Properties

Label 210.3.w.b.17.13
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.13
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.13

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(2.32144 + 1.90024i) q^{3} +(1.73205 + 1.00000i) q^{4} +(0.695196 - 4.95143i) q^{5} +(2.47561 + 3.44548i) q^{6} +(-2.48720 + 6.54323i) q^{7} +(2.00000 + 2.00000i) q^{8} +(1.77817 + 8.82259i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(2.32144 + 1.90024i) q^{3} +(1.73205 + 1.00000i) q^{4} +(0.695196 - 4.95143i) q^{5} +(2.47561 + 3.44548i) q^{6} +(-2.48720 + 6.54323i) q^{7} +(2.00000 + 2.00000i) q^{8} +(1.77817 + 8.82259i) q^{9} +(2.76201 - 6.50933i) q^{10} +(16.0981 + 9.29422i) q^{11} +(2.12061 + 5.61275i) q^{12} +(-11.8606 - 11.8606i) q^{13} +(-5.79257 + 8.02784i) q^{14} +(11.0228 - 10.1734i) q^{15} +(2.00000 + 3.46410i) q^{16} +(16.3649 - 4.38496i) q^{17} +(-0.800273 + 12.7027i) q^{18} +(-2.06928 - 3.58409i) q^{19} +(6.15555 - 7.88094i) q^{20} +(-18.2076 + 10.4634i) q^{21} +(18.5884 + 18.5884i) q^{22} +(5.44679 - 20.3277i) q^{23} +(0.842397 + 8.44336i) q^{24} +(-24.0334 - 6.88444i) q^{25} +(-11.8606 - 20.5431i) q^{26} +(-12.6371 + 23.8601i) q^{27} +(-10.8512 + 8.84600i) q^{28} -49.5120 q^{29} +(18.7811 - 9.86253i) q^{30} +(-2.73364 - 1.57827i) q^{31} +(1.46410 + 5.46410i) q^{32} +(19.7094 + 52.1662i) q^{33} +23.9599 q^{34} +(30.6693 + 16.8640i) q^{35} +(-5.74272 + 17.0593i) q^{36} +(8.12079 - 30.3072i) q^{37} +(-1.51482 - 5.65337i) q^{38} +(-4.99565 - 50.0715i) q^{39} +(11.2933 - 8.51248i) q^{40} -26.6051 q^{41} +(-28.7019 + 7.62886i) q^{42} +(-25.3219 + 25.3219i) q^{43} +(18.5884 + 32.1961i) q^{44} +(44.9207 - 2.67104i) q^{45} +(14.8809 - 25.7745i) q^{46} +(13.1425 - 49.0486i) q^{47} +(-1.93975 + 11.8422i) q^{48} +(-36.6276 - 32.5487i) q^{49} +(-30.3104 - 18.2012i) q^{50} +(46.3226 + 20.9178i) q^{51} +(-8.68253 - 32.4037i) q^{52} +(37.7945 - 10.1270i) q^{53} +(-25.9961 + 27.9679i) q^{54} +(57.2110 - 73.2472i) q^{55} +(-18.0609 + 8.11205i) q^{56} +(2.00694 - 12.2524i) q^{57} +(-67.6347 - 18.1227i) q^{58} +(-46.6060 - 26.9080i) q^{59} +(29.2654 - 6.59810i) q^{60} +(34.2320 - 19.7639i) q^{61} +(-3.15654 - 3.15654i) q^{62} +(-62.1509 - 10.3086i) q^{63} +8.00000i q^{64} +(-66.9722 + 50.4814i) q^{65} +(7.82942 + 78.4745i) q^{66} +(47.4290 - 12.7086i) q^{67} +(32.7298 + 8.76993i) q^{68} +(51.2719 - 36.8393i) q^{69} +(35.7223 + 34.2624i) q^{70} +81.2437i q^{71} +(-14.0889 + 21.2015i) q^{72} +(-0.400521 + 0.107319i) q^{73} +(22.1864 - 38.4280i) q^{74} +(-42.7100 - 61.6511i) q^{75} -8.27711i q^{76} +(-100.853 + 82.2167i) q^{77} +(11.5033 - 70.2275i) q^{78} +(-117.114 + 67.6156i) q^{79} +(18.5427 - 7.49464i) q^{80} +(-74.6763 + 31.3761i) q^{81} +(-36.3432 - 9.73814i) q^{82} +(27.5253 - 