Properties

Label 210.3.w.b.17.14
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.14
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.14

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(2.39979 - 1.80027i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.39011 + 4.39174i) q^{5} +(3.93713 - 1.58084i) q^{6} +(6.65191 + 2.17994i) q^{7} +(2.00000 + 2.00000i) q^{8} +(2.51802 - 8.64058i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(2.39979 - 1.80027i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-2.39011 + 4.39174i) q^{5} +(3.93713 - 1.58084i) q^{6} +(6.65191 + 2.17994i) q^{7} +(2.00000 + 2.00000i) q^{8} +(2.51802 - 8.64058i) q^{9} +(-4.87243 + 5.12439i) q^{10} +(5.82368 + 3.36230i) q^{11} +(5.95684 - 0.718373i) q^{12} +(-3.78650 - 3.78650i) q^{13} +(8.28876 + 5.41262i) q^{14} +(2.17058 + 14.8421i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-3.69500 + 0.990073i) q^{17} +(6.60235 - 10.8816i) q^{18} +(2.17576 + 3.76853i) q^{19} +(-8.53153 + 5.21661i) q^{20} +(19.8877 - 6.74386i) q^{21} +(6.72461 + 6.72461i) q^{22} +(3.48168 - 12.9938i) q^{23} +(8.40014 + 1.19904i) q^{24} +(-13.5748 - 20.9935i) q^{25} +(-3.78650 - 6.55841i) q^{26} +(-9.51267 - 25.2687i) q^{27} +(9.34151 + 10.4277i) q^{28} -19.0062 q^{29} +(-2.46753 + 21.0692i) q^{30} +(0.140971 + 0.0813895i) q^{31} +(1.46410 + 5.46410i) q^{32} +(20.0287 - 2.41539i) q^{33} -5.40986 q^{34} +(-25.4725 + 24.0032i) q^{35} +(13.0019 - 12.4479i) q^{36} +(13.9748 - 52.1548i) q^{37} +(1.59277 + 5.94429i) q^{38} +(-15.9036 - 2.27008i) q^{39} +(-13.5637 + 4.00327i) q^{40} -64.3886 q^{41} +(29.6355 - 1.93289i) q^{42} +(-49.3467 + 49.3467i) q^{43} +(6.72461 + 11.6474i) q^{44} +(31.9288 + 31.7104i) q^{45} +(9.51213 - 16.4755i) q^{46} +(-8.05536 + 30.0630i) q^{47} +(11.0359 + 4.71258i) q^{48} +(39.4958 + 29.0015i) q^{49} +(-10.8594 - 33.6463i) q^{50} +(-7.08484 + 9.02799i) q^{51} +(-2.77191 - 10.3449i) q^{52} +(79.5945 - 21.3273i) q^{53} +(-3.74555 - 37.9996i) q^{54} +(-28.6856 + 17.5398i) q^{55} +(8.94394 + 17.6637i) q^{56} +(12.0058 + 5.12672i) q^{57} +(-25.9629 - 6.95675i) q^{58} +(1.10247 + 0.636510i) q^{59} +(-11.0826 + 27.8779i) q^{60} +(-88.4000 + 51.0378i) q^{61} +(0.162779 + 0.162779i) q^{62} +(35.5856 - 51.9872i) q^{63} +8.00000i q^{64} +(25.6795 - 7.57919i) q^{65} +(28.2438 + 4.03153i) q^{66} +(-98.3650 + 26.3568i) q^{67} +(-7.39001 - 1.98015i) q^{68} +(-15.0371 - 37.4504i) q^{69} +(-43.5818 + 23.4654i) q^{70} -119.115i q^{71} +(22.3172 - 12.2451i) q^{72} +(-68.2204 + 18.2796i) q^{73} +(38.1800 - 66.1296i) q^{74} +(-70.3707 - 25.9416i) q^{75} +8.70304i q^{76} +(31.4090 + 35.0610i) q^{77} +(-20.8938 - 8.92209i) q^{78} +(89.1596 - 51.4763i) q^{79} +(-19.9937 + 0.503911i) q^{80} +(-68.3191 - 43.5143i) q^{81} +(-87.9564 - 23.5678i) q^{82} +(21.3161 - 21.3161i) q^{83} +(41.1904 + 8.20698i) q^{84} +(4.48331 - 18.5939i) q^{85} +(-85.4709 + 49.3467i) q^{86} +(-45.6109 + 34.2163i) q^{87} +(4.92275 + 18.3720i) q^{88} +(83.4011 - 48.1516i) q^{89} +(32.0088 + 55.0040i) q^{90} +(-16.9331 - 33.4418i) q^{91} +(19.0243 - 19.0243i) q^{92} +(0.484824 - 0.0584680i) q^{93} +(-22.0076 + 38.1184i) q^{94} +(-21.7507 + 0.548195i) q^{95} +(13.3504 + 10.4769i) q^{96} +(-37.6895 + 37.6895i) q^{97} +(43.3369 + 54.0732i) q^{98} +(43.7164 - 41.8536i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 2.39979 1.80027i 0.799931 0.600092i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −2.39011 + 4.39174i −0.478021 + 0.878348i
\(6\) 3.93713 1.58084i 0.656188 0.263473i
\(7\) 6.65191 + 2.17994i 0.950273 + 0.311419i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 2.51802 8.64058i 0.279780 0.960064i
\(10\) −4.87243 + 5.12439i −0.487243 + 0.512439i
\(11\) 5.82368 + 3.36230i 0.529425 + 0.305664i 0.740782 0.671745i \(-0.234455\pi\)
−0.211357 + 0.977409i \(0.567788\pi\)
\(12\) 5.95684 0.718373i 0.496403 0.0598644i
\(13\) −3.78650 3.78650i −0.291269 0.291269i 0.546312 0.837582i \(-0.316031\pi\)
−0.837582 + 0.546312i \(0.816031\pi\)
\(14\) 8.28876 + 5.41262i 0.592055 + 0.386615i
\(15\) 2.17058 + 14.8421i 0.144705 + 0.989475i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −3.69500 + 0.990073i −0.217353 + 0.0582396i −0.365852 0.930673i \(-0.619222\pi\)
0.148499 + 0.988913i \(0.452556\pi\)
\(18\) 6.60235 10.8816i 0.366797 0.604533i
\(19\) 2.17576 + 3.76853i 0.114514 + 0.198344i 0.917585 0.397539i \(-0.130136\pi\)
−0.803072 + 0.595883i \(0.796802\pi\)
\(20\) −8.53153 + 5.21661i −0.426576 + 0.260831i
\(21\) 19.8877 6.74386i 0.947033 0.321136i
\(22\) 6.72461 + 6.72461i 0.305664 + 0.305664i
\(23\) 3.48168 12.9938i 0.151377 0.564948i −0.848011 0.529979i \(-0.822200\pi\)
0.999388 0.0349695i \(-0.0111334\pi\)
\(24\) 8.40014 + 1.19904i 0.350006 + 0.0499600i
\(25\) −13.5748 20.9935i −0.542991 0.839738i
\(26\) −3.78650 6.55841i −0.145635 0.252247i
\(27\) −9.51267 25.2687i −0.352321 0.935879i
\(28\) 9.34151 + 10.4277i 0.333625 + 0.372417i
\(29\) −19.0062 −0.655386 −0.327693 0.944784i \(-0.606271\pi\)
−0.327693 + 0.944784i \(0.606271\pi\)
\(30\) −2.46753 + 21.0692i −0.0822510 + 0.702307i
\(31\) 0.140971 + 0.0813895i 0.00454744 + 0.00262547i 0.502272 0.864710i \(-0.332498\pi\)
−0.497725 + 0.867335i \(0.665831\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 20.0287 2.41539i 0.606930 0.0731936i
\(34\) −5.40986 −0.159114
\(35\) −25.4725 + 24.0032i −0.727785 + 0.685805i
\(36\) 13.0019 12.4479i 0.361164 0.345775i
\(37\) 13.9748 52.1548i 0.377698 1.40959i −0.471664 0.881779i \(-0.656346\pi\)
0.849362 0.527811i \(-0.176987\pi\)
\(38\) 1.59277 + 5.94429i 0.0419149 + 0.156429i
\(39\) −15.9036 2.27008i −0.407784 0.0582072i
\(40\) −13.5637 + 4.00327i −0.339092 + 0.100082i
\(41\) −64.3886 −1.57045 −0.785226 0.619209i \(-0.787453\pi\)
−0.785226 + 0.619209i \(0.787453\pi\)
\(42\) 29.6355 1.93289i 0.705608 0.0460211i
\(43\) −49.3467 + 49.3467i −1.14760 + 1.14760i −0.160573 + 0.987024i \(0.551334\pi\)
−0.987024 + 0.160573i \(0.948666\pi\)
\(44\) 6.72461 + 11.6474i 0.152832 + 0.264713i
\(45\) 31.9288 + 31.7104i 0.709530 + 0.704676i
