Properties

Label 210.3.w.b.17.3
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.51561 + 1.63453i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.05899 - 4.55638i) q^{5} +(-4.03467 + 1.31204i) q^{6} +(-6.80611 - 1.63612i) q^{7} +(2.00000 + 2.00000i) q^{8} +(3.65660 - 8.22370i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.51561 + 1.63453i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.05899 - 4.55638i) q^{5} +(-4.03467 + 1.31204i) q^{6} +(-6.80611 - 1.63612i) q^{7} +(2.00000 + 2.00000i) q^{8} +(3.65660 - 8.22370i) q^{9} +(-1.14488 - 6.97777i) q^{10} +(-7.66474 - 4.42524i) q^{11} +(-5.99170 + 0.315485i) q^{12} +(-5.26652 - 5.26652i) q^{13} +(-8.69845 - 4.72619i) q^{14} +(12.6272 + 8.09658i) q^{15} +(2.00000 + 3.46410i) q^{16} +(9.09260 - 2.43636i) q^{17} +(8.00509 - 9.89538i) q^{18} +(-16.3775 - 28.3666i) q^{19} +(0.990104 - 9.95086i) q^{20} +(19.7958 - 7.00896i) q^{21} +(-8.85048 - 8.85048i) q^{22} +(-3.23126 + 12.0592i) q^{23} +(-8.30029 - 1.76215i) q^{24} +(-16.5211 + 18.7631i) q^{25} +(-5.26652 - 9.12187i) q^{26} +(4.24334 + 26.6645i) q^{27} +(-10.1524 - 9.63996i) q^{28} +48.1807 q^{29} +(14.2855 + 15.6820i) q^{30} +(-42.0786 - 24.2941i) q^{31} +(1.46410 + 5.46410i) q^{32} +(26.5147 - 1.39609i) q^{33} +13.3125 q^{34} +(6.55890 + 34.3799i) q^{35} +(14.5571 - 10.5873i) q^{36} +(4.02200 - 15.0103i) q^{37} +(-11.9891 - 44.7440i) q^{38} +(21.8568 + 4.64021i) q^{39} +(4.99478 - 13.2307i) q^{40} -45.6603 q^{41} +(29.6070 - 2.32865i) q^{42} +(-17.0633 + 17.0633i) q^{43} +(-8.85048 - 15.3295i) q^{44} +(-44.9992 + 0.271673i) q^{45} +(-8.82796 + 15.2905i) q^{46} +(-18.2007 + 67.9259i) q^{47} +(-10.6934 - 5.44526i) q^{48} +(43.6462 + 22.2713i) q^{49} +(-29.4360 + 19.5837i) q^{50} +(-18.8911 + 20.9911i) q^{51} +(-3.85536 - 14.3884i) q^{52} +(-23.5937 + 6.32192i) q^{53} +(-3.96336 + 37.9775i) q^{54} +(-4.38145 + 44.0349i) q^{55} +(-10.3400 - 16.8845i) q^{56} +(87.5655 + 44.5898i) q^{57} +(65.8160 + 17.6353i) q^{58} +(31.3814 + 18.1181i) q^{59} +(13.7743 + 26.6509i) q^{60} +(41.5066 - 23.9639i) q^{61} +(-48.5881 - 48.5881i) q^{62} +(-38.3422 + 49.9888i) q^{63} +8.00000i q^{64} +(-13.1525 + 34.8399i) q^{65} +(36.7308 + 7.79795i) q^{66} +(20.6531 - 5.53399i) q^{67} +(18.1852 + 4.87271i) q^{68} +(-11.5826 - 35.6179i) q^{69} +(-3.62431 + 49.3646i) q^{70} -42.3831i q^{71} +(23.7606 - 9.13421i) q^{72} +(-118.781 + 31.8274i) q^{73} +(10.9883 - 19.0323i) q^{74} +(10.8919 - 74.2049i) q^{75} -65.5098i q^{76} +(44.9268 + 42.6591i) q^{77} +(28.1585 + 14.3388i) q^{78} +(53.6989 - 31.0031i) q^{79} +(11.6658 - 16.2453i) q^{80} +(-54.2586 - 60.1416i) q^{81} +(-62.3731 - 16.7128i) q^{82} +(113.897 - 113.897i) q^{83} +(41.2963 + 7.65594i) q^{84} +(-29.8225 - 36.4129i) q^{85} +(-29.5545 + 17.0633i) q^{86} +(-121.204 + 78.7529i) q^{87} +(-6.47900 - 24.1799i) q^{88} +(104.881 - 60.5529i) q^{89} +(-61.5695 - 16.0997i) q^{90} +(27.2278 + 44.4611i) q^{91} +(-17.6559 + 17.6559i) q^{92} +(145.563 - 7.66441i) q^{93} +(-49.7252 + 86.1265i) q^{94} +(-95.5279 + 133.028i) q^{95} +(-12.6144 - 11.3524i) q^{96} +(72.8209 - 72.8209i) q^{97} +(51.4700 + 46.3987i) q^{98} +(-64.4187 + 46.8512i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −2.51561 + 1.63453i −0.838537 + 0.544845i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −2.05899 4.55638i −0.411798 0.911275i
\(6\) −4.03467 + 1.31204i −0.672445 + 0.218673i
\(7\) −6.80611 1.63612i −0.972301 0.233732i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 3.65660 8.22370i 0.406289 0.913745i
\(10\) −1.14488 6.97777i −0.114488 0.697777i
\(11\) −7.66474 4.42524i −0.696794 0.402294i 0.109358 0.994002i \(-0.465120\pi\)
−0.806152 + 0.591708i \(0.798454\pi\)
\(12\) −5.99170 + 0.315485i −0.499308 + 0.0262904i
\(13\) −5.26652 5.26652i −0.405117 0.405117i 0.474915 0.880032i \(-0.342479\pi\)
−0.880032 + 0.474915i \(0.842479\pi\)
\(14\) −8.69845 4.72619i −0.621318 0.337585i
\(15\) 12.6272 + 8.09658i 0.841811 + 0.539772i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 9.09260 2.43636i 0.534859 0.143315i 0.0187279 0.999825i \(-0.494038\pi\)
0.516131 + 0.856510i \(0.327372\pi\)
\(18\) 8.00509 9.89538i 0.444727 0.549743i
\(19\) −16.3775 28.3666i −0.861971 1.49298i −0.870023 0.493011i \(-0.835896\pi\)
0.00805170 0.999968i \(-0.497437\pi\)
\(20\) 0.990104 9.95086i 0.0495052 0.497543i
\(21\) 19.7958 7.00896i 0.942658 0.333760i
\(22\) −8.85048 8.85048i −0.402294 0.402294i
\(23\) −3.23126 + 12.0592i −0.140490 + 0.524314i 0.859425 + 0.511261i \(0.170822\pi\)
−0.999915 + 0.0130527i \(0.995845\pi\)
\(24\) −8.30029 1.76215i −0.345845 0.0734231i
\(25\) −16.5211 + 18.7631i −0.660845 + 0.750522i
\(26\) −5.26652 9.12187i −0.202558 0.350841i
\(27\) 4.24334 + 26.6645i 0.157161 + 0.987573i
\(28\) −10.1524 9.63996i −0.362586 0.344284i
\(29\) 48.1807 1.66140 0.830701 0.556719i \(-0.187940\pi\)
0.830701 + 0.556719i \(0.187940\pi\)
\(30\) 14.2855 + 15.6820i 0.476182 + 0.522733i
\(31\) −42.0786 24.2941i −1.35737 0.783680i −0.368104 0.929785i \(-0.619993\pi\)
−0.989269 + 0.146105i \(0.953326\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 26.5147 1.39609i 0.803476 0.0423059i
\(34\) 13.3125 0.391544
\(35\) 6.55890 + 34.3799i 0.187397 + 0.982284i
\(36\) 14.5571 10.5873i 0.404364 0.294091i
\(37\) 4.02200 15.0103i 0.108703 0.405684i −0.890036 0.455890i \(-0.849321\pi\)
0.998739 + 0.0502056i \(0.0159877\pi\)
\(38\) −11.9891 44.7440i −0.315503 1.17747i
\(39\) 21.8568 + 4.64021i 0.560431 + 0.118980i
\(40\) 4.99478 13.2307i 0.124869 0.330768i
\(41\) −45.6603 −1.11367 −0.556833 0.830625i \(-0.687984\pi\)
−0.556833 + 0.830625i \(0.687984\pi\)
\(42\) 29.6070 2.32865i 0.704930 0.0554440i
\(43\) −17.0633 + 17.0633i −0.396821 + 0.396821i −0.877110 0.480289i \(-0.840532\pi\)
0.480289 + 0.877110i \(0.340532\pi\)
\(44\) −8.85048 15.3295i −0.201147 0.348397i
\(45\) −44.9992 + 0.271673i −0.999982 + 0.00603717i
\(46\) −8.82796 + 15.2905i −0.191912 + 0.332402i