27.5253i) q^{83} +(-41.9999 - 0.0844196i) q^{84} +(-10.3350 - 84.0782i) q^{85} +(-43.8587 + 25.3219i) q^{86} +(-114.939 - 94.0848i) q^{87} +(13.6077 + 50.7846i) q^{88} +(20.2878 - 11.7132i) q^{89} +(62.3404 + 12.7934i) q^{90} +(107.106 - 48.1067i) q^{91} +(29.7618 - 29.7618i) q^{92} +(-3.34689 - 8.85843i) q^{93} +(35.9060 - 62.1911i) q^{94} +(-19.1850 + 7.75424i) q^{95} +(-6.98429 + 15.4667i) q^{96} +(50.1321 - 50.1321i) q^{97} +(-38.1207 - 57.8689i) q^{98} +(-53.3741 + 158.553i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 2.32144 + 1.90024i 0.773813 + 0.633414i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 0.695196 4.95143i 0.139039 0.990287i
\(6\) 2.47561 + 3.44548i 0.412602 + 0.574247i
\(7\) −2.48720 + 6.54323i −0.355315 + 0.934747i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 1.77817 + 8.82259i 0.197574 + 0.980288i
\(10\) 2.76201 6.50933i 0.276201 0.650933i
\(11\) 16.0981 + 9.29422i 1.46346 + 0.844929i 0.999169 0.0407536i \(-0.0129759\pi\)
0.464291 + 0.885683i \(0.346309\pi\)
\(12\) 2.12061 + 5.61275i 0.176718 + 0.467730i
\(13\) −11.8606 11.8606i −0.912351 0.912351i 0.0841060 0.996457i \(-0.473197\pi\)
−0.996457 + 0.0841060i \(0.973197\pi\)
\(14\) −5.79257 + 8.02784i −0.413755 + 0.573417i
\(15\) 11.0228 10.1734i 0.734852 0.678228i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 16.3649 4.38496i 0.962642 0.257939i 0.256923 0.966432i \(-0.417291\pi\)
0.705718 + 0.708493i \(0.250624\pi\)
\(18\) −0.800273 + 12.7027i −0.0444596 + 0.705708i
\(19\) −2.06928 3.58409i −0.108909 0.188636i 0.806419 0.591344i \(-0.201402\pi\)
−0.915329 + 0.402708i \(0.868069\pi\)
\(20\) 6.15555 7.88094i 0.307777 0.394047i
\(21\) −18.2076 + 10.4634i −0.867029 + 0.498258i
\(22\) 18.5884 + 18.5884i 0.844929 + 0.844929i
\(23\) 5.44679 20.3277i 0.236817 0.883813i −0.740504 0.672052i \(-0.765413\pi\)
0.977321 0.211762i \(-0.0679201\pi\)
\(24\) 0.842397 + 8.44336i 0.0350999 + 0.351807i
\(25\) −24.0334 6.88444i −0.961336 0.275377i
\(26\) −11.8606 20.5431i −0.456175 0.790119i
\(27\) −12.6371 + 23.8601i −0.468043 + 0.883706i
\(28\) −10.8512 + 8.84600i −0.387542 + 0.315929i
\(29\) −49.5120 −1.70731 −0.853656 0.520838i \(-0.825620\pi\)
−0.853656 + 0.520838i \(0.825620\pi\)
\(30\) 18.7811 9.86253i 0.626037 0.328751i
\(31\) −2.73364 1.57827i −0.0881819 0.0509119i 0.455261 0.890358i \(-0.349546\pi\)
−0.543443 + 0.839446i \(0.682879\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 19.7094 + 52.1662i 0.597255 + 1.58079i
\(34\) 23.9599 0.704703
\(35\) 30.6693 + 16.8640i 0.876265 + 0.481830i
\(36\) −5.74272 + 17.0593i −0.159520 + 0.473871i
\(37\) 8.12079 30.3072i 0.219481 0.819113i −0.765060 0.643959i \(-0.777291\pi\)
0.984541 0.175155i \(-0.0560425\pi\)
\(38\) −1.51482 5.65337i −0.0398636 0.148773i