\(46\) 9.51213 16.4755i 0.206785 0.358163i
\(47\) −8.05536 + 30.0630i −0.171391 + 0.639638i 0.825748 + 0.564040i \(0.190753\pi\)
−0.997138 + 0.0755987i \(0.975913\pi\)
\(48\) 11.0359 + 4.71258i 0.229915 + 0.0981788i
\(49\) 39.4958 + 29.0015i 0.806036 + 0.591867i
\(50\) −10.8594 33.6463i −0.217187 0.672926i
\(51\) −7.08484 + 9.02799i −0.138919 + 0.177019i
\(52\) −2.77191 10.3449i −0.0533060 0.198941i
\(53\) 79.5945 21.3273i 1.50178 0.402402i 0.588086 0.808798i \(-0.299882\pi\)
0.913697 + 0.406397i \(0.133215\pi\)
\(54\) −3.74555 37.9996i −0.0693621 0.703697i
\(55\) −28.6856 + 17.5398i −0.521556 + 0.318906i
\(56\) 8.94394 + 17.6637i 0.159713 + 0.315423i
\(57\) 12.0058 + 5.12672i 0.210627 + 0.0899425i
\(58\) −25.9629 6.95675i −0.447637 0.119944i
\(59\) 1.10247 + 0.636510i 0.0186859 + 0.0107883i 0.509314 0.860581i \(-0.329899\pi\)
−0.490628 + 0.871369i \(0.663233\pi\)
\(60\) −11.0826 + 27.8779i −0.184710 + 0.464631i
\(61\) −88.4000 + 51.0378i −1.44918 + 0.836685i −0.998433 0.0559667i \(-0.982176\pi\)
−0.450748 + 0.892651i \(0.648843\pi\)
\(62\) 0.162779 + 0.162779i 0.00262547 + 0.00262547i
\(63\) 35.5856 51.9872i 0.564850 0.825193i
\(64\) 8.00000i 0.125000i
\(65\) 25.6795 7.57919i 0.395069 0.116603i
\(66\) 28.2438 + 4.03153i 0.427936 + 0.0610838i
\(67\) −98.3650 + 26.3568i −1.46813 + 0.393386i −0.902291 0.431127i \(-0.858116\pi\)
−0.565844 + 0.824513i \(0.691449\pi\)
\(68\) −7.39001 1.98015i −0.108677 0.0291198i
\(69\) −15.0371 37.4504i −0.217929 0.542760i
\(70\) −43.5818 + 23.4654i −0.622598 + 0.335220i
\(71\) 119.115i 1.67768i −0.544376 0.838841i \(-0.683233\pi\)
0.544376 0.838841i \(-0.316767\pi\)
\(72\) 22.3172 12.2451i 0.309961 0.170071i
\(73\) −68.2204 + 18.2796i −0.934526 + 0.250405i −0.693783 0.720184i \(-0.744058\pi\)
−0.240742 + 0.970589i \(0.577391\pi\)
\(74\) 38.1800 66.1296i 0.515945 0.893644i
\(75\) −70.3707 25.9416i −0.938276 0.345889i
\(76\) 8.70304i 0.114514i
\(77\) 31.4090 + 35.0610i 0.407909 + 0.455337i
\(78\) −20.8938 8.92209i −0.267869 0.114386i
\(79\) 89.1596 51.4763i 1.12860 0.651599i 0.185020 0.982735i \(-0.440765\pi\)
0.943583 + 0.331136i \(0.107432\pi\)
\(80\) −19.9937 + 0.503911i −0.249921 + 0.00629889i
\(81\) −68.3191 43.5143i −0.843446 0.537214i
\(82\) −87.9564 23.5678i −1.07264 0.287413i
\(83\) 21.3161 21.3161i 0.256821 0.256821i −0.566939 0.823760i \(-0.691873\pi\)
0.823760 + 0.566939i \(0.191873\pi\)
\(84\) 41.1904 + 8.20698i 0.490361 + 0.0977021i
\(85\) 4.48331 18.5939i 0.0527448 0.218752i
\(86\) −85.4709 + 49.3467i −0.993848 + 0.573799i
\(87\) −45.6109 + 34.2163i −0.524263 + 0.393291i
\(88\) 4.92275 + 18.3720i 0.0559404 + 0.208772i
\(89\) 83.4011 48.1516i 0.937091 0.541030i 0.0480436 0.998845i \(-0.484701\pi\)
0.889047 + 0.457816i \(0.151368\pi\)
\(90\) 32.0088 + 55.0040i 0.355653 + 0.611155i
\(91\) −16.9331 33.4418i −0.186078 0.367492i
\(92\) 19.0243 19.0243i 0.206785 0.206785i
\(93\) 0.484824 0.0584680i 0.00521316 0.000628688i
\(94\) −22.0076 + 38.1184i −0.234124 + 0.405514i
\(95\) −21.7507 + 0.548195i −0.228955 + 0.00577047i
\(96\) 13.3504 + 10.4769i 0.139067 + 0.109135i
\(97\) −37.6895 + 37.6895i −0.388552 + 0.388552i −0.874171 0.485619i \(-0.838594\pi\)
0.485619 + 0.874171i \(0.338594\pi\)
\(98\) 43.3369 + 54.0732i 0.442214 + 0.551767i
\(99\) 43.7164 41.8536i 0.441580 0.422764i
\(100\) −2.51876 49.9365i −0.0251876 0.499365i
\(101\) −11.4760 + 19.8770i −0.113624 + 0.196802i −0.917229 0.398361i \(-0.869579\pi\)
0.803605 + 0.595163i \(0.202913\pi\)
\(102\) −12.9826 + 9.73923i −0.127280 + 0.0954827i
\(103\) 21.7638 81.2236i 0.211299 0.788578i −0.776138 0.630563i \(-0.782824\pi\)
0.987437 0.158015i \(-0.0505094\pi\)
\(104\) 15.1460i 0.145635i
\(105\) −17.9164 + 103.460i −0.170632 + 0.985335i
\(106\) 116.534 1.09938
\(107\) 106.956 + 28.6588i 0.999591 + 0.267840i 0.721274 0.692650i \(-0.243557\pi\)
0.278317 + 0.960489i \(0.410224\pi\)
\(108\) 8.79230 53.2794i 0.0814102 0.493328i
\(109\) 76.8368 + 44.3618i 0.704925 + 0.406989i 0.809179 0.587562i \(-0.199912\pi\)
−0.104254 + 0.994551i \(0.533245\pi\)
\(110\) −45.6053 + 13.4602i −0.414593 + 0.122366i
\(111\) −60.3562 150.319i −0.543750 1.35423i
\(112\) 5.75230 + 27.4028i 0.0513598 + 0.244667i
\(113\) 96.4512 + 96.4512i 0.853551 + 0.853551i 0.990569 0.137018i \(-0.0437517\pi\)
−0.137018 + 0.990569i \(0.543752\pi\)
\(114\) 14.5237 + 11.3977i 0.127401 + 0.0999794i
\(115\) 48.7439 + 46.3472i 0.423860 + 0.403019i
\(116\) −32.9197 19.0062i −0.283790 0.163846i
\(117\) −42.2520 + 23.1830i −0.361128 + 0.198146i
\(118\) 1.27302 + 1.27302i 0.0107883 + 0.0107883i
\(119\) −26.7371 1.46899i −0.224682 0.0123445i
\(120\) −25.3431 + 34.0254i −0.211192 + 0.283545i
\(121\) −37.8898 65.6271i −0.313139 0.542373i
\(122\) −139.438 + 37.3622i −1.14293 + 0.306248i
\(123\) −154.519 + 115.917i −1.25625 + 0.942415i
\(124\) 0.162779 + 0.281942i 0.00131273 + 0.00227372i
\(125\) 124.643 9.44033i 0.997144 0.0755227i
\(126\) 67.6394 57.9906i 0.536821 0.460243i
\(127\) 150.961 + 150.961i 1.18867 + 1.18867i 0.977436 + 0.211232i \(0.0677477\pi\)
0.211232 + 0.977436i \(0.432252\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −29.5843 + 207.259i −0.229336 + 1.60666i
\(130\) 37.8530 0.954029i 0.291177 0.00733869i
\(131\) −81.2787 140.779i −0.620448 1.07465i −0.989402 0.145200i \(-0.953617\pi\)
0.368954 0.929448i \(-0.379716\pi\)
\(132\) 37.1061 + 15.8451i 0.281107 + 0.120039i
\(133\) 6.25781 + 29.8109i 0.0470512 + 0.224142i
\(134\) −144.016 −1.07475
\(135\) 133.710 + 18.6178i 0.990445 + 0.137909i
\(136\) −9.37015 5.40986i −0.0688982 0.0397784i
\(137\) 49.3770 + 184.278i 0.360416 + 1.34509i 0.873529 + 0.486771i \(0.161825\pi\)
−0.513113 + 0.858321i \(0.671508\pi\)
\(138\) −6.83326 56.6622i −0.0495163 0.410596i
\(139\) −66.3531 −0.477360 −0.238680 0.971098i \(-0.576715\pi\)
−0.238680 + 0.971098i \(0.576715\pi\)
\(140\) −68.1228 + 16.1022i −0.486592 + 0.115016i
\(141\) 34.7905 + 86.6468i 0.246741 + 0.614517i
\(142\) 43.5993 162.715i 0.307037 1.14588i
\(143\) −9.32000 34.7827i −0.0651748 0.243236i