\(47\) −18.2007 + 67.9259i −0.387249 + 1.44523i 0.447343 + 0.894362i \(0.352370\pi\)
−0.834592 + 0.550869i \(0.814296\pi\)
\(48\) −10.6934 5.44526i −0.222779 0.113443i
\(49\) 43.6462 + 22.2713i 0.890739 + 0.454516i
\(50\) −29.4360 + 19.5837i −0.588721 + 0.391673i
\(51\) −18.8911 + 20.9911i −0.370415 + 0.411590i
\(52\) −3.85536 14.3884i −0.0741415 0.276700i
\(53\) −23.5937 + 6.32192i −0.445165 + 0.119281i −0.474436 0.880290i \(-0.657348\pi\)
0.0292714 + 0.999572i \(0.490681\pi\)
\(54\) −3.96336 + 37.9775i −0.0733955 + 0.703287i
\(55\) −4.38145 + 44.0349i −0.0796626 + 0.800635i
\(56\) −10.3400 16.8845i −0.184642 0.301508i
\(57\) 87.5655 + 44.5898i 1.53624 + 0.782277i
\(58\) 65.8160 + 17.6353i 1.13476 + 0.304058i
\(59\) 31.3814 + 18.1181i 0.531888 + 0.307086i 0.741785 0.670638i \(-0.233979\pi\)
−0.209897 + 0.977724i \(0.567313\pi\)
\(60\) 13.7743 + 26.6509i 0.229572 + 0.444181i
\(61\) 41.5066 23.9639i 0.680436 0.392850i −0.119583 0.992824i \(-0.538156\pi\)
0.800019 + 0.599974i \(0.204822\pi\)
\(62\) −48.5881 48.5881i −0.783680 0.783680i
\(63\) −38.3422 + 49.9888i −0.608606 + 0.793472i
\(64\) 8.00000i 0.125000i
\(65\) −13.1525 + 34.8399i −0.202347 + 0.535999i
\(66\) 36.7308 + 7.79795i 0.556527 + 0.118151i
\(67\) 20.6531 5.53399i 0.308256 0.0825968i −0.101375 0.994848i \(-0.532324\pi\)
0.409631 + 0.912251i \(0.365658\pi\)
\(68\) 18.1852 + 4.87271i 0.267429 + 0.0716575i
\(69\) −11.5826 35.6179i −0.167864 0.516202i
\(70\) −3.62431 + 49.3646i −0.0517758 + 0.705209i
\(71\) 42.3831i 0.596945i −0.954418 0.298473i \(-0.903523\pi\)
0.954418 0.298473i \(-0.0964772\pi\)
\(72\) 23.7606 9.13421i 0.330008 0.126864i
\(73\) −118.781 + 31.8274i −1.62714 + 0.435991i −0.953088 0.302692i \(-0.902115\pi\)
−0.674053 + 0.738683i \(0.735448\pi\)
\(74\) 10.9883 19.0323i 0.148491 0.257194i
\(75\) 10.8919 74.2049i 0.145225 0.989399i
\(76\) 65.5098i 0.861971i
\(77\) 44.9268 + 42.6591i 0.583465 + 0.554014i
\(78\) 28.1585 + 14.3388i 0.361007 + 0.183831i
\(79\) 53.6989 31.0031i 0.679733 0.392444i −0.120021 0.992771i \(-0.538296\pi\)
0.799755 + 0.600327i \(0.204963\pi\)
\(80\) 11.6658 16.2453i 0.145822 0.203066i
\(81\) −54.2586 60.1416i −0.669859 0.742488i
\(82\) −62.3731 16.7128i −0.760648 0.203815i
\(83\) 113.897 113.897i 1.37225 1.37225i 0.515150 0.857100i \(-0.327736\pi\)
0.857100 0.515150i \(-0.172264\pi\)
\(84\) 41.2963 + 7.65594i 0.491623 + 0.0911421i
\(85\) −29.8225 36.4129i −0.350853 0.428387i
\(86\) −29.5545 + 17.0633i −0.343657 + 0.198411i
\(87\) −121.204 + 78.7529i −1.39315 + 0.905206i
\(88\) −6.47900 24.1799i −0.0736250 0.274772i
\(89\) 104.881 60.5529i 1.17843 0.680369i 0.222783 0.974868i \(-0.428486\pi\)
0.955652 + 0.294499i \(0.0951527\pi\)
\(90\) −61.5695 16.0997i −0.684105 0.178886i
\(91\) 27.2278 + 44.4611i 0.299207 + 0.488584i
\(92\) −17.6559 + 17.6559i −0.191912 + 0.191912i
\(93\) 145.563 7.66441i 1.56519 0.0824130i
\(94\) −49.7252 + 86.1265i −0.528991 + 0.916240i
\(95\) −95.5279 + 133.028i −1.00556 + 1.40030i
\(96\) −12.6144 11.3524i −0.131400 0.118254i
\(97\) 72.8209 72.8209i 0.750731 0.750731i −0.223885 0.974616i \(-0.571874\pi\)
0.974616 + 0.223885i \(0.0718739\pi\)
\(98\) 51.4700 + 46.3987i 0.525204 + 0.473456i
\(99\) −64.4187 + 46.8512i −0.650694 + 0.473244i
\(100\) −47.3785 + 15.9774i −0.473785 + 0.159774i
\(101\) 13.5712 23.5061i 0.134369 0.232733i −0.790987 0.611832i \(-0.790433\pi\)
0.925356 + 0.379099i \(0.123766\pi\)
\(102\) −33.4891 + 21.7597i −0.328324 + 0.213331i
\(103\) 6.34326 23.6734i 0.0615851 0.229839i −0.928273 0.371900i \(-0.878706\pi\)
0.989858 + 0.142061i \(0.0453731\pi\)
\(104\) 21.0661i 0.202558i
\(105\) −72.6948 75.7658i −0.692332 0.721579i
\(106\) −34.5436 −0.325883
\(107\) −2.07187 0.555157i −0.0193633 0.00518838i 0.249124 0.968471i \(-0.419857\pi\)
−0.268488 + 0.963283i \(0.586524\pi\)
\(108\) −19.3148 + 50.4276i −0.178841 + 0.466922i
\(109\) −82.9111 47.8687i −0.760652 0.439163i 0.0688777 0.997625i \(-0.478058\pi\)
−0.829530 + 0.558462i \(0.811392\pi\)
\(110\) −22.1031 + 58.5491i −0.200937 + 0.532265i
\(111\) 14.4171 + 44.3342i 0.129884 + 0.399408i
\(112\) −7.94452 26.8493i −0.0709332 0.239726i
\(113\) −38.2568 38.2568i −0.338556 0.338556i 0.517268 0.855824i \(-0.326949\pi\)
−0.855824 + 0.517268i \(0.826949\pi\)
\(114\) 103.296 + 92.9620i 0.906102 + 0.815456i
\(115\) 61.5995 10.1070i 0.535648 0.0878867i
\(116\) 83.4514 + 48.1807i 0.719408 + 0.415351i
\(117\) −62.5678 + 24.0527i −0.534768 + 0.205579i
\(118\) 36.2361 + 36.2361i 0.307086 + 0.307086i
\(119\) −65.8714 + 1.70548i −0.553541 + 0.0143317i
\(120\) 9.06116 + 41.4475i 0.0755097 + 0.345396i
\(121\) −21.3345 36.9525i −0.176319 0.305393i
\(122\) 65.4705 17.5428i 0.536643 0.143793i
\(123\) 114.864 74.6333i 0.933850 0.606775i
\(124\) −48.5881 84.1571i −0.391840 0.678687i
\(125\) 119.508 + 36.6436i 0.956067 + 0.293149i
\(126\) −70.6736 + 54.2517i −0.560901 + 0.430569i
\(127\) 3.69352 + 3.69352i 0.0290828 + 0.0290828i 0.721499 0.692416i \(-0.243454\pi\)
−0.692416 + 0.721499i \(0.743454\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 15.0341 70.8153i 0.116543 0.548955i
\(130\) −30.7190 + 42.7781i −0.236300 + 0.329062i
\(131\) 5.87228 + 10.1711i 0.0448266 + 0.0776419i 0.887568 0.460676i \(-0.152393\pi\)
−0.842742 + 0.538318i \(0.819060\pi\)
\(132\) 47.3209 + 24.0966i 0.358492 + 0.182550i
\(133\) 65.0555 + 219.862i 0.489139 + 1.65309i
\(134\) 30.2383 0.225659
\(135\) 112.756 74.2361i 0.835232 0.549897i
\(136\) 23.0579 + 13.3125i 0.169544 + 0.0978860i
\(137\) −40.2367 150.166i −0.293699 1.09610i −0.942245 0.334924i \(-0.891289\pi\)
0.648546 0.761175i \(-0.275377\pi\)
\(138\) −2.78509 52.8945i −0.0201818 0.383294i
\(139\) −183.552 −1.32052 −0.660259 0.751038i \(-0.729553\pi\)
−0.660259 + 0.751038i \(0.729553\pi\)
\(140\) −23.0196 + 66.1067i −0.164426 + 0.472191i
\(141\) −65.2413 200.625i −0.462704 1.42287i
\(142\) 15.5133 57.8964i 0.109249 0.407721i
\(143\) 17.0609 + 63.6720i 0.119307 + 0.445259i
\(144\) 35.8009 3.78058i 0.248618 0.0262540i
\(145\) −99.2034 219.529i −0.684162 1.51399i