\(39\) −4.99565 50.0715i −0.128094 1.28388i
\(40\) 11.2933 8.51248i 0.282332 0.212812i
\(41\) −26.6051 −0.648905 −0.324452 0.945902i \(-0.605180\pi\)
−0.324452 + 0.945902i \(0.605180\pi\)
\(42\) −28.7019 + 7.62886i −0.683379 + 0.181639i
\(43\) −25.3219 + 25.3219i −0.588880 + 0.588880i −0.937328 0.348448i \(-0.886709\pi\)
0.348448 + 0.937328i \(0.386709\pi\)
\(44\) 18.5884 + 32.1961i 0.422465 + 0.731730i
\(45\) 44.9207 2.67104i 0.998237 0.0593565i
\(46\) 14.8809 25.7745i 0.323498 0.560315i
\(47\) 13.1425 49.0486i 0.279628 1.04359i −0.673048 0.739599i \(-0.735015\pi\)
0.952676 0.303987i \(-0.0983181\pi\)
\(48\) −1.93975 + 11.8422i −0.0404114 + 0.246712i
\(49\) −36.6276 32.5487i −0.747503 0.664258i
\(50\) −30.3104 18.2012i −0.606207 0.364023i
\(51\) 46.3226 + 20.9178i 0.908287 + 0.410154i
\(52\) −8.68253 32.4037i −0.166972 0.623147i
\(53\) 37.7945 10.1270i 0.713103 0.191075i 0.116011 0.993248i \(-0.462989\pi\)
0.597092 + 0.802172i \(0.296323\pi\)
\(54\) −25.9961 + 27.9679i −0.481408 + 0.517925i
\(55\) 57.2110 73.2472i 1.04020 1.33177i
\(56\) −18.0609 + 8.11205i −0.322515 + 0.144858i
\(57\) 2.00694 12.2524i 0.0352095 0.214954i
\(58\) −67.6347 18.1227i −1.16612 0.312460i
\(59\) −46.6060 26.9080i −0.789933 0.456068i 0.0500062 0.998749i \(-0.484076\pi\)
−0.839939 + 0.542681i \(0.817409\pi\)
\(60\) 29.2654 6.59810i 0.487757 0.109968i
\(61\) 34.2320 19.7639i 0.561181 0.323998i −0.192439 0.981309i \(-0.561640\pi\)
0.753619 + 0.657311i \(0.228306\pi\)
\(62\) −3.15654 3.15654i −0.0509119 0.0509119i
\(63\) −62.1509 10.3086i −0.986522 0.163629i
\(64\) 8.00000i 0.125000i
\(65\) −66.9722 + 50.4814i −1.03034 + 0.776636i
\(66\) 7.82942 + 78.4745i 0.118628 + 1.18901i
\(67\) 47.4290 12.7086i 0.707895 0.189680i 0.113131 0.993580i \(-0.463912\pi\)
0.594764 + 0.803900i \(0.297245\pi\)
\(68\) 32.7298 + 8.76993i 0.481321 + 0.128970i
\(69\) 51.2719 36.8393i 0.743072 0.533903i
\(70\) 35.7223 + 34.2624i 0.510319 + 0.489464i
\(71\) 81.2437i 1.14428i 0.820157 + 0.572138i \(0.193886\pi\)
−0.820157 + 0.572138i \(0.806114\pi\)
\(72\) −14.0889 + 21.2015i −0.195678 + 0.294465i
\(73\) −0.400521 + 0.107319i −0.00548658 + 0.00147013i −0.261561 0.965187i \(-0.584237\pi\)
0.256075 + 0.966657i \(0.417571\pi\)
\(74\) 22.1864 38.4280i 0.299816 0.519297i
\(75\) −42.7100 61.6511i −0.569467 0.822014i
\(76\) 8.27711i 0.108909i
\(77\) −100.853 + 82.2167i −1.30978 + 1.06775i
\(78\) 11.5033 70.2275i 0.147478 0.900352i
\(79\) −117.114 + 67.6156i −1.48245 + 0.855894i −0.999802 0.0199190i \(-0.993659\pi\)
−0.482650 + 0.875813i \(0.660326\pi\)
\(80\) 18.5427 7.49464i 0.231783 0.0936830i
\(81\) −74.6763 + 31.3761i −0.921929 + 0.387359i
\(82\) −36.3432 9.73814i −0.443210 0.118758i
\(83\) 27.5253 27.5253i 0.331630 0.331630i −0.521575 0.853205i \(-0.674655\pi\)