\(144\) 34.9679 8.55846i 0.242833 0.0594338i
\(145\) 45.4268 83.4702i 0.313288 0.575657i
\(146\) −99.8816 −0.684120
\(147\) 146.992 1.50566i 0.999948 0.0102426i
\(148\) 76.3599 76.3599i 0.515945 0.515945i
\(149\) −23.3448 40.4345i −0.156677 0.271372i 0.776992 0.629511i \(-0.216745\pi\)
−0.933668 + 0.358139i \(0.883411\pi\)
\(150\) −86.6328 61.1944i −0.577552 0.407963i
\(151\) 95.0699 164.666i 0.629602 1.09050i −0.358029 0.933710i \(-0.616551\pi\)
0.987632 0.156793i \(-0.0501154\pi\)
\(152\) −3.18553 + 11.8886i −0.0209575 + 0.0782143i
\(153\) −0.749301 + 34.4200i −0.00489739 + 0.224967i
\(154\) 30.0722 + 59.3907i 0.195274 + 0.385654i
\(155\) −0.694377 + 0.424578i −0.00447985 + 0.00273921i
\(156\) −25.2757 19.8355i −0.162024 0.127150i
\(157\) 58.8702 + 219.707i 0.374969 + 1.39940i 0.853390 + 0.521274i \(0.174543\pi\)
−0.478420 + 0.878131i \(0.658790\pi\)
\(158\) 140.636 37.6833i 0.890101 0.238502i
\(159\) 152.615 194.473i 0.959845 1.22310i
\(160\) −27.4963 6.62983i −0.171852 0.0414364i
\(161\) 51.4855 78.8438i 0.319786 0.489713i
\(162\) −77.3983 84.4482i −0.477767 0.521285i
\(163\) 113.940 + 30.5302i 0.699021 + 0.187302i 0.590792 0.806824i \(-0.298815\pi\)
0.108229 + 0.994126i \(0.465482\pi\)
\(164\) −111.524 64.3886i −0.680026 0.392613i
\(165\) −37.2630 + 93.7339i −0.225836 + 0.568084i
\(166\) 36.9206 21.3161i 0.222413 0.128410i
\(167\) −56.9075 56.9075i −0.340764 0.340764i 0.515891 0.856654i \(-0.327461\pi\)
−0.856654 + 0.515891i \(0.827461\pi\)
\(168\) 53.2631 + 26.2877i 0.317042 + 0.156474i
\(169\) 140.325i 0.830324i
\(170\) 12.9301 23.7587i 0.0760597 0.139757i
\(171\) 38.0409 9.31059i 0.222461 0.0544479i
\(172\) −134.818 + 36.1243i −0.783823 + 0.210025i
\(173\) 264.119 + 70.7704i 1.52670 + 0.409078i 0.921940 0.387332i \(-0.126603\pi\)
0.604758 + 0.796409i \(0.293270\pi\)
\(174\) −74.8297 + 30.0456i −0.430056 + 0.172676i
\(175\) −44.5338 169.239i −0.254479 0.967078i
\(176\) 26.8984i 0.152832i
\(177\) 3.79159 0.457251i 0.0214214 0.00258334i
\(178\) 131.553 35.2494i 0.739060 0.198031i
\(179\) −83.4294 + 144.504i −0.466086 + 0.807285i −0.999250 0.0387273i \(-0.987670\pi\)
0.533164 + 0.846012i \(0.321003\pi\)
\(180\) 23.5920 + 86.8529i 0.131066 + 0.482516i
\(181\) 214.129i 1.18303i 0.806293 + 0.591516i \(0.201470\pi\)
−0.806293 + 0.591516i \(0.798530\pi\)
\(182\) −10.8905 51.8803i −0.0598381 0.285056i
\(183\) −120.260 + 281.624i −0.657157 + 1.53893i
\(184\) 32.9510 19.0243i 0.179081 0.103393i
\(185\) 195.649 + 186.029i 1.05756 + 1.00556i
\(186\) 0.683683 + 0.0975892i 0.00367572 + 0.000524673i
\(187\) −24.8474 6.65785i −0.132874 0.0356035i
\(188\) −44.0153 + 44.0153i −0.234124 + 0.234124i
\(189\) −8.19320 188.822i −0.0433502 0.999060i
\(190\) −29.9127 7.21246i −0.157435 0.0379603i
\(191\) 81.4585 47.0301i 0.426484 0.246231i −0.271363 0.962477i \(-0.587475\pi\)
0.697848 + 0.716246i \(0.254141\pi\)
\(192\) 14.4022 + 19.1984i 0.0750114 + 0.0999914i
\(193\) −8.62307 32.1818i −0.0446791 0.166745i 0.939981 0.341226i \(-0.110842\pi\)
−0.984661 + 0.174481i \(0.944175\pi\)
\(194\) −65.2801 + 37.6895i −0.336496 + 0.194276i
\(195\) 47.9808 64.4186i 0.246055 0.330352i
\(196\) 39.4072 + 89.7278i 0.201057 + 0.457795i
\(197\) −15.6791 + 15.6791i −0.0795891 + 0.0795891i −0.745781 0.666192i \(-0.767923\pi\)
0.666192 + 0.745781i \(0.267923\pi\)
\(198\) 75.0372 41.1718i 0.378976 0.207938i
\(199\) −34.1697 + 59.1837i −0.171707 + 0.297405i −0.939017 0.343871i \(-0.888262\pi\)
0.767310 + 0.641277i \(0.221595\pi\)
\(200\) 14.8374 69.1365i 0.0741868 0.345682i
\(201\) −188.606 + 240.335i −0.938340 + 1.19570i
\(202\) −22.9520 + 22.9520i −0.113624 + 0.113624i
\(203\) −126.427 41.4323i −0.622795 0.204100i
\(204\) −21.2993 + 8.55210i −0.104408 + 0.0419221i
\(205\) 153.896 282.778i 0.750710 1.37940i
\(206\) 59.4598 102.987i 0.288640 0.499939i
\(207\) −103.507 62.8024i −0.500034 0.303393i
\(208\) 5.54382 20.6898i 0.0266530 0.0994703i
\(209\) 29.2623i 0.140011i
\(210\) −62.3433 + 134.771i −0.296873 + 0.641768i
\(211\) 96.2506 0.456164 0.228082 0.973642i \(-0.426755\pi\)
0.228082 + 0.973642i \(0.426755\pi\)
\(212\) 159.189 + 42.6546i 0.750891 + 0.201201i
\(213\) −214.441 285.853i −1.00676 1.34203i
\(214\) 135.615 + 78.2974i 0.633715 + 0.365876i
\(215\) −98.7740 334.662i −0.459414 1.55657i
\(216\) 31.5121 69.5628i 0.145889 0.322050i
\(217\) 0.760301 + 0.848703i 0.00350369 + 0.00391107i
\(218\) 88.7235 + 88.7235i 0.406989 + 0.406989i
\(219\) −130.807 + 166.683i −0.597290 + 0.761108i
\(220\) −67.2247 + 1.69430i −0.305567 + 0.00770137i
\(221\) 17.7400 + 10.2422i 0.0802717 + 0.0463449i
\(222\) −27.4275 227.432i −0.123547 1.02447i
\(223\) 112.186 + 112.186i 0.503075 + 0.503075i 0.912392 0.409317i \(-0.134233\pi\)
−0.409317 + 0.912392i \(0.634233\pi\)
\(224\) −2.17232 + 39.5383i −0.00969787 + 0.176510i
\(225\) −215.577 + 64.4319i −0.958121 + 0.286364i
\(226\) 96.4512 + 167.058i 0.426775 + 0.739197i
\(227\) −225.570 + 60.4414i −0.993702 + 0.266262i −0.718805 0.695212i \(-0.755311\pi\)
−0.274897 + 0.961474i \(0.588644\pi\)
\(228\) 15.6679 + 20.8855i 0.0687187 + 0.0916031i
\(229\) −90.9875 157.595i −0.397326 0.688188i 0.596069 0.802933i \(-0.296728\pi\)
−0.993395 + 0.114745i \(0.963395\pi\)
\(230\) 49.6211 + 81.1530i 0.215744 + 0.352839i
\(231\) 138.494 + 27.5943i 0.599543 + 0.119456i
\(232\) −38.0124 38.0124i −0.163846 0.163846i
\(233\) 3.87883 14.4760i 0.0166473 0.0621286i −0.957103 0.289749i \(-0.906428\pi\)
0.973750 + 0.227621i \(0.0730947\pi\)
\(234\) −66.2029 + 16.2033i −0.282919 + 0.0692449i
\(235\) −112.776 107.231i −0.479897 0.456301i
\(236\) 1.27302 + 2.20493i 0.00539415 + 0.00934294i
\(237\) 121.293 284.044i 0.511786 1.19850i
\(238\) −35.9859 11.7932i −0.151201 0.0495511i
\(239\) −373.492 −1.56273 −0.781365 0.624075i \(-0.785476\pi\)
−0.781365 + 0.624075i \(0.785476\pi\)
\(240\) −47.0735 + 37.2033i −0.196139 + 0.155014i
\(241\) −91.8906 53.0531i −0.381289 0.220137i 0.297090 0.954849i \(-0.403984\pi\)
−0.678379 + 0.734712i \(0.737317\pi\)
\(242\) −27.7373 103.517i −0.114617 0.427756i