\(146\) −173.908 −1.19115
\(147\) −146.200 + 15.3154i −0.994558 + 0.104186i
\(148\) 21.9766 21.9766i 0.148491 0.148491i
\(149\) 9.59314 + 16.6158i 0.0643835 + 0.111515i 0.896420 0.443205i \(-0.146159\pi\)
−0.832037 + 0.554720i \(0.812825\pi\)
\(150\) 42.0395 97.3791i 0.280263 0.649194i
\(151\) −19.4616 + 33.7084i −0.128885 + 0.223235i −0.923245 0.384212i \(-0.874473\pi\)
0.794360 + 0.607447i \(0.207806\pi\)
\(152\) 23.9783 89.4881i 0.157752 0.588737i
\(153\) 13.2121 83.6836i 0.0863538 0.546952i
\(154\) 45.7568 + 74.7178i 0.297122 + 0.485180i
\(155\) −24.0537 + 241.747i −0.155185 + 1.55966i
\(156\) 33.2169 + 29.8939i 0.212929 + 0.191627i
\(157\) 57.1880 + 213.429i 0.364255 + 1.35942i 0.868428 + 0.495815i \(0.165131\pi\)
−0.504173 + 0.863602i \(0.668203\pi\)
\(158\) 84.7020 22.6958i 0.536089 0.143645i
\(159\) 49.0192 54.4682i 0.308297 0.342567i
\(160\) 21.8819 17.9215i 0.136762 0.112010i
\(161\) 41.7227 76.7896i 0.259147 0.476954i
\(162\) −52.1053 102.015i −0.321637 0.629722i
\(163\) 124.346 + 33.3184i 0.762858 + 0.204407i 0.619214 0.785222i \(-0.287451\pi\)
0.143644 + 0.989629i \(0.454118\pi\)
\(164\) −79.0859 45.6603i −0.482231 0.278416i
\(165\) −60.9546 117.936i −0.369422 0.714766i
\(166\) 197.275 113.897i 1.18840 0.686125i
\(167\) −10.7074 10.7074i −0.0641162 0.0641162i 0.674322 0.738438i \(-0.264436\pi\)
−0.738438 + 0.674322i \(0.764436\pi\)
\(168\) 53.6096 + 25.5737i 0.319105 + 0.152224i
\(169\) 113.528i 0.671761i
\(170\) −27.4103 60.6567i −0.161237 0.356804i
\(171\) −293.164 + 30.9581i −1.71441 + 0.181042i
\(172\) −46.6179 + 12.4912i −0.271034 + 0.0726234i
\(173\) −122.782 32.8994i −0.709723 0.190170i −0.114141 0.993465i \(-0.536412\pi\)
−0.595582 + 0.803295i \(0.703078\pi\)
\(174\) −194.393 + 63.2148i −1.11720 + 0.363304i
\(175\) 143.143 100.673i 0.817962 0.575273i
\(176\) 35.4019i 0.201147i
\(177\) −108.558 + 5.71597i −0.613322 + 0.0322936i
\(178\) 165.434 44.3278i 0.929402 0.249032i
\(179\) 131.749 228.196i 0.736028 1.27484i −0.218243 0.975894i \(-0.570033\pi\)
0.954271 0.298943i \(-0.0966341\pi\)
\(180\) −78.2125 44.5286i −0.434514 0.247381i
\(181\) 119.753i 0.661621i −0.943697 0.330811i \(-0.892678\pi\)
0.943697 0.330811i \(-0.107322\pi\)
\(182\) 20.9200 + 70.7011i 0.114945 + 0.388468i
\(183\) −65.2448 + 128.128i −0.356529 + 0.700151i
\(184\) −30.5810 + 17.6559i −0.166201 + 0.0959561i
\(185\) −76.6740 + 12.5803i −0.414454 + 0.0680017i
\(186\) 201.648 + 42.8099i 1.08413 + 0.230161i
\(187\) −80.4739 21.5629i −0.430341 0.115310i
\(188\) −99.4504 + 99.4504i −0.528991 + 0.528991i
\(189\) 14.7457 188.424i 0.0780197 0.996952i
\(190\) −179.185 + 146.754i −0.943080 + 0.772392i
\(191\) 66.1056 38.1661i 0.346103 0.199822i −0.316865 0.948471i \(-0.602630\pi\)
0.662967 + 0.748648i \(0.269297\pi\)
\(192\) −13.0763 20.1249i −0.0681056 0.104817i
\(193\) −58.3311 217.695i −0.302234 1.12795i −0.935300 0.353855i \(-0.884871\pi\)
0.633067 0.774097i \(-0.281796\pi\)
\(194\) 126.130 72.8209i 0.650152 0.375366i
\(195\) −23.8604 109.142i −0.122361 0.559702i
\(196\) 53.3262 + 82.2212i 0.272072 + 0.419496i
\(197\) 71.0326 71.0326i 0.360572 0.360572i −0.503452 0.864023i \(-0.667937\pi\)
0.864023 + 0.503452i \(0.167937\pi\)
\(198\) −105.146 + 40.4211i −0.531042 + 0.204147i
\(199\) −68.8006 + 119.166i −0.345732 + 0.598825i −0.985486 0.169754i \(-0.945703\pi\)
0.639755 + 0.768579i \(0.279036\pi\)
\(200\) −70.5684 + 4.48384i −0.352842 + 0.0224192i
\(201\) −42.9097 + 47.6796i −0.213481 + 0.237212i
\(202\) 27.1425 27.1425i 0.134369 0.134369i
\(203\) −327.923 78.8295i −1.61538 0.388323i
\(204\) −53.7115 + 17.4665i −0.263292 + 0.0856200i
\(205\) 94.0140 + 208.045i 0.458605 + 1.01486i
\(206\) 17.3301 30.0166i 0.0841268 0.145712i
\(207\) 87.3561 + 70.6687i 0.422010 + 0.341394i
\(208\) 7.71072 28.7768i 0.0370707 0.138350i
\(209\) 289.897i 1.38706i
\(210\) −71.5708 130.106i −0.340813 0.619553i
\(211\) −9.16581 −0.0434399 −0.0217199 0.999764i \(-0.506914\pi\)
−0.0217199 + 0.999764i \(0.506914\pi\)
\(212\) −47.1874 12.6438i −0.222582 0.0596407i
\(213\) 69.2766 + 106.619i 0.325242 + 0.500561i
\(214\) −2.62703 1.51672i −0.0122758 0.00708746i
\(215\) 112.880 + 42.6137i 0.525024 + 0.198203i
\(216\) −44.8423 + 61.8156i −0.207603 + 0.286183i
\(217\) 246.643 + 234.194i 1.13660 + 1.07923i
\(218\) −95.7375 95.7375i −0.439163 0.439163i
\(219\) 246.785 274.217i 1.12687 1.25213i
\(220\) −51.6238 + 71.8893i −0.234654 + 0.326770i
\(221\) −60.7174 35.0552i −0.274740 0.158621i
\(222\) 3.46665 + 65.8387i 0.0156155 + 0.296571i
\(223\) 107.480 + 107.480i 0.481975 + 0.481975i 0.905762 0.423787i \(-0.139300\pi\)
−0.423787 + 0.905762i \(0.639300\pi\)
\(224\) −1.02489 39.5847i −0.00457539 0.176717i
\(225\) 93.8906 + 204.474i 0.417292 + 0.908773i
\(226\) −38.2568 66.2628i −0.169278 0.293198i
\(227\) 219.799 58.8950i 0.968278 0.259449i 0.260177 0.965561i \(-0.416219\pi\)
0.708101 + 0.706112i \(0.249552\pi\)
\(228\) 107.078 + 164.797i 0.469641 + 0.722795i
\(229\) 185.194 + 320.766i 0.808708 + 1.40072i 0.913759 + 0.406256i \(0.133166\pi\)
−0.105051 + 0.994467i \(0.533501\pi\)
\(230\) 87.8459 + 8.74060i 0.381939 + 0.0380026i
\(231\) −182.746 33.8793i −0.791108 0.146664i
\(232\) 96.3613 + 96.3613i 0.415351 + 0.415351i
\(233\) −68.7703 + 256.654i −0.295151 + 1.10152i 0.645945 + 0.763384i \(0.276463\pi\)
−0.941097 + 0.338137i \(0.890203\pi\)
\(234\) −94.2731 + 9.95524i −0.402877 + 0.0425438i
\(235\) 346.971 56.9294i 1.47647 0.242253i
\(236\) 36.2361 + 62.7628i 0.153543 + 0.265944i
\(237\) −84.4100 + 165.764i −0.356160 + 0.699428i
\(238\) −90.6063 21.7809i −0.380699 0.0915163i
\(239\) −212.376 −0.888604 −0.444302 0.895877i \(-0.646548\pi\)
−0.444302 + 0.895877i \(0.646548\pi\)
\(240\) −2.79306 + 59.9350i −0.0116378 + 0.249729i
\(241\) −27.9403 16.1313i −0.115935 0.0669350i 0.440911 0.897551i \(-0.354655\pi\)
−0.556846 + 0.830616i \(0.687989\pi\)
\(242\) −15.6180 58.2871i −0.0645371 0.240856i
\(243\) 234.797 + 62.6053i 0.966242 + 0.257635i