0.853205 + 0.521575i \(0.174655\pi\)
\(84\) −41.9999 0.0844196i −0.499999 0.00100499i
\(85\) −10.3350 84.0782i −0.121589 0.989155i
\(86\) −43.8587 + 25.3219i −0.509985 + 0.294440i
\(87\) −114.939 94.0848i −1.32114 1.08143i
\(88\) 13.6077 + 50.7846i 0.154633 + 0.577097i
\(89\) 20.2878 11.7132i 0.227953 0.131609i −0.381674 0.924297i \(-0.624652\pi\)
0.609627 + 0.792688i \(0.291319\pi\)
\(90\) 62.3404 + 12.7934i 0.692671 + 0.142149i
\(91\) 107.106 48.1067i 1.17699 0.528645i
\(92\) 29.7618 29.7618i 0.323498 0.323498i
\(93\) −3.34689 8.85843i −0.0359881 0.0952519i
\(94\) 35.9060 62.1911i 0.381979 0.661607i
\(95\) −19.1850 + 7.75424i −0.201947 + 0.0816236i
\(96\) −6.98429 + 15.4667i −0.0727530 + 0.161112i
\(97\) 50.1321 50.1321i 0.516826 0.516826i −0.399784 0.916609i \(-0.630915\pi\)
0.916609 + 0.399784i \(0.130915\pi\)
\(98\) −38.1207 57.8689i −0.388986 0.590499i
\(99\) −53.3741 + 158.553i −0.539132 + 1.60155i
\(100\) −34.7426 35.9576i −0.347426 0.359576i
\(101\) 6.51287 11.2806i 0.0644839 0.111689i −0.831981 0.554804i \(-0.812793\pi\)
0.896465 + 0.443115i \(0.146127\pi\)
\(102\) 55.6214 + 45.5296i 0.545308 + 0.446368i
\(103\) −11.7176 + 43.7305i −0.113763 + 0.424568i −0.999191 0.0402071i \(-0.987198\pi\)
0.885429 + 0.464775i \(0.153865\pi\)
\(104\) 47.4422i 0.456175i
\(105\) 39.1511 + 97.4279i 0.372868 + 0.927885i
\(106\) 55.3350 0.522028
\(107\) 187.956 + 50.3627i 1.75660 + 0.470680i 0.986015 0.166657i \(-0.0532973\pi\)
0.770585 + 0.637337i \(0.219964\pi\)
\(108\) −45.7482 + 28.6897i −0.423595 + 0.265645i
\(109\) 8.61243 + 4.97239i 0.0790131 + 0.0456183i 0.538986 0.842315i \(-0.318808\pi\)
−0.459973 + 0.887933i \(0.652141\pi\)
\(110\) 104.962 79.1168i 0.954201 0.719244i
\(111\) 76.4429 54.9249i 0.688675 0.494819i
\(112\) −27.6408 + 4.47053i −0.246793 + 0.0399155i
\(113\) 22.6574 + 22.6574i 0.200508 + 0.200508i 0.800218 0.599709i \(-0.204717\pi\)
−0.599709 + 0.800218i \(0.704717\pi\)
\(114\) 7.22621 16.0025i 0.0633878 0.140373i
\(115\) −96.8647 41.1012i −0.842302 0.357402i
\(116\) −85.7574 49.5120i −0.739288 0.426828i
\(117\) 83.5508 125.731i 0.714110 1.07462i
\(118\) −53.8160 53.8160i −0.456068 0.456068i
\(119\) −12.0110 + 117.986i −0.100933 + 0.991476i
\(120\) 42.3924 + 1.69872i 0.353270 + 0.0141560i
\(121\) 112.265 + 194.449i 0.927811 + 1.60701i
\(122\) 53.9959 14.4682i 0.442589 0.118591i
\(123\) −61.7621 50.5561i −0.502131 0.411025i
\(124\) −3.15654 5.46728i −0.0254559 0.0440910i
\(125\) −50.7958 + 114.214i −0.406366 + 0.913710i
\(126\) −81.1265 36.8306i −0.643861 0.292307i
\(127\) −150.405 150.405i −1.18429 1.18429i −0.978621 0.205670i \(-0.934063\pi\)
−0.205670 0.978621i \(-0.565937\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) −106.901 + 10.6655i −0.828689 + 0.0826785i