\(243\) −242.290 + 18.5677i −0.997076 + 0.0764103i
\(244\) −204.151 −0.836685
\(245\) −221.766 + 104.139i −0.905167 + 0.425055i
\(246\) −253.506 + 101.788i −1.03051 + 0.413771i
\(247\) 6.03101 22.5080i 0.0244171 0.0911257i
\(248\) 0.119163 + 0.444721i 0.000480494 + 0.00179323i
\(249\) 12.7794 89.5291i 0.0513230 0.359555i
\(250\) 173.721 + 32.7268i 0.694884 + 0.130907i
\(251\) 171.959 0.685097 0.342548 0.939500i \(-0.388710\pi\)
0.342548 + 0.939500i \(0.388710\pi\)
\(252\) 113.623 54.4589i 0.450886 0.216107i
\(253\) 63.9653 63.9653i 0.252827 0.252827i
\(254\) 150.961 + 261.472i 0.594334 + 1.02942i
\(255\) −22.7151 52.6927i −0.0890787 0.206638i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −25.0505 + 93.4896i −0.0974726 + 0.363773i −0.997383 0.0723027i \(-0.976965\pi\)
0.899910 + 0.436075i \(0.143632\pi\)
\(258\) −116.275 + 272.293i −0.450679 + 1.05540i
\(259\) 206.653 316.465i 0.797890 1.22187i
\(260\) 52.0573 + 12.5519i 0.200220 + 0.0482766i
\(261\) −47.8580 + 164.224i −0.183364 + 0.629212i
\(262\) −59.5001 222.057i −0.227100 0.847548i
\(263\) −370.341 + 99.2327i −1.40814 + 0.377311i −0.881262 0.472629i \(-0.843305\pi\)
−0.526881 + 0.849939i \(0.676638\pi\)
\(264\) 44.8882 + 35.2266i 0.170031 + 0.133434i
\(265\) −96.5754 + 400.533i −0.364436 + 1.51144i
\(266\) −2.36323 + 43.0130i −0.00888431 + 0.161703i
\(267\) 113.459 265.699i 0.424941 0.995127i
\(268\) −196.730 52.7137i −0.734067 0.196693i
\(269\) 359.720 + 207.684i 1.33725 + 0.772061i 0.986399 0.164370i \(-0.0525593\pi\)
0.350850 + 0.936432i \(0.385893\pi\)
\(270\) 175.837 + 74.3736i 0.651247 + 0.275458i
\(271\) −148.971 + 86.0086i −0.549710 + 0.317375i −0.749005 0.662564i \(-0.769468\pi\)
0.199295 + 0.979940i \(0.436135\pi\)
\(272\) −10.8197 10.8197i −0.0397784 0.0397784i
\(273\) −100.840 49.7691i −0.369379 0.182304i
\(274\) 269.801i 0.984676i
\(275\) −8.46882 167.902i −0.0307957 0.610552i
\(276\) 11.4054 79.9032i 0.0413240 0.289504i
\(277\) 212.684 56.9885i 0.767812 0.205735i 0.146407 0.989224i \(-0.453229\pi\)
0.621405 + 0.783490i \(0.286562\pi\)
\(278\) −90.6400 24.2869i −0.326043 0.0873630i
\(279\) 1.05822 1.01313i 0.00379290 0.00363128i
\(280\) −98.9513 2.93860i −0.353398 0.0104950i
\(281\) 151.432i 0.538902i 0.963014 + 0.269451i \(0.0868423\pi\)
−0.963014 + 0.269451i \(0.913158\pi\)
\(282\) 15.8097 + 131.096i 0.0560627 + 0.464879i
\(283\) −25.9365 + 6.94966i −0.0916484 + 0.0245571i −0.304352 0.952560i \(-0.598440\pi\)
0.212703 + 0.977117i \(0.431773\pi\)
\(284\) 119.115 206.314i 0.419421 0.726458i
\(285\) −51.2103 + 40.4728i −0.179685 + 0.142010i
\(286\) 50.9254i 0.178061i
\(287\) −428.307 140.363i −1.49236 0.489069i
\(288\) 50.8996 + 1.10805i 0.176735 + 0.00384741i
\(289\) −237.609 + 137.183i −0.822175 + 0.474683i
\(290\) 92.6064 97.3951i 0.319332 0.335845i
\(291\) −22.5956 + 158.299i −0.0776481 + 0.543981i
\(292\) −136.441 36.5592i −0.467263 0.125203i
\(293\) 272.300 272.300i 0.929353 0.929353i −0.0683113 0.997664i \(-0.521761\pi\)
0.997664 + 0.0683113i \(0.0217611\pi\)
\(294\) 201.346 + 51.7461i 0.684851 + 0.176007i
\(295\) −5.43040 + 3.32042i −0.0184081 + 0.0112557i
\(296\) 132.259 76.3599i 0.446822 0.257973i
\(297\) 29.5624 179.142i 0.0995367 0.603170i
\(298\) −17.0896 63.7793i −0.0573477 0.214024i
\(299\) −62.3844 + 36.0177i −0.208644 + 0.120460i
\(300\) −95.9439 115.303i −0.319813 0.384343i
\(301\) −435.822 + 220.677i −1.44791 + 0.733146i
\(302\) 190.140 190.140i 0.629602 0.629602i
\(303\) 8.24406 + 68.3608i 0.0272081 + 0.225613i
\(304\) −8.70304 + 15.0741i −0.0286284 + 0.0495859i
\(305\) −12.8592 510.216i −0.0421615 1.67284i
\(306\) −13.6222 + 46.7443i −0.0445168 + 0.152759i
\(307\) −138.707 + 138.707i −0.451814 + 0.451814i −0.895956 0.444142i \(-0.853509\pi\)
0.444142 + 0.895956i \(0.353509\pi\)
\(308\) 19.3410 + 92.1364i 0.0627953 + 0.299144i
\(309\) −93.9961 234.101i −0.304194 0.757607i
\(310\) −1.10394 + 0.325824i −0.00356110 + 0.00105105i
\(311\) −106.582 + 184.606i −0.342708 + 0.593587i −0.984935 0.172927i \(-0.944677\pi\)
0.642227 + 0.766515i \(0.278011\pi\)
\(312\) −27.2670 36.3473i −0.0873941 0.116498i
\(313\) 57.9840 216.399i 0.185252 0.691371i −0.809324 0.587362i \(-0.800166\pi\)
0.994576 0.104009i \(-0.0331670\pi\)
\(314\) 321.673i 1.02444i
\(315\) 143.261 + 280.537i 0.454797 + 0.890595i
\(316\) 205.905 0.651599
\(317\) −373.738 100.143i −1.17899 0.315908i −0.384462 0.923141i \(-0.625613\pi\)
−0.794524 + 0.607233i \(0.792280\pi\)
\(318\) 279.659 209.794i 0.879430 0.659729i
\(319\) −110.686 63.9045i −0.346978 0.200328i
\(320\) −35.1339 19.1209i −0.109794 0.0597527i
\(321\) 308.267 123.775i 0.960332 0.385593i
\(322\) 99.1893 88.8576i 0.308041 0.275955i
\(323\) −11.7706 11.7706i −0.0364414 0.0364414i
\(324\) −74.8178 143.688i −0.230919 0.443482i
\(325\) −28.0908 + 130.893i −0.0864333 + 0.402747i
\(326\) 144.471 + 83.4102i 0.443161 + 0.255859i
\(327\) 264.256 31.8683i 0.808122 0.0974566i
\(328\) −128.777 128.777i −0.392613 0.392613i
\(329\) −119.119 + 182.416i −0.362063 + 0.554456i
\(330\) −85.2112 + 114.404i −0.258216 + 0.346678i
\(331\) −135.009 233.842i −0.407881 0.706471i 0.586771 0.809753i \(-0.300399\pi\)
−0.994652 + 0.103282i \(0.967065\pi\)
\(332\) 58.2367 15.6045i 0.175412 0.0470014i
\(333\) −415.459 252.078i −1.24762 0.756990i
\(334\) −56.9075 98.5667i −0.170382 0.295110i
\(335\) 119.351 494.989i 0.356270 1.47758i
\(336\) 63.1368 + 55.4053i 0.187907 + 0.164897i
\(337\) 384.011 + 384.011i 1.13950 + 1.13950i 0.988540 + 0.150959i \(0.0482361\pi\)
0.150959 + 0.988540i \(0.451764\pi\)
\(338\) 51.3625 191.687i 0.151960 0.567122i
\(339\) 405.102 + 57.8244i 1.19499 + 0.170573i
\(340\) 26.3592 27.7222i 0.0775270 0.0815360i
\(341\) 0.547312 + 0.947973i 0.00160502 + 0.00277998i
\(342\) 55.3727 + 1.20543i 0.161908 + 0.00352465i
\(343\) 199.501 + 279.013i 0.581635 + 0.813450i
\(344\) −197.387 −0.573799
\(345\) 200.413 + 23.4715i 0.580907 + 0.0680332i
\(346\) 334.889 + 193.348i 0.967888 + 0.558810i
\(347\) 172.277 + 642.948i 0.496477 + 1.85288i 0.521598 + 0.853191i \(0.325336\pi\)