\(244\) 95.8554 0.392850
\(245\) 11.6092 244.725i 0.0473847 0.998877i
\(246\) 184.224 59.9080i 0.748879 0.243528i
\(247\) −63.1410 + 235.645i −0.255631 + 0.954029i
\(248\) −35.5690 132.745i −0.143423 0.535263i
\(249\) −100.352 + 472.688i −0.403019 + 1.89835i
\(250\) 149.839 + 93.7992i 0.599356 + 0.375197i
\(251\) 50.2807 0.200321 0.100161 0.994971i \(-0.468064\pi\)
0.100161 + 0.994971i \(0.468064\pi\)
\(252\) −116.399 + 48.2409i −0.461902 + 0.191432i
\(253\) 78.1317 78.1317i 0.308821 0.308821i
\(254\) 3.69352 + 6.39736i 0.0145414 + 0.0251865i
\(255\) 134.540 + 42.8548i 0.527608 + 0.168058i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −37.7635 + 140.935i −0.146940 + 0.548386i 0.852722 + 0.522365i \(0.174950\pi\)
−0.999661 + 0.0260209i \(0.991716\pi\)
\(258\) 46.4571 91.2326i 0.180066 0.353615i
\(259\) −51.9329 + 95.5814i −0.200513 + 0.369040i
\(260\) −57.6208 + 47.1920i −0.221618 + 0.181508i
\(261\) 176.177 396.224i 0.675009 1.51810i
\(262\) 4.29881 + 16.0434i 0.0164077 + 0.0612343i
\(263\) −171.317 + 45.9044i −0.651397 + 0.174541i −0.569360 0.822088i \(-0.692809\pi\)
−0.0820366 + 0.996629i \(0.526142\pi\)
\(264\) 55.8216 + 50.2372i 0.211445 + 0.190292i
\(265\) 77.3842 + 94.4851i 0.292016 + 0.356548i
\(266\) 8.39253 + 324.148i 0.0315509 + 1.21860i
\(267\) −164.863 + 323.758i −0.617465 + 1.21258i
\(268\) 41.3063 + 11.0680i 0.154128 + 0.0412984i
\(269\) 98.0087 + 56.5853i 0.364345 + 0.210354i 0.670985 0.741471i \(-0.265872\pi\)
−0.306640 + 0.951825i \(0.599205\pi\)
\(270\) 181.200 60.1367i 0.671113 0.222729i
\(271\) 1.31107 0.756945i 0.00483789 0.00279316i −0.497579 0.867419i \(-0.665778\pi\)
0.502417 + 0.864625i \(0.332444\pi\)
\(272\) 26.6250 + 26.6250i 0.0978860 + 0.0978860i
\(273\) −141.168 67.3422i −0.517098 0.246675i
\(274\) 219.858i 0.802400i
\(275\) 209.661 70.7039i 0.762404 0.257105i
\(276\) 15.5562 73.2747i 0.0563632 0.265488i
\(277\) 39.7694 10.6562i 0.143572 0.0384700i −0.186317 0.982490i \(-0.559655\pi\)
0.329889 + 0.944020i \(0.392989\pi\)
\(278\) −250.737 67.1847i −0.901930 0.241671i
\(279\) −353.652 + 257.208i −1.26757 + 0.921893i
\(280\) −55.6421 + 81.8777i −0.198722 + 0.292420i
\(281\) 361.849i 1.28772i 0.765143 + 0.643860i \(0.222668\pi\)
−0.765143 + 0.643860i \(0.777332\pi\)
\(282\) −15.6875 297.938i −0.0556296 1.05652i
\(283\) −492.711 + 132.022i −1.74103 + 0.466507i −0.982675 0.185336i \(-0.940663\pi\)
−0.758354 + 0.651843i \(0.773996\pi\)
\(284\) 42.3831 73.4097i 0.149236 0.258485i
\(285\) 22.8716 490.791i 0.0802513 1.72207i
\(286\) 93.2224i 0.325952i
\(287\) 310.769 + 74.7059i 1.08282 + 0.260299i
\(288\) 50.2888 + 7.93969i 0.174614 + 0.0275684i
\(289\) −173.542 + 100.194i −0.600490 + 0.346693i
\(290\) −55.1611 336.194i −0.190211 1.15929i
\(291\) −64.1608 + 302.217i −0.220484 + 1.03855i
\(292\) −237.563 63.6547i −0.813571 0.217996i
\(293\) 122.654 122.654i 0.418614 0.418614i −0.466112 0.884726i \(-0.654345\pi\)
0.884726 + 0.466112i \(0.154345\pi\)
\(294\) −205.319 32.5917i −0.698363 0.110856i
\(295\) 17.9388 180.290i 0.0608094 0.611154i
\(296\) 38.0647 21.9766i 0.128597 0.0742454i
\(297\) 85.4725 223.154i 0.287786 0.751360i
\(298\) 7.02267 + 26.2089i 0.0235660 + 0.0879495i
\(299\) 80.5276 46.4926i 0.269323 0.155494i
\(300\) 93.0702 117.635i 0.310234 0.392116i
\(301\) 144.052 88.2171i 0.478580 0.293080i
\(302\) −38.9231 + 38.9231i −0.128885 + 0.128885i
\(303\) 4.28151 + 81.3147i 0.0141304 + 0.268365i
\(304\) 65.5098 113.466i 0.215493 0.373245i
\(305\) −194.650 139.778i −0.638197 0.458290i
\(306\) 48.6784 109.478i 0.159080 0.357771i
\(307\) 280.523 280.523i 0.913755 0.913755i −0.0828102 0.996565i \(-0.526390\pi\)
0.996565 + 0.0828102i \(0.0263895\pi\)
\(308\) 35.1564 + 118.815i 0.114144 + 0.385761i
\(309\) 22.7378 + 69.9213i 0.0735850 + 0.226282i
\(310\) −121.343 + 321.428i −0.391431 + 1.03687i
\(311\) −238.362 + 412.854i −0.766436 + 1.32751i 0.173048 + 0.984913i \(0.444638\pi\)
−0.939484 + 0.342593i \(0.888695\pi\)
\(312\) 34.4332 + 52.9940i 0.110363 + 0.169853i
\(313\) 23.7295 88.5595i 0.0758130 0.282938i −0.917603 0.397497i \(-0.869879\pi\)
0.993416 + 0.114559i \(0.0365456\pi\)
\(314\) 312.481i 0.995163i
\(315\) 306.714 + 71.7752i 0.973694 + 0.227858i
\(316\) 124.012 0.392444
\(317\) −404.762 108.456i −1.27685 0.342131i −0.444199 0.895928i \(-0.646512\pi\)
−0.832652 + 0.553797i \(0.813178\pi\)
\(318\) 86.8983 56.4627i 0.273265 0.177556i
\(319\) −369.292 213.211i −1.15766 0.668373i
\(320\) 36.4510 16.4719i 0.113909 0.0514747i
\(321\) 6.11945 1.98999i 0.0190637 0.00619934i
\(322\) 85.1012 89.6250i 0.264289 0.278339i
\(323\) −218.025 218.025i −0.674999 0.674999i
\(324\) −33.8371 158.427i −0.104435 0.488972i
\(325\) 185.825 11.8071i 0.571768 0.0363296i
\(326\) 157.664 + 91.0275i 0.483632 + 0.279225i
\(327\) 286.815 15.1019i 0.877110 0.0461830i
\(328\) −91.3206 91.3206i −0.278416 0.278416i
\(329\) 235.011 432.532i 0.714319 1.31469i
\(330\) −40.0978 183.415i −0.121508 0.555803i
\(331\) 123.440 + 213.804i 0.372930 + 0.645933i 0.990015 0.140963i \(-0.0450199\pi\)
−0.617085 + 0.786896i \(0.711687\pi\)
\(332\) 311.172 83.3782i 0.937264 0.251139i
\(333\) −108.734 87.9625i −0.326527 0.264152i
\(334\) −10.7074 18.5458i −0.0320581 0.0555263i
\(335\) −67.7395 82.7090i −0.202207 0.246893i
\(336\) 63.8714 + 54.5568i 0.190093 + 0.162371i
\(337\) −278.585 278.585i −0.826661 0.826661i 0.160392 0.987053i \(-0.448724\pi\)
−0.987053 + 0.160392i \(0.948724\pi\)
\(338\) 41.5540 155.082i 0.122941 0.458821i
\(339\) 158.771 + 33.7072i 0.468352 + 0.0994313i
\(340\) −15.2412 92.8915i −0.0448271 0.273210i
\(341\) 215.014 + 372.415i 0.630540 + 1.09213i
\(342\) −411.801 65.0159i −1.20410 0.190105i
\(343\) −260.622 222.991i −0.759831 0.650120i
\(344\) −68.2533 −0.198411
\(345\) −138.440 + 126.112i −0.401276 + 0.365541i
\(346\) −155.681 89.8827i −0.449946 0.259777i
\(347\) −162.413 606.133i −0.468049 1.74678i −0.646578 0.762848i \(-0.723801\pi\)
0.178529 0.983935i \(-0.442866\pi\)
