 267.390i −0.452721 0.784136i
\(342\) 11.9895 4.31630i 0.0350569 0.0126207i
\(343\) 164.374 + 301.048i 0.479225 + 0.877692i
\(344\) 96.1282 0.279442
\(345\) −88.9012 + 177.543i −0.257685 + 0.514616i
\(346\) −135.958 78.4955i −0.392943 0.226865i
\(347\) −56.7622 211.839i −0.163580 0.610488i −0.998217 0.0596883i \(-0.980989\pi\)
0.834637 0.550800i \(-0.185677\pi\)
\(348\) 15.5965 + 49.7696i 0.0448175 + 0.143016i
\(349\) 236.118 0.676555 0.338277 0.941046i \(-0.390156\pi\)
0.338277 + 0.941046i \(0.390156\pi\)
\(350\) −206.492 136.423i −0.589976 0.389780i
\(351\) −581.906 + 73.5005i −1.65785 + 0.209403i
\(352\) 13.2444 49.4290i 0.0376263 0.140423i
\(353\) 70.0392 + 261.390i 0.198411 + 0.740481i 0.991357 + 0.131189i \(0.0418795\pi\)
−0.792946 + 0.609292i \(0.791454\pi\)
\(354\) 16.1466 + 385.305i 0.0456118 + 1.08843i
\(355\) −223.004 371.114i −0.628179 1.04539i
\(356\) 143.645 0.403498
\(357\) 169.636 520.373i 0.475172 1.45763i
\(358\) 194.738 194.738i 0.543961 0.543961i
\(359\) −25.7908 44.6709i −0.0718405 0.124431i 0.827867 0.560924i \(-0.189554\pi\)
−0.899708 + 0.436492i \(0.856221\pi\)
\(360\) 20.3473 125.642i 0.0565202 0.349006i
\(361\) 179.999 311.767i 0.498612 0.863621i
\(362\) −92.5713 + 345.481i −0.255722 + 0.954367i
\(363\) −25.6332 + 114.673i −0.0706148 + 0.315903i
\(364\) −276.644 + 126.336i −0.760011 + 0.347077i
\(365\) 361.391 374.255i 0.990113 1.02535i
\(366\) −247.243 129.257i −0.675526 0.353162i
\(367\) 178.215 + 665.106i 0.485598 + 1.81228i 0.577352 + 0.816496i \(0.304086\pi\)
−0.0917533 + 0.995782i \(0.529247\pi\)
\(368\) −51.1443 + 13.7041i −0.138979 + 0.0372393i
\(369\) 13.8670 + 165.163i 0.0375800 + 0.447597i
\(370\) 2.17082 + 124.147i 0.00586707 + 0.335531i
\(371\) −144.500 316.419i −0.389489 0.852882i
\(372\) 44.6743 199.855i 0.120092 0.537246i
\(373\) −539.199 144.478i −1.44557 0.387340i −0.551091 0.834445i \(-0.685788\pi\)
−0.894482 + 0.447105i \(0.852455\pi\)
\(374\) 288.758 + 166.715i 0.772080 + 0.445761i
\(375\) 239.009 288.963i 0.637358 0.770568i
\(376\) 77.1365 44.5348i 0.205150 0.118444i
\(377\) 133.526 + 133.526i 0.354180 + 0.354180i
\(378\) −194.664 183.161i −0.514984 0.484553i
\(379\) 205.024i 0.540962i −0.962725 0.270481i \(-0.912817\pi\)
0.962725 0.270481i \(-0.0871827\pi\)
\(380\) 5.15664 + 8.58149i 0.0135701 + 0.0225829i
\(381\) 3.25633 + 77.7055i 0.00854679 + 0.203951i
\(382\) −54.4127 + 14.5798i −0.142442 + 0.0381671i
\(383\) 14.1827 + 3.80025i 0.0370306 + 0.00992232i 0.277287 0.960787i \(-0.410565\pi\)
−0.240256 + 0.970710i \(0.577231\pi\)
\(384\) 28.6576 18.1864i 0.0746291 0.0473604i
\(385\) −57.9521 311.266i −0.150525 0.808482i
\(386\) 2.28459i 0.00591863i
\(387\) 233.626 + 197.434i 0.603684 + 0.510166i
\(388\) 14.7890 3.96271i 0.0381161 0.0102132i
\(389\) −106.806 + 184.994i −0.274567 + 0.475563i −0.970026 0.243002i \(-0.921868\pi\)
0.695459 + 0.718566i \(0.255201\pi\)
\(390\) −145.468 437.258i −0.372996 1.12118i
\(391\) 345.000i 0.882353i
\(392\) −124.662 60.5597i −0.318014 0.154489i