−0.0251213 + 0.999684i \(0.507997\pi\)
\(348\) −113.217 + 13.6535i −0.325336 + 0.0392343i
\(349\) 427.589 1.22518 0.612592 0.790399i \(-0.290127\pi\)
0.612592 + 0.790399i \(0.290127\pi\)
\(350\) 1.11135 247.485i 0.00317528 0.707100i
\(351\) −59.6603 + 131.700i −0.169972 + 0.375213i
\(352\) −9.84551 + 36.7439i −0.0279702 + 0.104386i
\(353\) 61.2407 + 228.554i 0.173487 + 0.647460i 0.996804 + 0.0798800i \(0.0254537\pi\)
−0.823318 + 0.567580i \(0.807880\pi\)
\(354\) 5.34677 + 0.763200i 0.0151039 + 0.00215593i
\(355\) 523.124 + 284.699i 1.47359 + 0.801968i
\(356\) 192.607 0.541030
\(357\) −66.8082 + 44.6089i −0.187138 + 0.124955i
\(358\) −166.859 + 166.859i −0.466086 + 0.466086i
\(359\) −195.109 337.939i −0.543480 0.941335i −0.998701 0.0509562i \(-0.983773\pi\)
0.455221 0.890378i \(-0.349560\pi\)
\(360\) 0.436858 + 127.278i 0.00121349 + 0.353551i
\(361\) 171.032 296.236i 0.473773 0.820599i
\(362\) −78.3766 + 292.505i −0.216510 + 0.808026i
\(363\) −209.075 89.2795i −0.575963 0.245949i
\(364\) 4.11275 74.8560i 0.0112988 0.205648i
\(365\) 82.7747 343.296i 0.226780 0.940538i
\(366\) −267.360 + 340.688i −0.730491 + 0.930841i
\(367\) −183.972 686.592i −0.501285 1.87082i −0.491513 0.870870i \(-0.663556\pi\)
−0.00977244 0.999952i \(-0.503111\pi\)
\(368\) 51.9752 13.9267i 0.141237 0.0378444i
\(369\) −162.132 + 556.354i −0.439382 + 1.50774i
\(370\) 199.170 + 325.733i 0.538298 + 0.880361i
\(371\) 575.947 + 31.6438i 1.55242 + 0.0852932i
\(372\) 0.898208 + 0.383555i 0.00241454 + 0.00103106i
\(373\) −497.049 133.184i −1.33257 0.357062i −0.478899 0.877870i \(-0.658964\pi\)
−0.853674 + 0.520809i \(0.825631\pi\)
\(374\) −31.5053 18.1896i −0.0842388 0.0486353i
\(375\) 282.122 247.046i 0.752326 0.658791i
\(376\) −76.2367 + 44.0153i −0.202757 + 0.117062i
\(377\) 71.9669 + 71.9669i 0.190894 + 0.190894i
\(378\) 57.9217 260.935i 0.153232 0.690304i
\(379\) 19.8509i 0.0523770i 0.999657 + 0.0261885i \(0.00833701\pi\)
−0.999657 + 0.0261885i \(0.991663\pi\)
\(380\) −38.2215 20.8012i −0.100583 0.0547400i
\(381\) 634.046 + 90.5040i 1.66416 + 0.237543i
\(382\) 128.489 34.4284i 0.336358 0.0901268i
\(383\) 378.907 + 101.528i 0.989312 + 0.265085i 0.716962 0.697113i \(-0.245532\pi\)
0.272351 + 0.962198i \(0.412199\pi\)
\(384\) 12.6467 + 31.4970i 0.0329341 + 0.0820235i
\(385\) −229.050 + 54.1406i −0.594934 + 0.140625i
\(386\) 47.1174i 0.122066i
\(387\) 302.128 + 550.640i 0.780692 + 1.42284i
\(388\) −102.970 + 27.5906i −0.265386 + 0.0711099i
\(389\) 27.1111 46.9578i 0.0696943 0.120714i −0.829072 0.559141i \(-0.811131\pi\)
0.898767 + 0.438427i \(0.144464\pi\)
\(390\) 89.1218 70.4352i 0.228518 0.180603i
\(391\) 51.4593i 0.131609i
\(392\) 20.9886 + 136.994i 0.0535423 + 0.349476i
\(393\) −448.493 191.516i −1.14120 0.487319i
\(394\) −27.1569 + 15.6791i −0.0689262 + 0.0397946i
\(395\) 12.9697 + 514.600i 0.0328348 + 1.30278i
\(396\) 117.573 28.7762i 0.296901 0.0726670i
\(397\) 594.125 + 159.195i 1.49654 + 0.400996i 0.911939 0.410327i \(-0.134585\pi\)
0.584598 + 0.811323i \(0.301252\pi\)
\(398\) −68.3394 + 68.3394i −0.171707 + 0.171707i
\(399\) 68.6853 + 60.2743i 0.172144 + 0.151063i
\(400\) 45.5739 89.0113i 0.113935 0.222528i
\(401\) −391.648 + 226.118i −0.976679 + 0.563886i −0.901266 0.433266i \(-0.857361\pi\)
−0.0754133 + 0.997152i \(0.524028\pi\)
\(402\) −345.610 + 259.269i −0.859726 + 0.644948i
\(403\) −0.225604 0.841967i −0.000559812 0.00208925i
\(404\) −39.7541 + 22.9520i −0.0984012 + 0.0568119i
\(405\) 354.394 196.036i 0.875046 0.484039i
\(406\) −157.538 102.873i −0.388024 0.253382i
\(407\) 256.745 256.745i 0.630824 0.630824i
\(408\) −32.2257 + 3.88630i −0.0789845 + 0.00952524i
\(409\) 160.349 277.733i 0.392052 0.679054i −0.600668 0.799498i \(-0.705099\pi\)
0.992720 + 0.120445i \(0.0384321\pi\)
\(410\) 313.729 329.952i 0.765193 0.804761i
\(411\) 450.245 + 353.336i 1.09549 + 0.859699i
\(412\) 118.920 118.920i 0.288640 0.288640i
\(413\) 5.94596 + 6.63731i 0.0143970 + 0.0160710i
\(414\) −118.406 123.676i −0.286005 0.298734i
\(415\) 42.6671 + 144.563i 0.102812 + 0.348344i
\(416\) 15.1460 26.2336i 0.0364087 0.0630616i
\(417\) −159.234 + 119.454i −0.381855 + 0.286460i
\(418\) −10.7107 + 39.9730i −0.0256238 + 0.0956292i
\(419\) 416.098i 0.993073i 0.868016 + 0.496537i \(0.165395\pi\)
−0.868016 + 0.496537i \(0.834605\pi\)
\(420\) −134.492 + 161.282i −0.320220 + 0.384004i
\(421\) 86.6033 0.205708 0.102854 0.994696i \(-0.467202\pi\)
0.102854 + 0.994696i \(0.467202\pi\)
\(422\) 131.481 + 35.2302i 0.311566 + 0.0834838i
\(423\) 239.478 + 145.302i 0.566142 + 0.343504i
\(424\) 201.844 + 116.534i 0.476046 + 0.274845i
\(425\) 70.9439 + 64.1309i 0.166927 + 0.150896i
\(426\) −188.302 468.973i −0.442023 1.10087i
\(427\) −699.288 + 146.792i −1.63768 + 0.343776i
\(428\) 156.595 + 156.595i 0.365876 + 0.365876i
\(429\) −84.9845 66.6928i −0.198099 0.155461i
\(430\) −12.4332 493.310i −0.0289143 1.14723i
\(431\) −306.389 176.894i −0.710880 0.410427i 0.100507 0.994936i \(-0.467954\pi\)
−0.811387 + 0.584510i \(0.801287\pi\)
\(432\) 68.5081 83.4903i 0.158584 0.193265i
\(433\) −184.106 184.106i −0.425186 0.425186i 0.461799 0.886985i \(-0.347204\pi\)
−0.886985 + 0.461799i \(0.847204\pi\)
\(434\) 0.727943 + 1.43764i 0.00167729 + 0.00331253i
\(435\) −41.2544 282.092i −0.0948376 0.648488i
\(436\) 88.7235 + 153.674i 0.203494 + 0.352463i
\(437\) 56.5428 15.1506i 0.129389 0.0346696i
\(438\) −239.695 + 179.814i −0.547249 + 0.410535i
\(439\) 151.405 + 262.241i 0.344887 + 0.597361i 0.985333 0.170642i \(-0.0545841\pi\)
−0.640447 + 0.768003i \(0.721251\pi\)
\(440\) −92.4508 22.2915i −0.210116 0.0506625i
\(441\) 350.041 268.240i 0.793743 0.608253i
\(442\) 20.4844 + 20.4844i 0.0463449 + 0.0463449i
\(443\) −89.7849 + 335.082i −0.202675 + 0.756392i 0.787471 + 0.616352i \(0.211390\pi\)
−0.990146 + 0.140041i \(0.955277\pi\)
\(444\) 45.7793 320.717i 0.103106 0.722335i
\(445\) 12.1321 + 481.364i 0.0272631 + 1.08172i
\(446\) 112.186 + 194.311i 0.251538 + 0.435676i
\(447\) −128.816 55.0072i −0.288179 0.123059i