\(130\) −109.963 + 44.4453i −0.845871 + 0.341887i
\(131\) 71.2724 + 123.447i 0.544064 + 0.942347i 0.998665 + 0.0516519i \(0.0164486\pi\)
−0.454601 + 0.890695i \(0.650218\pi\)
\(132\) −18.0285 + 110.064i −0.136579 + 0.833817i
\(133\) 28.5982 4.62539i 0.215024 0.0347773i
\(134\) 69.4408 0.518215
\(135\) 109.356 + 79.1594i 0.810046 + 0.586366i
\(136\) 41.4997 + 23.9599i 0.305145 + 0.176176i
\(137\) −8.73481 32.5988i −0.0637578 0.237947i 0.926692 0.375822i \(-0.122640\pi\)
−0.990450 + 0.137875i \(0.955973\pi\)
\(138\) 83.5229 31.5566i 0.605238 0.228671i
\(139\) 94.6346 0.680825 0.340412 0.940276i \(-0.389433\pi\)
0.340412 + 0.940276i \(0.389433\pi\)
\(140\) 36.2567 + 59.8787i 0.258976 + 0.427705i
\(141\) 123.714 88.8893i 0.877402 0.630421i
\(142\) −29.7372 + 110.981i −0.209417 + 0.781556i
\(143\) −80.6974 301.167i −0.564317 2.10606i
\(144\) −27.0060 + 23.8049i −0.187542 + 0.165312i
\(145\) −34.4206 + 245.156i −0.237383 + 1.69073i
\(146\) −0.586403 −0.00401646
\(147\) −23.1786 145.161i −0.157677 0.987491i
\(148\) 44.3728 44.3728i 0.299816 0.299816i
\(149\) 143.957 + 249.340i 0.966152 + 1.67343i 0.706486 + 0.707727i \(0.250279\pi\)
0.259666 + 0.965698i \(0.416387\pi\)
\(150\) −35.7771 99.8499i −0.238514 0.665666i
\(151\) −11.7834 + 20.4094i −0.0780356 + 0.135162i −0.902402 0.430894i \(-0.858198\pi\)
0.824367 + 0.566056i \(0.191531\pi\)
\(152\) 3.02963 11.3067i 0.0199318 0.0743864i
\(153\) 67.7863 + 136.584i 0.443047 + 0.892704i
\(154\) −167.862 + 75.3952i −1.09001 + 0.489579i
\(155\) −9.71510 + 12.4382i −0.0626781 + 0.0802467i
\(156\) 41.4188 91.7220i 0.265505 0.587962i
\(157\) 65.0378 + 242.724i 0.414253 + 1.54601i 0.786327 + 0.617811i \(0.211980\pi\)
−0.372073 + 0.928203i \(0.621353\pi\)
\(158\) −184.729 + 49.4981i −1.16917 + 0.313279i
\(159\) 106.981 + 48.3094i 0.672839 + 0.303833i
\(160\) 28.0730 3.45078i 0.175456 0.0215674i
\(161\) 119.462 + 86.1987i 0.741997 + 0.535396i
\(162\) −113.494 + 15.5271i −0.700581 + 0.0958463i
\(163\) −136.428 36.5558i −0.836982 0.224269i −0.185224 0.982696i \(-0.559301\pi\)
−0.651757 + 0.758428i \(0.725968\pi\)
\(164\) −46.0814 26.6051i −0.280984 0.162226i
\(165\) 271.999 61.3242i 1.64848 0.371662i
\(166\) 47.6752 27.5253i 0.287200 0.165815i
\(167\) −77.3220 77.3220i −0.463006 0.463006i 0.436633 0.899640i \(-0.356171\pi\)
−0.899640 + 0.436633i \(0.856171\pi\)
\(168\) −57.3421 15.4884i −0.341322 0.0921926i
\(169\) 112.346i 0.664768i
\(170\) 16.6568 118.636i 0.0979813 0.697858i
\(171\) 27.9415 24.6295i 0.163400 0.144032i
\(172\) −69.1806 + 18.5369i −0.402213 + 0.107773i
\(173\) −75.0415 20.1073i −0.433766 0.116227i 0.0353274 0.999376i \(-0.488753\pi\)
−0.469094 + 0.883149i \(0.655419\pi\)
\(174\) −122.572 170.593i −0.704439 0.980419i