\(393\) −107.678 + 481.710i −0.273990 + 1.22572i
\(394\) −106.753 + 61.6336i −0.270946 + 0.156430i
\(395\) 194.012 350.032i 0.491169 0.886156i
\(396\) 133.709 92.9277i 0.337649 0.234666i
\(397\) −498.188 133.489i −1.25488 0.336245i −0.430661 0.902514i \(-0.641720\pi\)
−0.824220 + 0.566269i \(0.808386\pi\)
\(398\) −191.591 + 191.591i −0.481383 + 0.481383i
\(399\) 20.9946 + 1.12065i 0.0526179 + 0.00280865i
\(400\) 99.9389 3.49611i 0.249847 0.00874028i
\(401\) 37.5169 21.6604i 0.0935583 0.0540159i −0.452491 0.891769i \(-0.649464\pi\)
0.546049 + 0.837753i \(0.316131\pi\)
\(402\) 42.4358 + 39.0222i 0.105562 + 0.0970702i
\(403\) −191.900 716.180i −0.476178 1.77712i
\(404\) −269.406 + 155.542i −0.666848 + 0.385005i
\(405\) 307.503 263.565i 0.759268 0.650778i
\(406\) −8.18068 + 85.6636i −0.0201494 + 0.210994i
\(407\) −112.322 + 112.322i −0.275975 + 0.275975i
\(408\) 66.1323 + 211.033i 0.162089 + 0.517238i
\(409\) 179.671 311.199i 0.439293 0.760877i −0.558342 0.829611i \(-0.688562\pi\)
0.997635 + 0.0687334i \(0.0218958\pi\)
\(410\) −125.175 + 35.8976i −0.305306 + 0.0875552i
\(411\) −323.833 + 619.426i −0.787916 + 1.50712i
\(412\) −84.6523 + 84.6523i −0.205467 + 0.205467i
\(413\) −222.362 + 596.159i −0.538407 + 1.44348i
\(414\) −152.445 71.7377i −0.368225 0.173279i
\(415\) −19.9879 + 80.1777i −0.0481637 + 0.193199i
\(416\) 61.4428 106.422i 0.147699 0.255822i
\(417\) −561.724 516.539i −1.34706 1.23870i
\(418\) −3.31497 + 12.3716i −0.00793054 + 0.0295972i
\(419\) 281.779i 0.672504i 0.941772 + 0.336252i \(0.109159\pi\)
−0.941772 + 0.336252i \(0.890841\pi\)
\(420\) 111.450 177.986i 0.265357 0.423776i
\(421\) 577.752 1.37233 0.686166 0.727445i \(-0.259292\pi\)
0.686166 + 0.727445i \(0.259292\pi\)
\(422\) −464.406 124.437i −1.10049 0.294875i
\(423\) 278.938 + 50.1925i 0.659427 + 0.118658i
\(424\) 121.723 + 70.2768i 0.287083 + 0.165747i
\(425\) −146.534 + 634.886i −0.344785 + 1.49385i
\(426\) 310.191 196.851i 0.728148 0.462090i
\(427\) −293.073 354.959i −0.686355 0.831286i
\(428\) 137.462 + 137.462i 0.321172 + 0.321172i
\(429\) 273.133 522.446i 0.636673 1.21782i
\(430\) −116.503 + 210.193i −0.270938 + 0.488820i
\(431\) 102.754 + 59.3253i 0.238409 + 0.137646i 0.614445 0.788959i \(-0.289380\pi\)
−0.376036 + 0.926605i \(0.622713\pi\)
\(432\) 107.000 + 14.6593i 0.247686 + 0.0339336i
\(433\) 26.5938 + 26.5938i 0.0614175 + 0.0614175i 0.737148 0.675731i \(-0.236172\pi\)
−0.675731 + 0.737148i \(0.736172\pi\)
\(434\) 195.994 275.229i 0.451598 0.634168i
\(435\) −127.728 26.2155i −0.293627 0.0602655i
\(436\) −208.063 360.376i −0.477209 0.826551i
\(437\) 12.8010 3.43001i 0.0292928 0.00784898i
\(438\) 324.952 + 298.812i 0.741899 + 0.682220i
\(439\) −130.238 225.578i −0.296669 0.513845i 0.678703 0.734413i \(-0.262542\pi\)
−0.975372 + 0.220568i \(0.929209\pi\)
\(440\) 92.0290 + 88.8659i 0.209157 + 0.201968i
\(441\) −178.591 403.220i −0.404968 0.914331i
\(442\) 566.176 + 566.176i 1.28094 + 1.28094i
\(443\) 62.8734 234.647i 0.141926 0.529676i −0.857947 0.513739i \(-0.828260\pi\)
0.999873 0.0159375i \(-0.00507327\pi\)