\(448\) −17.4395 + 53.2153i −0.0389274 + 0.118784i
\(449\) −119.472 −0.266084 −0.133042 0.991110i \(-0.542475\pi\)
−0.133042 + 0.991110i \(0.542475\pi\)
\(450\) −318.068 + 9.10893i −0.706817 + 0.0202421i
\(451\) −374.978 216.494i −0.831438 0.480031i
\(452\) 70.6072 + 263.510i 0.156211 + 0.582986i
\(453\) −68.2957 566.316i −0.150763 1.25015i
\(454\) −330.258 −0.727440
\(455\) 187.340 + 5.56351i 0.411735 + 0.0122275i
\(456\) 13.7581 + 34.2650i 0.0301712 + 0.0751425i
\(457\) 92.1811 344.025i 0.201709 0.752789i −0.788718 0.614755i \(-0.789255\pi\)
0.990427 0.138034i \(-0.0440784\pi\)
\(458\) −66.6075 248.583i −0.145431 0.542757i
\(459\) 60.1673 + 83.9498i 0.131083 + 0.182897i
\(460\) 38.0796 + 129.020i 0.0827818 + 0.280477i
\(461\) −621.253 −1.34762 −0.673810 0.738905i \(-0.735343\pi\)
−0.673810 + 0.738905i \(0.735343\pi\)
\(462\) 179.087 + 88.3871i 0.387634 + 0.191314i
\(463\) 26.5760 26.5760i 0.0573995 0.0573995i −0.677824 0.735224i \(-0.737077\pi\)
0.735224 + 0.677824i \(0.237077\pi\)
\(464\) −38.0124 65.8393i −0.0819232 0.141895i
\(465\) −0.902005 + 2.26897i −0.00193980 + 0.00487950i
\(466\) 10.5971 18.3548i 0.0227407 0.0393880i
\(467\) 124.540 464.791i 0.266682 0.995269i −0.694531 0.719462i \(-0.744388\pi\)
0.961213 0.275807i \(-0.0889451\pi\)
\(468\) −96.3657 2.09782i −0.205910 0.00448252i
\(469\) −711.771 39.1062i −1.51764 0.0833822i
\(470\) −114.805 187.759i −0.244267 0.399487i
\(471\) 536.808 + 421.268i 1.13972 + 0.894412i
\(472\) 0.931915 + 3.47795i 0.00197440 + 0.00736855i
\(473\) −453.298 + 121.461i −0.958346 + 0.256788i
\(474\) 269.657 343.615i 0.568897 0.724927i
\(475\) 49.5790 96.8337i 0.104377 0.203860i
\(476\) −44.8411 29.2815i −0.0942039 0.0615157i
\(477\) 16.1408 741.445i 0.0338381 1.55439i
\(478\) −510.200 136.708i −1.06736 0.285999i
\(479\) −361.804 208.888i −0.755331 0.436091i 0.0722856 0.997384i \(-0.476971\pi\)
−0.827617 + 0.561293i \(0.810304\pi\)
\(480\) −77.9209 + 33.5906i −0.162335 + 0.0699805i
\(481\) −250.400 + 144.568i −0.520582 + 0.300558i
\(482\) −106.106 106.106i −0.220137 0.220137i
\(483\) −18.3859 281.897i −0.0380660 0.583637i
\(484\) 151.559i 0.313139i
\(485\) −75.4406 255.604i −0.155548 0.527020i
\(486\) −337.770 63.3202i −0.695000 0.130288i
\(487\) −387.966 + 103.955i −0.796645 + 0.213460i −0.634110 0.773243i \(-0.718633\pi\)
−0.162534 + 0.986703i \(0.551967\pi\)
\(488\) −278.876 74.7245i −0.571466 0.153124i
\(489\) 328.396 131.858i 0.671567 0.269648i
\(490\) −341.055 + 61.0839i −0.696031 + 0.124661i
\(491\) 451.546i 0.919646i 0.888011 + 0.459823i \(0.152087\pi\)
−0.888011 + 0.459823i \(0.847913\pi\)
\(492\) −383.552 + 46.2550i −0.779578 + 0.0940142i
\(493\) 70.2279 18.8175i 0.142450 0.0381694i
\(494\) 16.4770 28.5391i 0.0333543 0.0577714i
\(495\) 79.3233 + 292.026i 0.160249 + 0.589951i
\(496\) 0.651116i 0.00131273i
\(497\) 259.664 792.345i 0.522463 1.59426i
\(498\) 50.2270 117.621i 0.100857 0.236188i
\(499\) −731.784 + 422.496i −1.46650 + 0.846685i −0.999298 0.0374644i \(-0.988072\pi\)
−0.467204 + 0.884150i \(0.654739\pi\)
\(500\) 225.328 + 108.292i 0.450657 + 0.216584i
\(501\) −239.015 34.1172i −0.477077 0.0680981i
\(502\) 234.901 + 62.9415i 0.467930 + 0.125381i
\(503\) −140.492 + 140.492i −0.279308 + 0.279308i −0.832833 0.553525i \(-0.813282\pi\)
0.553525 + 0.832833i \(0.313282\pi\)
\(504\) 175.146 32.8033i 0.347511 0.0650858i
\(505\) −59.8659 97.9079i −0.118546 0.193877i
\(506\) 110.791 63.9653i 0.218955 0.126414i
\(507\) −252.623 336.751i −0.498271 0.664203i
\(508\) 110.511 + 412.433i 0.217541 + 0.811876i
\(509\) −378.654 + 218.616i −0.743918 + 0.429501i −0.823492 0.567328i \(-0.807977\pi\)
0.0795742 + 0.996829i \(0.474644\pi\)
\(510\) −11.7425 80.2938i −0.0230245 0.157439i
\(511\) −493.644 27.1219i −0.966035 0.0530761i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 74.5286 90.8275i 0.145280 0.177052i
\(514\) −68.4391 + 118.540i −0.133150 + 0.230623i
\(515\) 304.695 + 289.714i 0.591641 + 0.562551i
\(516\) −258.501 + 329.400i −0.500971 + 0.638371i
\(517\) −147.993 + 147.993i −0.286253 + 0.286253i
\(518\) 398.128 356.658i 0.768587 0.688530i
\(519\) 761.237 305.652i 1.46674 0.588925i
\(520\) 66.5173 + 36.2005i 0.127918 + 0.0696164i
\(521\) 490.536 849.633i 0.941527 1.63077i 0.178968 0.983855i \(-0.442724\pi\)
0.762559 0.646918i \(-0.223942\pi\)
\(522\) −125.486 + 206.817i −0.240394 + 0.396202i
\(523\) −83.0151 + 309.817i −0.158729 + 0.592384i 0.840028 + 0.542542i \(0.182538\pi\)
−0.998757 + 0.0498414i \(0.984128\pi\)
\(524\) 325.115i 0.620448i
\(525\) −411.548 325.965i −0.783901 0.620886i
\(526\) −542.217 −1.03083
\(527\) −0.601469 0.161163i −0.00114131 0.000305812i
\(528\) 48.4245 + 64.5507i 0.0917132 + 0.122255i
\(529\) 301.410 + 174.019i 0.569774 + 0.328959i
\(530\) −278.530 + 511.789i −0.525528 + 0.965640i
\(531\) 8.27585 7.92321i 0.0155854 0.0149213i
\(532\) −18.9721 + 57.8918i −0.0356618 + 0.108819i
\(533\) 243.807 + 243.807i 0.457425 + 0.457425i
\(534\) 252.241 321.422i 0.472361 0.601915i
\(535\) −381.499 + 401.226i −0.713082 + 0.749956i
\(536\) −249.444 144.016i −0.465380 0.268687i
\(537\) 59.9334 + 496.976i 0.111608 + 0.925467i
\(538\) 415.369 + 415.369i 0.772061 + 0.772061i
\(539\) 132.499 + 301.692i 0.245824 + 0.559725i
\(540\) 212.975 + 165.957i 0.394398 + 0.307328i
\(541\) −34.9843 60.5947i −0.0646661 0.112005i 0.831880 0.554956i \(-0.187265\pi\)
−0.896546 + 0.442951i \(0.853932\pi\)
\(542\) −234.980 + 62.9627i −0.433542 + 0.116167i
\(543\) 385.491 + 513.865i 0.709928 + 0.946344i
\(544\) −10.8197 18.7403i −0.0198892 0.0344491i
\(545\) −378.474 + 231.418i −0.694447 + 0.424621i
\(546\) −119.534 104.896i −0.218926 0.192117i
\(547\) 159.245 + 159.245i 0.291124 + 0.291124i 0.837524 0.546400i \(-0.184002\pi\)
−0.546400 + 0.837524i \(0.684002\pi\)
\(548\) −98.7541 + 368.555i −0.180208 + 0.672546i
\(549\) 218.402 + 892.341i 0.397819 + 1.62539i
\(550\) 49.8877 232.458i 0.0907049 0.422651i
\(551\) −41.3529 71.6253i −0.0750506 0.129992i
\(552\) 44.8267 104.975i 0.0812078 0.190172i
\(553\) 705.297 148.054i 1.27540 0.267728i