\(348\) −288.684 + 15.2003i −0.829552 + 0.0436789i
\(349\) 526.765 1.50936 0.754678 0.656095i \(-0.227793\pi\)
0.754678 + 0.656095i \(0.227793\pi\)
\(350\) 232.386 85.1274i 0.663960 0.243221i
\(351\) 118.081 162.777i 0.336414 0.463751i
\(352\) 12.9580 48.3599i 0.0368125 0.137386i
\(353\) 11.9979 + 44.7768i 0.0339884 + 0.126846i 0.980836 0.194837i \(-0.0624179\pi\)
−0.946847 + 0.321684i \(0.895751\pi\)
\(354\) −150.385 31.9268i −0.424817 0.0901888i
\(355\) −193.113 + 87.2664i −0.543982 + 0.245821i
\(356\) 242.212 0.680369
\(357\) 162.919 111.959i 0.456356 0.313612i
\(358\) 263.498 263.498i 0.736028 0.736028i
\(359\) 319.570 + 553.512i 0.890168 + 1.54182i 0.839673 + 0.543092i \(0.182747\pi\)
0.0504954 + 0.998724i \(0.483920\pi\)
\(360\) −90.5417 89.4550i −0.251505 0.248486i
\(361\) −355.942 + 616.510i −0.985990 + 1.70778i
\(362\) 43.8328 163.586i 0.121085 0.451896i
\(363\) 114.070 + 58.0861i 0.314241 + 0.160017i
\(364\) 2.69880 + 104.237i 0.00741427 + 0.286365i
\(365\) 389.587 + 475.680i 1.06736 + 1.30323i
\(366\) −136.024 + 151.144i −0.371650 + 0.412963i
\(367\) −95.3454 355.834i −0.259797 0.969575i −0.965359 0.260926i \(-0.915972\pi\)
0.705562 0.708648i \(-0.250695\pi\)
\(368\) −48.2369 + 12.9250i −0.131079 + 0.0351224i
\(369\) −166.961 + 375.497i −0.452470 + 1.01761i
\(370\) −109.343 10.8796i −0.295522 0.0294043i
\(371\) 170.925 4.42542i 0.460714 0.0119284i
\(372\) 259.787 + 132.288i 0.698351 + 0.355612i
\(373\) −285.521 76.5051i −0.765472 0.205108i −0.145102 0.989417i \(-0.546351\pi\)
−0.620370 + 0.784309i \(0.713018\pi\)
\(374\) −102.037 58.9110i −0.272826 0.157516i
\(375\) −360.532 + 103.159i −0.961418 + 0.275092i
\(376\) −172.253 + 99.4504i −0.458120 + 0.264496i
\(377\) −253.744 253.744i −0.673062 0.673062i
\(378\) 89.1110 251.995i 0.235743 0.666652i
\(379\) 545.688i 1.43981i −0.694073 0.719905i \(-0.744185\pi\)
0.694073 0.719905i \(-0.255815\pi\)
\(380\) −298.487 + 134.884i −0.785493 + 0.354958i
\(381\) −15.3286 3.25428i −0.0402327 0.00854141i
\(382\) 104.272 27.9395i 0.272963 0.0731401i
\(383\) −475.888 127.514i −1.24253 0.332934i −0.423082 0.906091i \(-0.639052\pi\)
−0.819445 + 0.573157i \(0.805718\pi\)
\(384\) −10.4963 32.2774i −0.0273341 0.0840556i
\(385\) 101.867 292.538i 0.264590 0.759839i
\(386\) 318.727i 0.825718i
\(387\) 77.9300 + 202.717i 0.201369 + 0.523818i
\(388\) 198.950 53.3086i 0.512759 0.137393i
\(389\) −156.619 + 271.272i −0.402620 + 0.697358i −0.994041 0.109005i \(-0.965234\pi\)
0.591422 + 0.806363i \(0.298567\pi\)
\(390\) 7.35485 157.824i 0.0188586 0.404677i
\(391\) 117.522i 0.300568i
\(392\) 42.7499 + 131.835i 0.109056 + 0.336314i
\(393\) −31.3974 15.9881i −0.0798916 0.0406821i
\(394\) 123.032 71.0326i 0.312264 0.180286i
\(395\) −251.827 180.838i −0.637537 0.457816i
\(396\) −158.428 + 16.7300i −0.400070 + 0.0422474i
\(397\) −119.378 31.9871i −0.300699 0.0805721i 0.105315 0.994439i \(-0.466415\pi\)
−0.406014 + 0.913867i \(0.633082\pi\)
\(398\) −137.601 + 137.601i −0.345732 + 0.345732i
\(399\) −523.026 446.751i −1.31084 1.11968i
\(400\) −98.0394 19.7048i −0.245098 0.0492619i
\(401\) 252.981 146.059i 0.630876 0.364237i −0.150215 0.988653i \(-0.547997\pi\)
0.781091 + 0.624417i \(0.214663\pi\)
\(402\) −76.0677 + 49.4255i −0.189223 + 0.122949i
\(403\) 93.6623 + 349.553i 0.232413 + 0.867376i
\(404\) 47.0121 27.1425i 0.116367 0.0671843i
\(405\) −162.310 + 371.053i −0.400765 + 0.916181i
\(406\) −419.097 227.711i −1.03226 0.560865i
\(407\) −97.2519 + 97.2519i −0.238948 + 0.238948i
\(408\) −79.7645 + 4.19989i −0.195501 + 0.0102938i
\(409\) 177.930 308.183i 0.435036 0.753504i −0.562263 0.826959i \(-0.690069\pi\)
0.997299 + 0.0734545i \(0.0234024\pi\)
\(410\) 52.2756 + 318.607i 0.127501 + 0.777090i
\(411\) 346.671 + 311.990i 0.843481 + 0.759099i
\(412\) 34.6602 34.6602i 0.0841268 0.0841268i
\(413\) −183.942 174.657i −0.445380 0.422899i
\(414\) 93.4641 + 128.510i 0.225759 + 0.310410i
\(415\) −753.469 284.444i −1.81559 0.685408i
\(416\) 21.0661 36.4875i 0.0506396 0.0877103i
\(417\) 461.745 300.022i 1.10730 0.719477i
\(418\) −106.110 + 396.006i −0.253851 + 0.947383i
\(419\) 642.877i 1.53431i −0.641460 0.767157i \(-0.721671\pi\)
0.641460 0.767157i \(-0.278329\pi\)
\(420\) −50.1453 203.925i −0.119394 0.485536i
\(421\) −350.397 −0.832296 −0.416148 0.909297i \(-0.636620\pi\)
−0.416148 + 0.909297i \(0.636620\pi\)
\(422\) −12.5207 3.35492i −0.0296700 0.00795005i
\(423\) 492.050 + 398.055i 1.16324 + 0.941027i
\(424\) −59.8313 34.5436i −0.141112 0.0814708i
\(425\) −104.507 + 210.856i −0.245898 + 0.496133i
\(426\) 55.6082 + 171.002i 0.130536 + 0.401413i
\(427\) −321.706 + 95.1906i −0.753410 + 0.222929i
\(428\) −3.03343 3.03343i −0.00708746 0.00708746i
\(429\) −146.993 132.288i −0.342640 0.308363i
\(430\) 138.599 + 99.5284i 0.322324 + 0.231461i
\(431\) 428.870 + 247.608i 0.995059 + 0.574497i 0.906783 0.421599i \(-0.138531\pi\)
0.0882761 + 0.996096i \(0.471864\pi\)
\(432\) −83.8818 + 68.0283i −0.194171 + 0.157473i
\(433\) −215.228 215.228i −0.497063 0.497063i 0.413460 0.910522i \(-0.364320\pi\)
−0.910522 + 0.413460i \(0.864320\pi\)
\(434\) 251.200 + 410.192i 0.578802 + 0.945144i
\(435\) 608.385 + 390.099i 1.39859 + 0.896779i
\(436\) −95.7375 165.822i −0.219581 0.380326i
\(437\) 394.999 105.840i 0.903888 0.242196i
\(438\) 437.485 284.258i 0.998823 0.648992i
\(439\) 105.622 + 182.943i 0.240598 + 0.416728i 0.960885 0.276949i \(-0.0893232\pi\)
−0.720287 + 0.693676i \(0.755990\pi\)
\(440\) −96.8328 + 79.3070i −0.220074 + 0.180243i
\(441\) 342.749 277.496i 0.777208 0.629243i
\(442\) −70.1105 70.1105i −0.158621 0.158621i
\(443\) 152.850 570.445i 0.345034 1.28769i −0.547538 0.836781i \(-0.684435\pi\)
0.892572 0.450905i \(-0.148899\pi\)
\(444\) −19.3631 + 91.2062i −0.0436106 + 0.205419i
\(445\) −491.850 353.198i −1.10528 0.793704i
\(446\) 107.480 + 186.161i 0.240987 + 0.417402i
\(447\) −51.2917 26.1186i −0.114747 0.0584309i
\(448\) 13.0890 54.4489i 0.0292165 0.121538i
\(449\) 253.156 0.563821 0.281911 0.959441i \(-0.409032\pi\)