\(444\) −105.266 + 4.41126i −0.237085 + 0.00993528i
\(445\) −174.092 + 314.093i −0.391218 + 0.705826i
\(446\) 214.803 + 372.051i 0.481622 + 0.834194i
\(447\) −74.2780 + 332.291i −0.166170 + 0.743380i
\(448\) 55.2247 9.28597i 0.123269 0.0207276i
\(449\) 50.5826 0.112656 0.0563280 0.998412i \(-0.482061\pi\)
0.0563280 + 0.998412i \(0.482061\pi\)
\(450\) 250.068 + 196.764i 0.555706 + 0.437254i
\(451\) −144.274 83.2969i −0.319899 0.184694i
\(452\) −26.6925 99.6178i −0.0590542 0.220393i
\(453\) −298.769 + 93.6265i −0.659535 + 0.206681i
\(454\) 169.596 0.373560
\(455\) 59.0360 758.020i 0.129749 1.66598i
\(456\) −7.17273 + 4.55189i −0.0157297 + 0.00998221i
\(457\) 33.4156 124.709i 0.0731194 0.272885i −0.919681 0.392667i \(-0.871553\pi\)
0.992800 + 0.119781i \(0.0382193\pi\)
\(458\) 2.83593 + 10.5838i 0.00619199 + 0.0231088i
\(459\) −272.708 + 648.713i −0.594136 + 1.41332i
\(460\) 32.0195 128.440i 0.0696077 0.279218i
\(461\) −320.833 −0.695951 −0.347975 0.937504i \(-0.613131\pi\)
−0.347975 + 0.937504i \(0.613131\pi\)
\(462\) 262.839 55.6025i 0.568916 0.120352i
\(463\) 47.6951 47.6951i 0.103013 0.103013i −0.653722 0.756735i \(-0.726793\pi\)
0.756735 + 0.653722i \(0.226793\pi\)
\(464\) −17.3854 30.1124i −0.0374685 0.0648974i
\(465\) 382.858 + 339.900i 0.823350 + 0.730969i
\(466\) 67.7186 117.292i 0.145319 0.251700i
\(467\) 48.4328 180.754i 0.103711 0.387053i −0.894485 0.447098i \(-0.852458\pi\)
0.998196 + 0.0600447i \(0.0191243\pi\)
\(468\) 367.904 132.448i 0.786120 0.283009i
\(469\) 39.5126 + 86.5225i 0.0842485 + 0.184483i
\(470\) 3.89306 + 222.640i 0.00828310 + 0.473702i
\(471\) −279.376 + 534.389i −0.593156 + 1.13458i
\(472\) −66.5411 248.335i −0.140977 0.526133i
\(473\) −296.970 + 79.5728i −0.627843 + 0.168230i
\(474\) 300.939 + 157.330i 0.634893 + 0.331919i
\(475\) −25.0138 + 0.875045i −0.0526606 + 0.00184220i
\(476\) −34.6877 + 363.231i −0.0728733 + 0.763090i
\(477\) 151.491 + 420.801i 0.317592 + 0.882181i
\(478\) 30.0839 + 8.06097i 0.0629371 + 0.0168639i
\(479\) −9.08244 5.24375i −0.0189613 0.0109473i 0.490489 0.871447i \(-0.336818\pi\)
−0.509451 + 0.860500i \(0.670151\pi\)
\(480\) 5.03438 + 84.7033i 0.0104883 + 0.176465i
\(481\) −330.349 + 190.727i −0.686796 + 0.396522i
\(482\) 283.107 + 283.107i 0.587358 + 0.587358i
\(483\) −185.805 206.759i −0.384689 0.428072i
\(484\) 78.3352i 0.161850i
\(485\) −9.25886 + 37.1401i −0.0190904 + 0.0765776i
\(486\) 229.941 + 255.392i 0.473130 + 0.525498i
\(487\) −641.241 + 171.820i −1.31672 + 0.352813i −0.847747 0.530401i \(-0.822041\pi\)
−0.468970 + 0.883214i \(0.655375\pi\)
\(488\) 179.657 + 48.1389i 0.368149 + 0.0986453i
\(489\) −180.144 283.866i −0.368393 0.580503i
\(490\) 283.504 199.188i 0.578579 0.406505i
\(491\) 141.943i 0.289089i −0.989498 0.144544i \(-0.953828\pi\)
0.989498 0.144544i \(-0.0461717\pi\)
\(492\) −33.0422 105.440i −0.0671589 0.214309i
\(493\) 218.839 58.6376i 0.443892 0.118940i
\(494\) −15.3786 + 26.6365i −0.0311307 + 0.0539200i
\(495\) 41.1449 + 404.991i 0.0831210 + 0.818164i