\(175\) 104.822 140.133i 0.598985 0.800760i
\(176\) 74.3538i 0.422465i
\(177\) −57.0614 151.028i −0.322381 0.853266i
\(178\) 32.0010 8.57464i 0.179781 0.0481721i
\(179\) 4.53723 7.85871i 0.0253476 0.0439034i −0.853073 0.521791i \(-0.825264\pi\)
0.878421 + 0.477888i \(0.158597\pi\)
\(180\) 80.4759 + 40.2943i 0.447088 + 0.223857i
\(181\) 334.141i 1.84608i 0.384700 + 0.923041i \(0.374305\pi\)
−0.384700 + 0.923041i \(0.625695\pi\)
\(182\) 163.918 26.5115i 0.900647 0.145668i
\(183\) 117.024 + 19.1685i 0.639474 + 0.104746i
\(184\) 51.5490 29.7618i 0.280158 0.161749i
\(185\) −144.419 61.2790i −0.780641 0.331238i
\(186\) −1.32953 13.3259i −0.00714800 0.0716445i
\(187\) 304.198 + 81.5096i 1.62673 + 0.435880i
\(188\) 71.8121 71.8121i 0.381979 0.381979i
\(189\) −124.691 142.033i −0.659739 0.751495i
\(190\) −29.0454 + 3.57031i −0.152870 + 0.0187911i
\(191\) −67.4242 + 38.9274i −0.353006 + 0.203808i −0.666008 0.745944i \(-0.731999\pi\)
0.313002 + 0.949752i \(0.398665\pi\)
\(192\) −15.2019 + 18.5715i −0.0791767 + 0.0967267i
\(193\) 26.7407 + 99.7978i 0.138553 + 0.517087i 0.999958 + 0.00916808i \(0.00291833\pi\)
−0.861405 + 0.507919i \(0.830415\pi\)
\(194\) 86.8313 50.1321i 0.447584 0.258413i
\(195\) −251.399 10.0739i −1.28922 0.0516609i
\(196\) −30.8923 93.0036i −0.157614 0.474508i
\(197\) −94.6311 + 94.6311i −0.480361 + 0.480361i −0.905247 0.424886i \(-0.860314\pi\)
0.424886 + 0.905247i \(0.360314\pi\)
\(198\) −130.945 + 197.052i −0.661338 + 0.995210i
\(199\) 126.403 218.937i 0.635193 1.10019i −0.351281 0.936270i \(-0.614254\pi\)
0.986474 0.163917i \(-0.0524129\pi\)
\(200\) −34.2979 61.8357i −0.171490 0.309178i
\(201\) 134.253 + 60.6244i 0.667925 + 0.301614i
\(202\) 13.0257 13.0257i 0.0644839 0.0644839i
\(203\) 123.146 323.968i 0.606633 1.59590i
\(204\) 59.3153 + 82.5534i 0.290761 + 0.404674i
\(205\) −18.4958 + 131.733i −0.0902232 + 0.642602i
\(206\) −32.0130 + 55.4481i −0.155403 + 0.269166i
\(207\) 189.028 + 11.9088i 0.913180 + 0.0575304i
\(208\) 17.3651 64.8073i 0.0834859 0.311574i
\(209\) 76.9293i 0.368083i
\(210\) 17.8203 + 147.419i 0.0848587 + 0.701996i
\(211\) −274.559 −1.30123 −0.650614 0.759409i \(-0.725488\pi\)
−0.650614 + 0.759409i \(0.725488\pi\)
\(212\) 75.5890 + 20.2540i 0.356552 + 0.0955377i
\(213\) −154.383 + 188.602i −0.724801 + 0.885457i
\(214\) 238.319 + 137.594i 1.11364 + 0.642960i
\(215\) 107.776 + 142.983i 0.501283 + 0.665038i
\(216\) −72.9944 + 22.4458i −0.337937 + 0.103916i
\(217\) 17.1261 13.9614i 0.0789220 0.0643380i
\(218\) 9.94478 + 9.94478i 0.0456183 + 0.0456183i
\(219\) −1.13372 0.511951i −0.00517679 0.00233768i
\(220\) 172.340 69.6568i 0.783362 0.316622i
\(221\) −246.105 142.089i −1.11360 0.642936i
\(222\) 124.527 47.0487i 0.560932 0.211931i