0.281911 + 0.959441i \(0.409032\pi\)
\(450\) 53.4144 + 313.683i 0.118699 + 0.697073i
\(451\) 349.974 + 202.058i 0.775996 + 0.448021i
\(452\) −28.0059 104.520i −0.0619600 0.231238i
\(453\) −6.13983 116.608i −0.0135537 0.257413i
\(454\) 321.808 0.708829
\(455\) 146.520 215.605i 0.322022 0.473857i
\(456\) 85.9513 + 264.311i 0.188490 + 0.579628i
\(457\) −54.5974 + 203.760i −0.119469 + 0.445865i −0.999582 0.0288990i \(-0.990800\pi\)
0.880113 + 0.474764i \(0.157467\pi\)
\(458\) 135.571 + 505.960i 0.296008 + 1.10472i
\(459\) 103.547 + 232.111i 0.225593 + 0.505689i
\(460\) 116.800 + 44.0937i 0.253914 + 0.0958559i
\(461\) 515.538 1.11830 0.559152 0.829065i \(-0.311127\pi\)
0.559152 + 0.829065i \(0.311127\pi\)
\(462\) −237.235 113.170i −0.513496 0.244956i
\(463\) 191.269 191.269i 0.413108 0.413108i −0.469712 0.882820i \(-0.655642\pi\)
0.882820 + 0.469712i \(0.155642\pi\)
\(464\) 96.3613 + 166.903i 0.207675 + 0.359704i
\(465\) −334.634 647.458i −0.719643 1.39238i
\(466\) −187.884 + 325.425i −0.403184 + 0.698336i
\(467\) 42.8783 160.024i 0.0918166 0.342664i −0.904701 0.426047i \(-0.859906\pi\)
0.996518 + 0.0833830i \(0.0265725\pi\)
\(468\) −132.423 20.9072i −0.282956 0.0446736i
\(469\) −149.622 + 3.87386i −0.319023 + 0.00825982i
\(470\) 494.809 + 49.2331i 1.05278 + 0.104751i
\(471\) −492.719 443.427i −1.04611 0.941460i
\(472\) 26.5267 + 98.9990i 0.0562006 + 0.209744i
\(473\) 206.295 55.2766i 0.436142 0.116864i
\(474\) −175.980 + 195.542i −0.371266 + 0.412536i
\(475\) 802.818 + 161.357i 1.69014 + 0.339699i
\(476\) −115.798 62.9174i −0.243273 0.132179i
\(477\) −34.2832 + 217.144i −0.0718725 + 0.455230i
\(478\) −290.111 77.7351i −0.606928 0.162626i
\(479\) −396.050 228.660i −0.826827 0.477369i 0.0259377 0.999664i \(-0.491743\pi\)
−0.852765 + 0.522294i \(0.825076\pi\)
\(480\) −25.7531 + 80.8503i −0.0536523 + 0.168438i
\(481\) −100.234 + 57.8702i −0.208387 + 0.120312i
\(482\) −32.2626 32.2626i −0.0669350 0.0669350i
\(483\) 20.5572 + 261.370i 0.0425616 + 0.541139i
\(484\) 85.3382i 0.176319i
\(485\) −481.737 181.862i −0.993272 0.374973i
\(486\) 297.823 + 171.462i 0.612805 + 0.352802i
\(487\) 85.5199 22.9150i 0.175606 0.0470534i −0.169945 0.985454i \(-0.554359\pi\)
0.345550 + 0.938400i \(0.387692\pi\)
\(488\) 130.941 + 35.0855i 0.268322 + 0.0718965i
\(489\) −367.266 + 119.431i −0.751055 + 0.244236i
\(490\) 105.434 330.051i 0.215171 0.673573i
\(491\) 807.024i 1.64363i −0.569751 0.821817i \(-0.692960\pi\)
0.569751 0.821817i \(-0.307040\pi\)
\(492\) 273.583 14.4051i 0.556062 0.0292787i
\(493\) 438.088 117.385i 0.888616 0.238104i
\(494\) −172.504 + 298.786i −0.349199 + 0.604830i
\(495\) 346.109 + 197.050i 0.699210 + 0.398080i
\(496\) 194.353i 0.391840i
\(497\) −69.3440 + 288.464i −0.139525 + 0.580411i
\(498\) −310.099 + 608.972i −0.622689 + 1.22284i
\(499\) −542.063 + 312.960i −1.08630 + 0.627175i −0.932588 0.360942i \(-0.882455\pi\)
−0.153710 + 0.988116i \(0.549122\pi\)
\(500\) 170.351 + 182.977i 0.340702 + 0.365954i
\(501\) 44.4373 + 9.43406i 0.0886972 + 0.0188305i
\(502\) 68.6847 + 18.4040i 0.136822 + 0.0366614i
\(503\) −171.104 + 171.104i −0.340167 + 0.340167i −0.856430 0.516263i \(-0.827323\pi\)
0.516263 + 0.856430i \(0.327323\pi\)
\(504\) −176.662 + 23.2931i −0.350520 + 0.0462165i
\(505\) −135.045 13.4369i −0.267417 0.0266078i
\(506\) 135.328 78.1317i 0.267447 0.154410i
\(507\) 185.565 + 285.591i 0.366005 + 0.563296i
\(508\) 2.70384 + 10.0909i 0.00532253 + 0.0198639i
\(509\) −642.599 + 371.005i −1.26247 + 0.728890i −0.973553 0.228463i \(-0.926630\pi\)
−0.288921 + 0.957353i \(0.593297\pi\)
\(510\) 168.099 + 107.786i 0.329606 + 0.211345i
\(511\) 860.512 22.2795i 1.68398 0.0435998i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 686.885 557.065i 1.33896 1.08590i
\(514\) −103.172 + 178.699i −0.200723 + 0.347663i
\(515\) −120.926 + 19.8409i −0.234807 + 0.0385261i
\(516\) 96.8551 107.622i 0.187704 0.208569i
\(517\) 440.092 440.092i 0.851241 0.851241i
\(518\) −105.927 + 111.558i −0.204492 + 0.215363i
\(519\) 362.647 117.929i 0.698742 0.227224i
\(520\) −95.9849 + 43.3748i −0.184586 + 0.0834131i
\(521\) −502.617 + 870.558i −0.964716 + 1.67094i −0.254338 + 0.967115i \(0.581858\pi\)
−0.710377 + 0.703821i \(0.751476\pi\)
\(522\) 385.691 476.766i 0.738871 0.913345i
\(523\) −198.660 + 741.410i −0.379848 + 1.41761i 0.466283 + 0.884635i \(0.345593\pi\)
−0.846131 + 0.532975i \(0.821074\pi\)
\(524\) 23.4891i 0.0448266i
\(525\) −195.540 + 487.226i −0.372457 + 0.928050i
\(526\) −250.826 −0.476856
\(527\) −441.793 118.378i −0.838316 0.224626i
\(528\) 57.8656 + 89.0574i 0.109594 + 0.168669i
\(529\) 323.144 + 186.567i 0.610857 + 0.352679i
\(530\) 71.1249 + 157.394i 0.134198 + 0.296969i
\(531\) 263.747 191.821i 0.496698 0.361245i
\(532\) −107.182 + 445.867i −0.201470 + 0.838096i
\(533\) 240.471 + 240.471i 0.451164 + 0.451164i
\(534\) −343.711 + 381.918i −0.643654 + 0.715203i
\(535\) 1.73646 + 10.5833i 0.00324572 + 0.0197819i
\(536\) 52.3742 + 30.2383i 0.0977131 + 0.0564147i
\(537\) 41.5648 + 789.400i 0.0774018 + 1.47002i
\(538\) 113.171 + 113.171i 0.210354 + 0.210354i
\(539\) −235.981 363.848i −0.437813 0.675043i
\(540\) 269.536 15.8243i 0.499141 0.0293043i
\(541\) −122.649 212.434i −0.226708 0.392669i 0.730123 0.683316i \(-0.239463\pi\)
−0.956830 + 0.290647i \(0.906130\pi\)
\(542\) 2.06801 0.554123i 0.00381552 0.00102237i
\(543\) 195.741 + 301.253i 0.360481 + 0.554794i
\(544\) 26.6250 + 46.1158i 0.0489430 + 0.0847718i
\(545\) −47.3950 + 476.335i −0.0869634 + 0.874010i
\(546\) −168.190 143.662i −0.308040 0.263117i
\(547\) −163.143 163.143i −0.298250 0.298250i 0.542078 0.840328i \(-0.317638\pi\)
−0.840328 + 0.542078i \(0.817638\pi\)
\(548\) 80.4735 300.331i 0.146849 0.548050i
\(549\) −45.2986 428.964i −0.0825111 0.781355i
\(550\) 312.282 19.8421i 0.567785 0.0360765i
\(551\) −789.077 1366.72i −1.43208 2.48044i
\(552\) 48.0706 94.4011i 0.0870844 0.171016i
\(553\) −416.206 + 123.152i −0.752632 + 0.222699i