\(496\) 136.525i 0.275252i
\(497\) 597.756 100.512i 1.20273 0.202237i
\(498\) −68.4265 15.2956i −0.137403 0.0307141i
\(499\) 230.967 133.349i 0.462860 0.267232i −0.250386 0.968146i \(-0.580558\pi\)
0.713246 + 0.700914i \(0.247224\pi\)
\(500\) −113.477 + 222.762i −0.226954 + 0.445524i
\(501\) 40.1676 + 958.516i 0.0801748 + 1.91320i
\(502\) 625.198 + 167.521i 1.24542 + 0.333708i
\(503\) 554.413 554.413i 1.10221 1.10221i 0.108070 0.994143i \(-0.465533\pi\)
0.994143 0.108070i \(-0.0344671\pi\)
\(504\) 153.288 + 90.8559i 0.304143 + 0.180270i
\(505\) −13.5969 777.590i −0.0269245 1.53978i
\(506\) 146.657 84.6722i 0.289835 0.167336i
\(507\) 615.085 668.892i 1.21319 1.31931i
\(508\) −13.4195 50.0824i −0.0264164 0.0985874i
\(509\) 136.350 78.7219i 0.267879 0.154660i −0.360044 0.932935i \(-0.617238\pi\)
0.627923 + 0.778275i \(0.283905\pi\)
\(510\) −541.592 111.159i −1.06194 0.217959i
\(511\) 302.567 + 662.545i 0.592108 + 1.29657i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −26.7813 3.66910i −0.0522052 0.00715224i
\(514\) 12.1980 21.1275i 0.0237314 0.0411040i
\(515\) −82.5046 287.694i −0.160203 0.558630i
\(516\) −180.713 94.4758i −0.350219 0.183093i
\(517\) −201.434 + 201.434i −0.389620 + 0.389620i
\(518\) −162.871 60.7495i −0.314423 0.117277i
\(519\) 178.444 + 281.186i 0.343822 + 0.541784i
\(520\) 158.235 + 263.329i 0.304298 + 0.506402i
\(521\) 204.683 354.522i 0.392866 0.680464i −0.599960 0.800030i \(-0.704817\pi\)
0.992826 + 0.119566i \(0.0381502\pi\)
\(522\) 19.5940 108.891i 0.0375365 0.208604i
\(523\) −110.134 + 411.024i −0.210581 + 0.785897i 0.777095 + 0.629383i \(0.216692\pi\)
−0.987676 + 0.156514i \(0.949974\pi\)
\(524\) 329.065i 0.627987i
\(525\) 254.109 + 459.406i 0.484017 + 0.875059i
\(526\) −114.015 −0.216759
\(527\) −859.255 230.237i −1.63047 0.436882i
\(528\) −73.4778 + 79.9055i −0.139162 + 0.151336i
\(529\) 306.381 + 176.889i 0.579171 + 0.334384i
\(530\) −301.189 + 180.985i −0.568282 + 0.341482i
\(531\) 348.327 740.209i 0.655984 1.39399i
\(532\) −13.8223 + 2.32420i −0.0259817 + 0.00436879i
\(533\) −282.883 282.883i −0.530737 0.530737i
\(534\) −270.041 141.176i −0.505695 0.264375i
\(535\) −467.169 + 133.974i −0.873214 + 0.250419i
\(536\) −33.2843 19.2167i −0.0620976 0.0358520i
\(537\) −557.482 + 174.700i −1.03814 + 0.325326i
\(538\) −374.197 374.197i −0.695534 0.695534i
\(539\) 435.248 + 83.8956i 0.807511 + 0.155650i
\(540\) −161.734 + 216.199i −0.299507 + 0.400369i
\(541\) −31.4934 54.5481i −0.0582132 0.100828i 0.835450 0.549566i \(-0.185207\pi\)
−0.893663 + 0.448738i \(0.851874\pi\)
\(542\) 568.991 152.461i 1.04980 0.281293i
\(543\) 513.569 558.495i 0.945799 1.02854i
\(544\) −73.7175 127.683i −0.135510 0.234711i
\(545\) 1040.16 18.1881i 1.90855 0.0333726i
\(546\) 644.232 + 34.3879i 1.17991 + 0.0629815i
\(547\) 283.231 + 283.231i 0.517790 + 0.517790i 0.916902 0.399112i \(-0.130682\pi\)
−0.399112 + 0.916902i \(0.630682\pi\)
\(548\) 120.604 450.101i 0.220081 0.821353i
\(549\) 337.760 + 485.986i 0.615227 + 0.885220i
\(550\) −305.848 + 93.5278i −0.556087 + 0.170050i