\(554\) 311.391 0.562077
\(555\) 804.421 + 94.2102i 1.44941 + 0.169748i
\(556\) −114.927 66.3531i −0.206703 0.119340i
\(557\) 223.552 + 834.309i 0.401351 + 1.49786i 0.810688 + 0.585479i \(0.199093\pi\)
−0.409337 + 0.912383i \(0.634240\pi\)
\(558\) 1.81639 0.996623i 0.00325517 0.00178606i
\(559\) 373.702 0.668519
\(560\) −134.094 40.2329i −0.239454 0.0718445i
\(561\) −71.6147 + 28.7547i −0.127655 + 0.0512562i
\(562\) −55.4278 + 206.859i −0.0986260 + 0.368077i
\(563\) −167.352 624.566i −0.297251 1.10935i −0.939414 0.342786i \(-0.888629\pi\)
0.642163 0.766568i \(-0.278037\pi\)
\(564\) −26.3880 + 184.867i −0.0467873 + 0.327779i
\(565\) −654.118 + 193.060i −1.15773 + 0.341699i
\(566\) −37.9737 −0.0670913
\(567\) −359.594 438.385i −0.634205 0.773165i
\(568\) 238.231 238.231i 0.419421 0.419421i
\(569\) −172.352 298.522i −0.302903 0.524644i 0.673889 0.738833i \(-0.264623\pi\)
−0.976792 + 0.214189i \(0.931289\pi\)
\(570\) −84.7686 + 36.5426i −0.148717 + 0.0641098i
\(571\) 106.891 185.140i 0.187199 0.324239i −0.757116 0.653280i \(-0.773392\pi\)
0.944315 + 0.329042i \(0.106726\pi\)
\(572\) 18.6400 69.5654i 0.0325874 0.121618i
\(573\) 110.817 259.510i 0.193397 0.452898i
\(574\) −533.702 348.510i −0.929794 0.607161i
\(575\) −320.048 + 103.296i −0.556605 + 0.179645i
\(576\) 69.1246 + 20.1442i 0.120008 + 0.0349725i
\(577\) −199.206 743.448i −0.345245 1.28847i −0.892326 0.451392i \(-0.850928\pi\)
0.547081 0.837080i \(-0.315739\pi\)
\(578\) −374.792 + 100.425i −0.648429 + 0.173746i
\(579\) −78.6296 61.7057i −0.135802 0.106573i
\(580\) 162.152 99.1479i 0.279572 0.170945i
\(581\) 188.261 95.3250i 0.324028 0.164071i
\(582\) −88.8074 + 207.969i −0.152590 + 0.357335i
\(583\) 535.242 + 143.418i 0.918082 + 0.245999i
\(584\) −173.000 99.8816i −0.296233 0.171030i
\(585\) −0.827081 240.970i −0.00141381 0.411914i
\(586\) 471.638 272.300i 0.804843 0.464676i
\(587\) 34.1370 + 34.1370i 0.0581550 + 0.0581550i 0.735586 0.677431i \(-0.236907\pi\)
−0.677431 + 0.735586i \(0.736907\pi\)
\(588\) 256.104 + 144.384i 0.435551 + 0.245552i
\(589\) 0.708336i 0.00120261i
\(590\) −8.63342 + 2.54812i −0.0146329 + 0.00431885i
\(591\) −9.39990 + 65.8531i −0.0159051 + 0.111427i
\(592\) 208.619 55.8994i 0.352397 0.0944246i
\(593\) 839.420 + 224.922i 1.41555 + 0.379295i 0.883902 0.467671i \(-0.154907\pi\)
0.531646 + 0.846967i \(0.321574\pi\)
\(594\) 105.953 233.891i 0.178373 0.393756i
\(595\) 70.3560 113.911i 0.118245 0.191448i
\(596\) 93.3794i 0.156677i
\(597\) 24.5466 + 203.544i 0.0411166 + 0.340944i
\(598\) −98.4021 + 26.3668i −0.164552 + 0.0440916i
\(599\) 183.387 317.635i 0.306155 0.530276i −0.671363 0.741129i \(-0.734291\pi\)
0.977518 + 0.210853i \(0.0676242\pi\)
\(600\) −88.8581 192.625i −0.148097 0.321041i
\(601\) 107.243i 0.178440i −0.996012 0.0892202i \(-0.971563\pi\)
0.996012 0.0892202i \(-0.0284375\pi\)
\(602\) −676.117 + 141.928i −1.12312 + 0.235761i
\(603\) −19.9472 + 916.298i −0.0330800 + 1.51956i
\(604\) 329.332 190.140i 0.545251 0.314801i
\(605\) 378.778 9.54655i 0.626079 0.0157794i
\(606\) −13.7602 + 96.4001i −0.0227066 + 0.159076i
\(607\) 61.6948 + 16.5311i 0.101639 + 0.0272340i 0.309280 0.950971i \(-0.399912\pi\)
−0.207641 + 0.978205i \(0.566579\pi\)
\(608\) −17.4061 + 17.4061i −0.0286284 + 0.0286284i
\(609\) −377.989 + 128.175i −0.620672 + 0.210468i
\(610\) 169.186 701.674i 0.277354 1.15029i
\(611\) 144.335 83.3319i 0.236228 0.136386i
\(612\) −35.7178 + 58.8679i −0.0583624 + 0.0961893i
\(613\) 20.7243 + 77.3443i 0.0338081 + 0.126173i 0.980767 0.195180i \(-0.0625290\pi\)
−0.946959 + 0.321353i \(0.895862\pi\)
\(614\) −240.247 + 138.707i −0.391283 + 0.225907i
\(615\) −139.760 955.663i −0.227253 1.55392i
\(616\) −7.30400 + 132.940i −0.0118571 + 0.215812i
\(617\) 443.200 443.200i 0.718314 0.718314i −0.249946 0.968260i \(-0.580413\pi\)
0.968260 + 0.249946i \(0.0804128\pi\)
\(618\) −42.7143 354.192i −0.0691170 0.573127i
\(619\) 31.3094 54.2294i 0.0505806 0.0876081i −0.839627 0.543164i \(-0.817226\pi\)
0.890207 + 0.455556i \(0.150560\pi\)
\(620\) −1.62727 + 0.0410131i −0.00262463 + 6.61501e-5i
\(621\) −361.457 + 35.6282i −0.582057 + 0.0573723i
\(622\) −213.164 + 213.164i −0.342708 + 0.342708i
\(623\) 659.744 138.491i 1.05898 0.222297i
\(624\) −23.9433 59.6317i −0.0383707 0.0955636i
\(625\) −256.451 + 569.963i −0.410321 + 0.911941i
\(626\) 158.415 274.383i 0.253059 0.438312i
\(627\) 52.6801 + 70.2234i 0.0840193 + 0.111999i
\(628\) −117.740 + 439.413i −0.187485 + 0.699702i
\(629\) 206.548i 0.328376i
\(630\) 93.0143 + 435.659i 0.147642 + 0.691521i
\(631\) 518.483 0.821684 0.410842 0.911707i \(-0.365235\pi\)
0.410842 + 0.911707i \(0.365235\pi\)
\(632\) 281.272 + 75.3666i 0.445050 + 0.119251i
\(633\) 230.982 173.277i 0.364900 0.273740i
\(634\) −473.881 273.596i −0.747447 0.431539i
\(635\) −1023.79 + 302.169i −1.61227 + 0.475856i
\(636\) 458.811 184.222i 0.721400 0.289657i
\(637\) −39.7366 259.365i −0.0623809 0.407166i
\(638\) −127.809 127.809i −0.200328 0.200328i
\(639\) −1029.23 299.936i −1.61068 0.469383i
\(640\) −40.9951 38.9795i −0.0640549 0.0609054i
\(641\) −282.179 162.916i −0.440217 0.254159i 0.263473 0.964667i \(-0.415132\pi\)
−0.703690 + 0.710507i \(0.748465\pi\)
\(642\) 466.405 56.2467i 0.726487 0.0876117i
\(643\) 238.396 + 238.396i 0.370756 + 0.370756i 0.867753 0.496996i \(-0.165564\pi\)
−0.496996 + 0.867753i \(0.665564\pi\)
\(644\) 168.019 85.0759i 0.260899 0.132106i
\(645\) −839.520 625.299i −1.30158 0.969455i
\(646\) −11.7706 20.3872i −0.0182207 0.0315592i
\(647\) −677.491 + 181.533i −1.04713 + 0.280577i −0.741064 0.671435i \(-0.765678\pi\)
−0.306062 + 0.952011i \(0.599012\pi\)
\(648\) −49.6096 223.667i −0.0765580 0.345165i
\(649\) 4.28028 + 7.41366i 0.00659519 + 0.0114232i
\(650\) −86.2828 + 168.521i −0.132743 + 0.259263i
\(651\) 3.35246 + 0.667962i 0.00514971 + 0.00102606i
\(652\) 166.820 + 166.820i 0.255859 + 0.255859i
\(653\) −202.218 + 754.689i −0.309676 + 1.15573i 0.619170 + 0.785257i \(0.287469\pi\)
−0.928845 + 0.370468i \(0.879197\pi\)