\(554\) 58.2264 0.105102
\(555\) 172.319 156.973i 0.310484 0.282835i
\(556\) −317.921 183.552i −0.571801 0.330129i
\(557\) 108.749 + 405.857i 0.195241 + 0.728649i 0.992204 + 0.124621i \(0.0397716\pi\)
−0.796963 + 0.604027i \(0.793562\pi\)
\(558\) −577.242 + 221.907i −1.03448 + 0.397683i
\(559\) 179.729 0.321518
\(560\) −105.978 + 91.4806i −0.189246 + 0.163358i
\(561\) 237.686 77.2934i 0.423683 0.137778i
\(562\) −132.446 + 494.296i −0.235669 + 0.879529i
\(563\) −12.5901 46.9869i −0.0223625 0.0834581i 0.953843 0.300306i \(-0.0970890\pi\)
−0.976205 + 0.216848i \(0.930422\pi\)
\(564\) 87.6235 412.733i 0.155361 0.731797i
\(565\) −95.5421 + 253.083i −0.169101 + 0.447934i
\(566\) −721.379 −1.27452
\(567\) 270.891 + 498.104i 0.477761 + 0.878490i
\(568\) 84.7662 84.7662i 0.149236 0.149236i
\(569\) −174.644 302.493i −0.306932 0.531621i 0.670758 0.741676i \(-0.265969\pi\)
−0.977690 + 0.210055i \(0.932636\pi\)
\(570\) 210.885 662.062i 0.369974 1.16151i
\(571\) 412.798 714.987i 0.722939 1.25217i −0.236878 0.971539i \(-0.576124\pi\)
0.959817 0.280627i \(-0.0905425\pi\)
\(572\) −34.1217 + 127.344i −0.0596534 + 0.222630i
\(573\) −103.912 + 204.063i −0.181348 + 0.356131i
\(574\) 397.174 + 215.799i 0.691940 + 0.375957i
\(575\) −172.884 259.860i −0.300667 0.451931i
\(576\) 65.7896 + 29.2528i 0.114218 + 0.0507861i
\(577\) 83.4080 + 311.283i 0.144555 + 0.539485i 0.999775 + 0.0212204i \(0.00675517\pi\)
−0.855220 + 0.518265i \(0.826578\pi\)
\(578\) −273.736 + 73.3474i −0.473592 + 0.126899i
\(579\) 502.568 + 452.291i 0.867993 + 0.781159i
\(580\) 47.7039 479.439i 0.0822481 0.826619i
\(581\) −961.543 + 588.844i −1.65498 + 1.01350i
\(582\) −198.265 + 389.352i −0.340661 + 0.668990i
\(583\) 208.816 + 55.9520i 0.358174 + 0.0959725i
\(584\) −301.217 173.908i −0.515783 0.297787i
\(585\) 238.420 + 235.558i 0.407555 + 0.402664i
\(586\) 212.443 122.654i 0.362531 0.209307i
\(587\) −175.759 175.759i −0.299419 0.299419i 0.541367 0.840786i \(-0.317907\pi\)
−0.840786 + 0.541367i \(0.817907\pi\)
\(588\) −268.541 119.673i −0.456703 0.203526i
\(589\) 1591.50i 2.70204i
\(590\) 90.4957 239.715i 0.153383 0.406297i
\(591\) −62.5852 + 294.796i −0.105897 + 0.498808i
\(592\) 60.0413 16.0880i 0.101421 0.0271757i
\(593\) 449.905 + 120.552i 0.758693 + 0.203291i 0.617371 0.786672i \(-0.288198\pi\)
0.141322 + 0.989964i \(0.454865\pi\)
\(594\) 198.438 273.549i 0.334070 0.460520i
\(595\) 143.399 + 296.623i 0.241007 + 0.498527i
\(596\) 38.3726i 0.0643835i
\(597\) −21.7055 412.232i −0.0363577 0.690507i
\(598\) 127.020 34.0350i 0.212408 0.0569147i
\(599\) 89.3224 154.711i 0.149119 0.258282i −0.781783 0.623551i \(-0.785690\pi\)
0.930902 + 0.365269i \(0.119023\pi\)
\(600\) 170.194 126.626i 0.283656 0.211043i
\(601\) 641.037i 1.06662i 0.845921 + 0.533309i \(0.179052\pi\)
−0.845921 + 0.533309i \(0.820948\pi\)
\(602\) 229.069 67.7799i 0.380513 0.112591i
\(603\) 30.0103 190.081i 0.0497683 0.315225i
\(604\) −67.4169 + 38.9231i −0.111617 + 0.0644423i
\(605\) −124.442 + 173.293i −0.205689 + 0.286435i
\(606\) −23.9146 + 112.645i −0.0394630 + 0.185883i
\(607\) −632.907 169.587i −1.04268 0.279385i −0.303457 0.952845i \(-0.598141\pi\)
−0.739224 + 0.673460i \(0.764807\pi\)
\(608\) 131.020 131.020i 0.215493 0.215493i
\(609\) 953.776 337.697i 1.56613 0.554510i
\(610\) −214.734 262.188i −0.352023 0.429816i
\(611\) 453.587 261.879i 0.742368 0.428606i
\(612\) 106.568 131.732i 0.174130 0.215249i
\(613\) −177.898 663.923i −0.290208 1.08307i −0.944949 0.327218i \(-0.893889\pi\)
0.654741 0.755853i \(-0.272778\pi\)
\(614\) 485.880 280.523i 0.791335 0.456878i
\(615\) −576.560 369.692i −0.937496 0.601126i
\(616\) 4.53537 + 175.172i 0.00736262 + 0.284370i
\(617\) −45.9474 + 45.9474i −0.0744690 + 0.0744690i −0.743360 0.668891i \(-0.766769\pi\)
0.668891 + 0.743360i \(0.266769\pi\)
\(618\) 5.46739 + 103.837i 0.00884690 + 0.168021i
\(619\) 489.622 848.050i 0.790989 1.37003i −0.134366 0.990932i \(-0.542900\pi\)
0.925355 0.379101i \(-0.123767\pi\)
\(620\) −283.409 + 394.664i −0.457112 + 0.636556i
\(621\) −335.264 34.9884i −0.539878 0.0563420i
\(622\) −476.723 + 476.723i −0.766436 + 0.766436i
\(623\) −812.901 + 240.532i −1.30482 + 0.386086i
\(624\) 27.6395 + 84.9946i 0.0442940 + 0.136209i
\(625\) −79.1043 619.974i −0.126567 0.991958i
\(626\) 64.8301 112.289i 0.103562 0.179375i
\(627\) −473.846 729.267i −0.755735 1.16311i
\(628\) −114.376 + 426.857i −0.182127 + 0.679709i
\(629\) 146.282i 0.232563i
\(630\) 392.707 + 210.312i 0.623345 + 0.333828i
\(631\) −246.070 −0.389968 −0.194984 0.980806i \(-0.562466\pi\)
−0.194984 + 0.980806i \(0.562466\pi\)
\(632\) 169.404 + 45.3917i 0.268044 + 0.0718223i
\(633\) 23.0576 14.9818i 0.0364259 0.0236680i
\(634\) −513.217 296.306i −0.809491 0.467360i
\(635\) 9.22415 24.4340i 0.0145262 0.0384787i
\(636\) 139.372 45.3225i 0.219138 0.0712618i
\(637\) −112.571 347.155i −0.176721 0.544985i
\(638\) −426.422 426.422i −0.668373 0.668373i
\(639\) −348.546 154.978i −0.545456 0.242532i
\(640\) 55.8221 9.15905i 0.0872221 0.0143110i
\(641\) 522.908 + 301.901i 0.815769 + 0.470984i 0.848955 0.528465i \(-0.177232\pi\)
−0.0331865 + 0.999449i \(0.510566\pi\)
\(642\) 9.08772 0.478501i 0.0141553 0.000745329i
\(643\) 97.5075 + 97.5075i 0.151645 + 0.151645i 0.778852 0.627208i \(-0.215802\pi\)
−0.627208 + 0.778852i \(0.715802\pi\)
\(644\) 149.055 91.2809i 0.231453 0.141740i
\(645\) −353.616 + 77.3068i −0.548242 + 0.119855i
\(646\) −218.025 377.630i −0.337500 0.584567i
\(647\) 1197.90 320.976i 1.85147 0.496099i 0.851850 0.523786i \(-0.175481\pi\)
0.999617 + 0.0276875i \(0.00881433\pi\)
\(648\) 11.7659 228.800i 0.0181573 0.353087i
\(649\) −160.354 277.740i −0.247078 0.427951i
\(650\) 258.163 + 51.8878i 0.397174 + 0.0798273i
\(651\) −1003.26 185.994i −1.54110 0.285705i
\(652\) 182.055 + 182.055i 0.279225 + 0.279225i
\(653\) −217.062 + 810.085i −0.332407 + 1.24056i 0.574246 + 0.818683i \(0.305295\pi\)
−0.906653 + 0.421877i \(0.861371\pi\)
\(654\) 397.324 + 84.3521i 0.607530 + 0.128979i