\(551\) 4.35141 + 7.53686i 0.00789729 + 0.0136785i
\(552\) 109.615 + 24.5027i 0.198579 + 0.0443889i
\(553\) 356.724 + 432.050i 0.645070 + 0.781283i
\(554\) −201.637 −0.363966
\(555\) 117.932 235.519i 0.212490 0.424358i
\(556\) 440.585 + 254.372i 0.792420 + 0.457504i
\(557\) 54.2162 + 202.338i 0.0973361 + 0.363263i 0.997363 0.0725705i \(-0.0231202\pi\)
−0.900027 + 0.435834i \(0.856454\pi\)
\(558\) −280.404 + 331.805i −0.502516 + 0.594632i
\(559\) −738.298 −1.32075
\(560\) −46.6254 + 132.008i −0.0832596 + 0.235728i
\(561\) −378.992 597.204i −0.675565 1.06453i
\(562\) 22.7229 84.8031i 0.0404322 0.150895i
\(563\) −189.279 706.397i −0.336196 1.25470i −0.902566 0.430551i \(-0.858319\pi\)
0.566370 0.824151i \(-0.308347\pi\)
\(564\) −188.779 + 7.91099i −0.334715 + 0.0140266i
\(565\) 250.173 + 62.3670i 0.442784 + 0.110384i
\(566\) 57.9764 0.102432
\(567\) 185.939 + 535.645i 0.327935 + 0.944700i
\(568\) −173.185 + 173.185i −0.304903 + 0.304903i
\(569\) 37.1577 + 64.3590i 0.0653035 + 0.113109i 0.896829 0.442378i \(-0.145865\pi\)
−0.831525 + 0.555487i \(0.812532\pi\)
\(570\) −1.26006 21.2005i −0.00221063 0.0371938i
\(571\) 320.383 554.920i 0.561092 0.971839i −0.436310 0.899797i \(-0.643715\pi\)
0.997402 0.0720429i \(-0.0229519\pi\)
\(572\) −101.722 + 379.632i −0.177836 + 0.663691i
\(573\) 116.620 + 26.0685i 0.203526 + 0.0454948i
\(574\) 17.3313 181.484i 0.0301939 0.316174i
\(575\) 242.039 + 225.677i 0.420938 + 0.392482i
\(576\) −71.7476 + 6.02389i −0.124562 + 0.0104581i
\(577\) −215.109 802.797i −0.372805 1.39133i −0.856525 0.516106i \(-0.827381\pi\)
0.483719 0.875223i \(-0.339286\pi\)
\(578\) 533.139 142.854i 0.922385 0.247152i
\(579\) 2.24532 4.29484i 0.00387793 0.00741768i
\(580\) 86.9137 1.51976i 0.149851 0.00262028i
\(581\) −94.2330 67.1043i −0.162191 0.115498i
\(582\) −31.6967 7.08527i −0.0544617 0.0121740i
\(583\) −434.214 116.347i −0.744792 0.199566i
\(584\) −254.874 147.152i −0.436428 0.251972i
\(585\) −156.274 + 964.976i −0.267135 + 1.64953i
\(586\) −637.417 + 368.013i −1.08774 + 0.628008i
\(587\) −62.0401 62.0401i −0.105690 0.105690i 0.652284 0.757974i \(-0.273811\pi\)
−0.757974 + 0.652284i \(0.773811\pi\)
\(588\) 174.835 + 236.366i 0.297338 + 0.401983i
\(589\) 34.1710i 0.0580153i
\(590\) 623.651 + 155.473i 1.05704 + 0.263514i
\(591\) 261.260 10.9484i 0.442064 0.0185252i
\(592\) 67.8453 18.1791i 0.114604 0.0307079i
\(593\) −441.882 118.402i −0.745164 0.199666i −0.133792 0.991009i \(-0.542715\pi\)
−0.611372 + 0.791343i \(0.709382\pi\)
\(594\) −342.692 + 43.2854i −0.576923 + 0.0728711i
\(595\) −752.195 516.068i −1.26419 0.867340i
\(596\) 226.994i 0.380863i
\(597\) 548.472 171.877i 0.918713 0.287901i
\(598\) 392.806 105.252i 0.656866 0.176007i
\(599\) 369.179 639.437i 0.616326 1.06751i −0.373824 0.927500i \(-0.621954\pi\)
0.990150 0.140008i \(-0.0447130\pi\)
\(600\) −191.313 91.6487i −0.318854 0.152748i
\(601\) 975.970i 1.62391i 0.583720 + 0.811955i \(0.301597\pi\)
−0.583720 + 0.811955i \(0.698403\pi\)
\(602\) −214.211 259.444i −0.355832 0.430970i