\(654\) 372.645 + 53.1915i 0.569794 + 0.0813326i
\(655\) 812.529 20.4786i 1.24050 0.0312651i
\(656\) −128.777 223.049i −0.196307 0.340013i
\(657\) −13.8343 + 635.492i −0.0210567 + 0.967263i
\(658\) −229.488 + 205.585i −0.348766 + 0.312438i
\(659\) 296.676 0.450191 0.225096 0.974337i \(-0.427731\pi\)
0.225096 + 0.974337i \(0.427731\pi\)
\(660\) −158.275 + 125.089i −0.239811 + 0.189529i
\(661\) 502.629 + 290.193i 0.760407 + 0.439021i 0.829442 0.558593i \(-0.188659\pi\)
−0.0690350 + 0.997614i \(0.521992\pi\)
\(662\) −98.8331 368.850i −0.149295 0.557176i
\(663\) 61.0113 7.35773i 0.0920230 0.0110976i
\(664\) 85.2644 0.128410
\(665\) −145.879 43.7686i −0.219366 0.0658174i
\(666\) −475.260 496.413i −0.713604 0.745365i
\(667\) −66.1735 + 246.963i −0.0992106 + 0.370259i
\(668\) −41.6592 155.474i −0.0623641 0.232746i
\(669\) 471.188 + 67.2576i 0.704317 + 0.100534i
\(670\) 344.215 632.483i 0.513753 0.944004i
\(671\) −686.418 −1.02298
\(672\) 65.9668 + 98.7947i 0.0981648 + 0.147016i
\(673\) 578.339 578.339i 0.859345 0.859345i −0.131916 0.991261i \(-0.542113\pi\)
0.991261 + 0.131916i \(0.0421130\pi\)
\(674\) 384.011 + 665.127i 0.569749 + 0.986835i
\(675\) −401.346 + 542.721i −0.594586 + 0.804032i
\(676\) 140.325 243.050i 0.207581 0.359541i
\(677\) −34.6936 + 129.478i −0.0512461 + 0.191253i −0.986804 0.161921i \(-0.948231\pi\)
0.935558 + 0.353174i \(0.114898\pi\)
\(678\) 532.214 + 227.267i 0.784977 + 0.335202i
\(679\) −332.868 + 168.546i −0.490232 + 0.248227i
\(680\) 46.1544 28.2211i 0.0678741 0.0415017i
\(681\) −432.511 + 551.135i −0.635112 + 0.809303i
\(682\) 0.400660 + 1.49529i 0.000587479 + 0.00219250i
\(683\) 263.899 70.7116i 0.386382 0.103531i −0.0603983 0.998174i \(-0.519237\pi\)
0.446781 + 0.894644i \(0.352570\pi\)
\(684\) 75.1993 + 21.9145i 0.109941 + 0.0320387i
\(685\) −927.316 223.592i −1.35375 0.326412i
\(686\) 170.397 + 454.162i 0.248392 + 0.662043i
\(687\) −502.066 214.393i −0.730809 0.312071i
\(688\) −269.635 72.2485i −0.391912 0.105012i
\(689\) −382.140 220.629i −0.554630 0.320216i
\(690\) 265.178 + 105.419i 0.384316 + 0.152781i
\(691\) 954.298 550.964i 1.38104 0.797343i 0.388757 0.921341i \(-0.372905\pi\)
0.992283 + 0.123997i \(0.0395714\pi\)
\(692\) 386.697 + 386.697i 0.558810 + 0.558810i
\(693\) 382.036 183.107i 0.551278 0.264224i
\(694\) 941.341i 1.35640i
\(695\) 158.591 291.405i 0.228188 0.419288i
\(696\) −159.655 22.7892i −0.229389 0.0327430i
\(697\) 237.916 63.7494i 0.341343 0.0914625i
\(698\) 584.097 + 156.508i 0.836816 + 0.224224i
\(699\) −16.7523 41.7223i −0.0239662 0.0596886i
\(700\) 92.1039 337.664i 0.131577 0.482377i
\(701\) 1133.69i 1.61725i 0.588327 + 0.808623i \(0.299787\pi\)
−0.588327 + 0.808623i \(0.700213\pi\)
\(702\) −129.703 + 158.068i −0.184762 + 0.225168i
\(703\) 226.953 60.8118i 0.322835 0.0865033i
\(704\) −26.8984 + 46.5894i −0.0382080 + 0.0661782i
\(705\) −463.683 54.3045i −0.657707 0.0770277i
\(706\) 334.626i 0.473974i
\(707\) −119.668 + 107.203i −0.169262 + 0.151631i
\(708\) 7.02447 + 2.99960i 0.00992157 + 0.00423673i
\(709\) 892.396 515.225i 1.25867 0.726693i 0.285853 0.958273i \(-0.407723\pi\)
0.972816 + 0.231581i \(0.0743897\pi\)
\(710\) 610.394 + 580.382i 0.859710 + 0.817440i
\(711\) −220.279 900.009i −0.309816 1.26584i
\(712\) 263.105 + 70.4989i 0.369530 + 0.0990153i
\(713\) 1.54837 1.54837i 0.00217163 0.00217163i
\(714\) −107.590 + 36.4834i −0.150686 + 0.0510971i
\(715\) 175.033 + 42.2034i 0.244801 + 0.0590257i
\(716\) −289.008 + 166.859i −0.403642 + 0.233043i
\(717\) −896.305 + 672.389i −1.25008 + 0.937781i
\(718\) −142.830 533.048i −0.198927 0.742407i
\(719\) 946.111 546.238i 1.31587 0.759718i 0.332809 0.942994i \(-0.392003\pi\)
0.983062 + 0.183276i \(0.0586701\pi\)
\(720\) −45.9904 + 174.026i −0.0638755 + 0.241702i
\(721\) 321.833 492.848i 0.446370 0.683562i
\(722\) 342.064 342.064i 0.473773 0.473773i
\(723\) −316.029 + 38.1119i −0.437107 + 0.0527135i
\(724\) −214.129 + 370.882i −0.295758 + 0.512268i
\(725\) 258.005 + 399.005i 0.355869 + 0.550352i
\(726\) −252.923 198.485i −0.348378 0.273395i
\(727\) 195.469 195.469i 0.268870 0.268870i −0.559775 0.828645i \(-0.689112\pi\)
0.828645 + 0.559775i \(0.189112\pi\)
\(728\) 33.0173 100.750i 0.0453534 0.138393i
\(729\) −548.018 + 480.746i −0.751740 + 0.659460i
\(730\) 238.728 438.654i 0.327024 0.600896i
\(731\) 133.479 231.193i 0.182598 0.316269i
\(732\) −489.920 + 367.528i −0.669290 + 0.502087i
\(733\) 41.8982 156.366i 0.0571599 0.213324i −0.931439 0.363898i \(-0.881446\pi\)
0.988599 + 0.150574i \(0.0481123\pi\)
\(734\) 1005.24i 1.36954i
\(735\) −344.715 + 649.151i −0.469000 + 0.883198i
\(736\) 76.0970 0.103393
\(737\) −661.466 177.239i −0.897512 0.240488i
\(738\) −425.116 + 700.650i −0.576038 + 0.949390i
\(739\) −442.881 255.698i −0.599298 0.346005i 0.169467 0.985536i \(-0.445795\pi\)
−0.768765 + 0.639531i \(0.779129\pi\)
\(740\) 152.845 + 517.861i 0.206547 + 0.699813i
\(741\) −26.0475 64.8722i −0.0351518 0.0875468i
\(742\) 775.176 + 254.038i 1.04471 + 0.342369i
\(743\) −366.443 366.443i −0.493194 0.493194i 0.416117 0.909311i \(-0.363391\pi\)
−0.909311 + 0.416117i \(0.863391\pi\)
\(744\) 1.08658 + 0.852712i 0.00146046 + 0.00114612i
\(745\) 233.374 5.88186i 0.313254 0.00789512i
\(746\) −630.233 363.865i −0.844817 0.487755i
\(747\) −130.509 237.858i −0.174711 0.318418i
\(748\) −36.3792 36.3792i −0.0486353 0.0486353i
\(749\) 648.988 + 423.794i 0.866473 + 0.565813i
\(750\) 475.812 234.208i 0.634415 0.312277i
\(751\) −258.355 447.484i −0.344015 0.595851i 0.641160 0.767408i \(-0.278454\pi\)
−0.985174 + 0.171557i \(0.945120\pi\)
\(752\) −120.252 + 32.2214i −0.159910 + 0.0428476i
\(753\) 412.667 309.574i 0.548030 0.411121i
\(754\) 71.9669 + 124.650i 0.0954468 + 0.165319i
\(755\) 495.943 + 811.092i 0.656878 + 1.07429i
\(756\) 174.631 335.243i 0.230994 0.443443i
\(757\) 211.287 + 211.287i 0.279111 + 0.279111i 0.832754 0.553643i \(-0.186763\pi\)
−0.553643 + 0.832754i \(0.686763\pi\)
\(758\) −7.26593 + 27.1168i −0.00958565 + 0.0357741i
\(759\) 38.3485 268.659i 0.0505250 0.353964i
\(760\) −44.5978