\(655\) 34.2524 47.6985i 0.0522937 0.0728221i
\(656\) −91.3206 158.172i −0.139208 0.241116i
\(657\) −172.597 + 1093.20i −0.262704 + 1.66393i
\(658\) 479.349 504.830i 0.728493 0.767219i
\(659\) 1274.81 1.93445 0.967227 0.253913i \(-0.0817177\pi\)
0.967227 + 0.253913i \(0.0817177\pi\)
\(660\) 12.3600 265.226i 0.0187272 0.401858i
\(661\) 396.873 + 229.135i 0.600413 + 0.346648i 0.769204 0.639003i \(-0.220653\pi\)
−0.168791 + 0.985652i \(0.553986\pi\)
\(662\) 90.3642 + 337.244i 0.136502 + 0.509432i
\(663\) 210.040 11.0594i 0.316803 0.0166808i
\(664\) 455.587 0.686125
\(665\) 867.824 749.110i 1.30500 1.12648i
\(666\) −116.336 159.958i −0.174679 0.240178i
\(667\) −155.684 + 581.021i −0.233410 + 0.871097i
\(668\) −7.83837 29.2532i −0.0117341 0.0437922i
\(669\) −446.059 94.6985i −0.666755 0.141552i
\(670\) −62.2603 137.777i −0.0929258 0.205637i
\(671\) −424.183 −0.632165
\(672\) 67.2808 + 97.9045i 0.100120 + 0.145691i
\(673\) 823.229 823.229i 1.22322 1.22322i 0.256744 0.966480i \(-0.417350\pi\)
0.966480 0.256744i \(-0.0826496\pi\)
\(674\) −278.585 482.523i −0.413330 0.715909i
\(675\) −570.412 360.909i −0.845054 0.534680i
\(676\) 113.528 196.636i 0.167940 0.290881i
\(677\) −279.627 + 1043.58i −0.413039 + 1.54148i 0.375693 + 0.926744i \(0.377405\pi\)
−0.788732 + 0.614737i \(0.789262\pi\)
\(678\) 204.548 + 104.159i 0.301693 + 0.153627i
\(679\) −614.771 + 376.483i −0.905407 + 0.554467i
\(680\) 13.1808 132.471i 0.0193835 0.194810i
\(681\) −456.663 + 507.426i −0.670577 + 0.745119i
\(682\) 157.401 + 587.429i 0.230794 + 0.861334i
\(683\) 1286.90 344.824i 1.88419 0.504867i 0.884956 0.465675i \(-0.154188\pi\)
0.999232 0.0391919i \(-0.0124784\pi\)
\(684\) −538.733 239.543i −0.787622 0.350209i
\(685\) −601.364 + 492.523i −0.877904 + 0.719012i
\(686\) −274.396 400.006i −0.399994 0.583099i
\(687\) −990.178 504.215i −1.44131 0.733938i
\(688\) −93.2357 24.9824i −0.135517 0.0363117i
\(689\) 157.551 + 90.9622i 0.228667 + 0.132021i
\(690\) −235.273 + 121.599i −0.340975 + 0.176231i
\(691\) 859.716 496.357i 1.24416 0.718317i 0.274223 0.961666i \(-0.411579\pi\)
0.969939 + 0.243349i \(0.0782461\pi\)
\(692\) −179.765 179.765i −0.259777 0.259777i
\(693\) 515.095 213.477i 0.743283 0.308048i
\(694\) 887.441i 1.27873i
\(695\) 377.931 + 836.332i 0.543786 + 1.20335i
\(696\) −399.914 84.9018i −0.574588 0.121985i
\(697\) −415.171 + 111.245i −0.595654 + 0.159605i
\(698\) 719.575 + 192.809i 1.03091 + 0.276231i
\(699\) −246.511 758.050i −0.352662 1.08448i
\(700\) 348.604 31.2270i 0.498006 0.0446100i
\(701\) 560.828i 0.800040i −0.916506 0.400020i \(-0.869003\pi\)
0.916506 0.400020i \(-0.130997\pi\)
\(702\) 220.882 179.136i 0.314647 0.255180i
\(703\) −491.662 + 131.740i −0.699377 + 0.187397i
\(704\) 35.4019 61.3179i 0.0502868 0.0870993i
\(705\) −779.791 + 710.348i −1.10609 + 1.00759i
\(706\) 65.5578i 0.0928580i
\(707\) −130.826 + 137.781i −0.185044 + 0.194881i
\(708\) −193.744 98.6577i −0.273650 0.139347i
\(709\) 127.980 73.8894i 0.180508 0.104216i −0.407023 0.913418i \(-0.633433\pi\)
0.587531 + 0.809201i \(0.300100\pi\)
\(710\) −295.740 + 48.5236i −0.416535 + 0.0683431i
\(711\) −58.6048 554.970i −0.0824259 0.780548i
\(712\) 330.867 + 88.6556i 0.464701 + 0.124516i
\(713\) 428.934 428.934i 0.601591 0.601591i
\(714\) 263.532 93.3068i 0.369092 0.130682i
\(715\) 254.986 208.836i 0.356623 0.292078i
\(716\) 456.392 263.498i 0.637419 0.368014i
\(717\) 534.256 347.136i 0.745127 0.484151i
\(718\) 233.942 + 873.083i 0.325824 + 1.21599i
\(719\) −45.0723 + 26.0225i −0.0626875 + 0.0361926i −0.531016 0.847362i \(-0.678190\pi\)
0.468329 + 0.883554i \(0.344856\pi\)
\(720\) −90.9395 155.338i −0.126305 0.215748i
\(721\) −81.9055 + 150.745i −0.113600 + 0.209078i
\(722\) −711.885 + 711.885i −0.985990 + 0.985990i
\(723\) 96.6541 5.08919i 0.133685 0.00703898i
\(724\) 119.753 207.419i 0.165405 0.286490i
\(725\) −795.999 + 904.016i −1.09793 + 1.24692i
\(726\) 134.561 + 121.099i 0.185346 + 0.166804i
\(727\) 315.391 315.391i 0.433826 0.433826i −0.456102 0.889928i \(-0.650755\pi\)
0.889928 + 0.456102i \(0.150755\pi\)
\(728\) −34.4667 + 143.378i −0.0473443 + 0.196948i
\(729\) −692.988 + 226.293i −0.950601 + 0.310416i
\(730\) 358.074 + 792.390i 0.490513 + 1.08547i
\(731\) −113.578 + 196.722i −0.155373 + 0.269114i
\(732\) −241.135 + 156.679i −0.329419 + 0.214042i
\(733\) 60.1306 224.410i 0.0820335 0.306153i −0.912702 0.408625i \(-0.866008\pi\)
0.994736 + 0.102472i \(0.0326751\pi\)
\(734\) 520.977i 0.709778i
\(735\) 370.807 + 634.608i 0.504499 + 0.863412i
\(736\) −70.6237 −0.0959561
\(737\) −182.790 48.9784i −0.248019 0.0664565i
\(738\) −365.515 + 451.826i −0.495277 + 0.612230i
\(739\) 248.595 + 143.526i 0.336393 + 0.194217i 0.658676 0.752427i \(-0.271117\pi\)
−0.322283 + 0.946643i \(0.604450\pi\)
\(740\) −145.384 54.8842i −0.196464 0.0741678i
\(741\) −226.332 695.998i −0.305441 0.939268i
\(742\) 235.108 + 56.5176i 0.316856 + 0.0761693i
\(743\) −296.361 296.361i −0.398870 0.398870i 0.478964 0.877834i \(-0.341012\pi\)
−0.877834 + 0.478964i \(0.841012\pi\)
\(744\) 306.454 + 275.797i 0.411901 + 0.370695i
\(745\) 55.9557 77.9217i 0.0751083 0.104593i
\(746\) −362.026 209.016i −0.485290 0.280182i
\(747\) −520.178 1353.13i −0.696357 1.81142i
\(748\) −117.822 117.822i −0.157516 0.157516i
\(749\) 13.1931 + 7.16830i 0.0176143 + 0.00957050i
\(750\) −530.254 + 8.95461i −0.707006 + 0.0119395i
\(751\) 408.674 + 707.844i 0.544173 + 0.942535i 0.998658 + 0.0517809i \(0.0164897\pi\)
−0.454486 + 0.890754i \(0.650177\pi\)
\(752\) −271.703 + 72.8027i −0.361308 + 0.0968121i
\(753\) −126.487 + 82.1855i −0.167977 + 0.109144i
\(754\) −253.744 439.498i −0.336531 0.582889i
\(755\) 193.659 + 19.2690i 0.256503 + 0.0255218i
\(756\) 213.964 311.614i 0.283021 0.412188i
\(757\) −835.287 835.287i −1.10342 1.10342i −0.993995 0.109422i \(-0.965100\pi\)
−0.109422 0.993995i \(-0.534900\pi\)
\(758\) 199.736 745.423i 0.263503 0.983408i
\(759\) −68.8400 + 324.258i −0.0906983 + 0.427217i