\(603\) −41.4242 115.065i −0.0686969 0.190821i
\(604\) 180.766 104.365i 0.299281 0.172790i
\(605\) 171.287 + 94.9389i 0.283118 + 0.156924i
\(606\) 659.330 27.6299i 1.08800 0.0455939i
\(607\) −316.958 84.9286i −0.522171 0.139915i −0.0119003 0.999929i \(-0.503788\pi\)
−0.510271 + 0.860014i \(0.670455\pi\)
\(608\) 4.00466 4.00466i 0.00658661 0.00658661i
\(609\) 99.5701 153.000i 0.163498 0.251232i
\(610\) −322.996 + 334.493i −0.529502 + 0.548349i
\(611\) −592.435 + 342.043i −0.969615 + 0.559808i
\(612\) 83.0826 461.720i 0.135756 0.754445i
\(613\) 12.9285 + 48.2499i 0.0210906 + 0.0787110i 0.975669 0.219249i \(-0.0703606\pi\)
−0.954578 + 0.297960i \(0.903694\pi\)
\(614\) −88.0552 + 50.8387i −0.143412 + 0.0827992i
\(615\) 270.600 + 55.5392i 0.439999 + 0.0903077i
\(616\) −162.920 + 74.4011i −0.264480 + 0.120781i
\(617\) −788.450 + 788.450i −1.27788 + 1.27788i −0.336022 + 0.941854i \(0.609082\pi\)
−0.941854 + 0.336022i \(0.890918\pi\)
\(618\) 242.336 75.9419i 0.392130 0.122883i
\(619\) −428.784 + 742.675i −0.692704 + 1.19980i 0.278245 + 0.960510i \(0.410247\pi\)
−0.970949 + 0.239288i \(0.923086\pi\)
\(620\) −298.524 165.463i −0.481490 0.266875i
\(621\) 216.080 + 284.686i 0.347954 + 0.458431i
\(622\) 98.7787 98.7787i 0.158808 0.158808i
\(623\) −320.098 387.690i −0.513800 0.622295i
\(624\) −220.100 + 139.678i −0.352724 + 0.223842i
\(625\) −349.559 518.105i −0.559295 0.828969i
\(626\) −269.232 + 466.323i −0.430082 + 0.744925i
\(627\) 18.3908 19.9996i 0.0293315 0.0318973i
\(628\) 104.047 388.310i 0.165680 0.618328i
\(629\) 457.659i 0.727598i
\(630\) −384.443 + 225.064i −0.610226 + 0.357245i
\(631\) 373.933 0.592604 0.296302 0.955094i \(-0.404246\pi\)
0.296302 + 0.955094i \(0.404246\pi\)
\(632\) −218.675 58.5938i −0.346005 0.0927117i
\(633\) 750.746 + 690.355i 1.18601 + 1.09061i
\(634\) −248.159 143.274i −0.391417 0.225985i
\(635\) 125.773 + 31.3547i 0.198068 + 0.0493775i
\(636\) −159.760 251.745i −0.251195 0.395826i
\(637\) 957.444 + 465.120i 1.50305 + 0.730172i
\(638\) 78.6352 + 78.6352i 0.123253 + 0.123253i
\(639\) −776.600 + 65.2029i −1.21534 + 0.102039i
\(640\) −15.5941 54.3767i −0.0243657 0.0849636i
\(641\) −18.2627 10.5440i −0.0284909 0.0164492i 0.485687 0.874133i \(-0.338570\pi\)
−0.514178 + 0.857684i \(0.671903\pi\)
\(642\) −123.317 393.515i −0.192083 0.612952i
\(643\) −114.721 114.721i −0.178416 0.178416i 0.612249 0.790665i \(-0.290265\pi\)
−0.790665 + 0.612249i \(0.790265\pi\)
\(644\) 150.956 + 107.497i 0.234404 + 0.166921i
\(645\) 425.596 280.644i 0.659838 0.435106i
\(646\) 18.4508 + 31.9578i 0.0285617 + 0.0494703i
\(647\) 728.662 195.244i 1.12622 0.301769i 0.352819 0.935691i \(-0.385223\pi\)
0.773396 + 0.633923i \(0.218556\pi\)
\(648\) −186.745 132.720i −0.288186 0.204814i
\(649\) 411.132 + 712.102i 0.633486 + 1.09723i
\(650\) −767.565 + 26.8513i −1.18087 + 0.0413098i
\(651\) −638.950 + 324.783i −0.981489 + 0.498898i
\(652\) 158.487 + 158.487i 0.243078 + 0.243078i
\(653\) −145.275 + 542.173i −0.222473 + 0.830280i 0.760928 + 0.648836i \(0.224744\pi\)
−0.983401 + 0.181444i \(0.941923\pi\)
\(654\) 36.9596 + 881.964i 0.0565131 + 1.34857i
\(655\) 719.530 + 398.813i 1.09852 + 0.608875i
\(656\) 36.8321 + 63.7950i 0.0561464 + 0.0972485i
\(657\) −317.206 881.108i −0.482809 1.34111i
\(658\) −292.087 108.946i −0.443901 0.165571i
\(659\) 69.2421 0.105072 0.0525358 0.998619i \(-0.483270\pi\)
0.0525358 + 0.998619i \(0.483270\pi\)
\(660\) −85.6683 257.507i −0.129800 0.390163i
\(661\) 576.339 + 332.749i 0.871920 + 0.503403i 0.867986 0.496589i \(-0.165414\pi\)
0.00393407 + 0.999992i \(0.498748\pi\)
\(662\) −190.644 711.494i −0.287982 1.07476i
\(663\) −507.919 1620.81i −0.766092 2.44466i
\(664\) 46.7435 0.0703968
\(665\) 11.6699 33.0404i 0.0175488 0.0496848i
\(666\) 202.226 + 95.1634i 0.303642 + 0.142888i
\(667\) 29.7813 111.145i 0.0446497 0.166635i
\(668\) −165.533 617.778i −0.247804 0.924818i
\(669\) −38.1569 910.535i −0.0570357 1.36104i
\(670\) 82.3581 49.4892i 0.122923 0.0738645i
\(671\) −594.864 −0.886534
\(672\) −112.944 36.8186i −0.168072 0.0547897i
\(673\) 331.687 331.687i 0.492848 0.492848i −0.416355 0.909202i \(-0.636692\pi\)
0.909202 + 0.416355i \(0.136692\pi\)
\(674\) 319.919 + 554.116i 0.474657 + 0.822130i
\(675\) −276.724 615.669i −0.409962 0.912103i
\(676\) −302.902 + 524.641i −0.448080 + 0.776097i
\(677\) −86.2431 + 321.864i −0.127390 + 0.475426i −0.999914 0.0131458i \(-0.995815\pi\)
0.872523 + 0.488572i \(0.162482\pi\)
\(678\) −47.7258 + 213.507i −0.0703921 + 0.314907i
\(679\) −43.6508 31.0842i −0.0642870 0.0457794i
\(680\) 368.531 6.44410i 0.541958 0.00947662i
\(681\) −318.826 166.681i −0.468174 0.244759i
\(682\) −113.012 421.768i −0.165707 0.618429i
\(683\) 308.844 82.7545i 0.452188 0.121163i −0.0255353 0.999674i \(-0.508129\pi\)
0.477723 + 0.878511i \(0.341462\pi\)
\(684\) 17.9578 1.50773i 0.0262541 0.00220428i
\(685\) 838.018 + 809.215i 1.22338 + 1.18134i
\(686\) 114.348 + 471.405i 0.166688 + 0.687179i
\(687\) 5.07061 22.6839i 0.00738080 0.0330188i
\(688\) 131.314 + 35.1854i 0.190863 + 0.0511415i
\(689\) −934.875 539.750i −1.35686 0.783382i
\(690\) −186.426 + 209.987i −0.270183 + 0.304330i
\(691\) 606.389 350.099i 0.877553 0.506656i 0.00770241 0.999970i \(-0.497548\pi\)
0.869851 + 0.493315i \(0.164215\pi\)
\(692\) −156.991 156.991i −0.226865 0.226865i
\(693\) −548.763 153.794i −0.791865 0.221924i
\(694\) 310.155i 0.446909i
\(695\) −1090.18 + 655.090i −1.56860 + 0.942576i
\(696\) 3.08828 + 73.6953i 0.00443718 + 0.105884i
\(697\) −463.624 + 124.228i −0.665170 + 0.178232i
\(698\) 322.543 + 86.4251i 0.462096 + 0.123818i
\(699\) −242.581 + 153.944i −0.347040 + 0.220235i
\(700\) −232.139 261.938i −0.331627 0.374198i
\(701\) 722.146i 1.03017i 0.857141 + 0.515083i \(0.172239\pi\)
−0.857141 + 0.515083i \(0.827761\pi\)
\(702\) −821.801 112.589i −1.17066 0.160383i
\(703\) −16.9811 + 4.55007i −0.0241552 + 0.00647236i
\(704\) 36.1845 62.6734i 0.0513984 0.0890247i
\(705\) 211.494 422.370i 0.299992 0.599107i
\(706\) 382.701i 0.542070i
\(707\) 1020.14 + 380.504i 1.44291 + 0.538195i
\(708\) −118.975 + 532.246i −0.168043 + 0.751760i
\(709\) 185.418 107.051i 0.261520 0.150989i −0.363508 0.931591i \(-0.618421\pi\)
0.625028 + 0.780603i \(0.285088\pi\)
\(710\) −168.791 588.577i −0.237734 0.828981i
\(711\) −411.115 591.533i −0.578221 0.831973i
\(712\) 196.223 + 52.5778i 0.275594 + 0.0738452i
\(713\) −319.471 + 319.471i −0.448065 + 0.448065i
\(714\) 422.197 648.751i 0.591313 0.908616i
\(715\) −706.815 682.521i −0.988552 0.954575i
\(716\) 337.296 194.738i 0.471084 0.271980i
\(717\) −48.6328 44.7208i −0.0678282 0.0623721i
\(718\) −18.8801 70.4617i −0.0262955 0.0981360i
\(719\) 483.185 278.967i 0.672023 0.387993i −0.124820 0.992179i \(-0.539835\pi\)
0.796843 + 0.604187i \(0.206502\pi\)
\(720\) 73.7832 164.183i 0.102477 0.228032i
\(721\) 417.110 + 39.8330i 0.578516 + 0.0552469i
\(722\) 359.998 359.998i 0.498612 0.498612i
\(723\) −253.976 810.457i −0.351281 1.12096i
\(724\) −252.910 + 438.052i −0.349323 + 0.605044i
\(725\) −102.012 + 191.886i −0.140707 + 0.264671i
\(726\) −76.9887 + 147.264i −0.106045 + 0.202842i
\(727\) 364.579 364.579i 0.501484 0.501484i −0.410415 0.911899i \(-0.634616\pi\)
0.911899 + 0.410415i \(0.134616\pi\)
\(728\) −424.145 + 71.3195i −0.582617 + 0.0979663i
\(729\) −181.268 706.104i −0.248653 0.968593i
\(730\) 630.656 378.963i 0.863913 0.519127i
\(731\) −442.896 + 767.118i −0.605877 + 1.04941i
\(732\) −290.428 267.066i −0.396760 0.364844i
\(733\) −25.6801 + 95.8396i −0.0350343 + 0.130750i −0.981228 0.192851i \(-0.938227\pi\)
0.946194 + 0.323600i \(0.104893\pi\)
\(734\) 973.782i 1.32668i
\(735\) −728.727 + 95.8255i −0.991465 + 0.130375i
\(736\) −74.8804 −0.101740
\(737\) 118.733 + 31.8143i 0.161103 + 0.0431673i
\(738\) −41.5112 + 230.693i −0.0562483 + 0.312592i
\(739\) 134.441 + 77.6197i 0.181923 + 0.105033i 0.588196 0.808718i \(-0.299838\pi\)
−0.406273 + 0.913752i \(0.633172\pi\)
\(740\) −42.4754 + 170.382i −0.0573992 + 0.230246i
\(741\) 55.0890 34.9601i 0.0743442 0.0471796i
\(742\) −81.5736 485.127i −0.109937 0.653810i
\(743\) −302.142 302.142i −0.406652 0.406652i 0.473918 0.880569i \(-0.342839\pi\)
−0.880569 + 0.473918i \(0.842839\pi\)
\(744\) 134.178 256.656i 0.180347 0.344967i
\(745\) 496.343 + 275.107i 0.666232 + 0.369271i
\(746\) −683.677 394.721i −0.916457 0.529116i
\(747\) 113.603 + 96.0048i 0.152080 + 0.128521i
\(748\) 333.429 + 333.429i 0.445761 + 0.445761i
\(749\) 64.6824 677.319i 0.0863584 0.904297i
\(750\) 432.260 307.247i 0.576347 0.409663i
\(751\) 159.170 + 275.691i 0.211944 + 0.367098i 0.952323 0.305092i \(-0.0986871\pi\)
−0.740379 + 0.672190i \(0.765354\pi\)
\(752\) 121.671 32.6017i 0.161797 0.0433533i
\(753\) −1010.68 929.378i −1.34220 1.23423i
\(754\) 133.526 + 231.274i 0.177090 + 0.306729i
\(755\) 9.12321 + 521.746i 0.0120837 + 0.691055i
\(756\) −198.874 321.455i −0.263061 0.425204i
\(757\) 315.962 + 315.962i 0.417387 + 0.417387i 0.884302 0.466915i \(-0.154635\pi\)
−0.466915 + 0.884302i \(0.654635\pi\)
\(758\) 75.0442 280.069i 0.0990028 0.369484i
\(759\) −358.919 + 15.0409i −0.472884 + 0.0198167i