\(223\) 87.9432 + 87.9432i 0.394364 + 0.394364i 0.876240 0.481875i \(-0.160044\pi\)
−0.481875 + 0.876240i \(0.660044\pi\)
\(224\) −39.3944 4.01038i −0.175868 0.0179035i
\(225\) 18.0032 224.279i 0.0800141 0.996794i
\(226\) 22.6574 + 39.2439i 0.100254 + 0.173645i
\(227\) −55.9199 + 14.9837i −0.246343 + 0.0660074i −0.379878 0.925037i \(-0.624034\pi\)
0.133535 + 0.991044i \(0.457367\pi\)
\(228\) 15.7285 19.2148i 0.0689847 0.0842755i
\(229\) −171.391 296.858i −0.748432 1.29632i −0.948574 0.316556i \(-0.897474\pi\)
0.200142 0.979767i \(-0.435860\pi\)
\(230\) −117.276 91.6002i −0.509894 0.398262i
\(231\) −390.356 0.784614i −1.68985 0.00339660i
\(232\) −99.0241 99.0241i −0.426828 0.426828i
\(233\) −63.7225 + 237.816i −0.273487 + 1.02067i 0.683361 + 0.730080i \(0.260517\pi\)
−0.956848 + 0.290588i \(0.906149\pi\)
\(234\) 160.153 141.170i 0.684416 0.603290i
\(235\) −233.724 99.1727i −0.994571 0.422011i
\(236\) −53.8160 93.2121i −0.228034 0.394966i
\(237\) −400.358 65.5787i −1.68928 0.276703i
\(238\) −59.5931 + 156.775i −0.250391 + 0.658718i
\(239\) 185.920 0.777906 0.388953 0.921258i \(-0.372837\pi\)
0.388953 + 0.921258i \(0.372837\pi\)
\(240\) 57.2873 + 17.8372i 0.238697 + 0.0743216i
\(241\) −155.651 89.8649i −0.645853 0.372883i 0.141013 0.990008i \(-0.454964\pi\)
−0.786866 + 0.617124i \(0.788298\pi\)
\(242\) 82.1837 + 306.714i 0.339602 + 1.26741i
\(243\) −232.979 69.0653i −0.958759 0.284219i
\(244\) 79.0555 0.323998
\(245\) −186.626 + 158.732i −0.761739 + 0.647884i
\(246\) −65.8638 91.6674i −0.267739 0.372632i
\(247\) −17.9666 + 67.0521i −0.0727391 + 0.271466i
\(248\) −2.31074 8.62382i −0.00931752 0.0347734i
\(249\) 116.203 11.5936i 0.466679 0.0465607i
\(250\) −111.193 + 137.426i −0.444774 + 0.549706i
\(251\) −75.0519 −0.299012 −0.149506 0.988761i \(-0.547768\pi\)
−0.149506 + 0.988761i \(0.547768\pi\)
\(252\) −97.3399 80.0059i −0.386269 0.317484i
\(253\) 276.613 276.613i 1.09333 1.09333i
\(254\) −150.405 260.509i −0.592146 1.02563i
\(255\) 135.777 214.821i 0.532457 0.842437i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 51.0428 190.494i 0.198610 0.741223i −0.792692 0.609622i \(-0.791321\pi\)
0.991303 0.131602i \(-0.0420120\pi\)
\(258\) −149.933 24.5590i −0.581136 0.0951900i
\(259\) 178.109 + 128.516i 0.687679 + 0.496202i
\(260\) −166.481 + 20.4641i −0.640310 + 0.0787081i
\(261\) −88.0406 436.824i −0.337320 1.67366i
\(262\) 52.1750 + 194.720i 0.199141 + 0.743206i
\(263\) 407.787 109.266i 1.55052 0.415461i 0.620874 0.783910i \(-0.286778\pi\)
0.929648 + 0.368449i \(0.120111\pi\)
\(264\) −64.9135 + 143.751i −0.245885 + 0.544512i
\(265\) −23.8686 194.177i −0.0900702 0.732744i
\(266\) 40.7589 + 4.14929i 0.153229 + 0.0155988i
\(267\) 69.3548 + 11.3603i 0.259756 + 0.0425480i
\(268\) 94.8580 + 25.4171i 0.353948 + 0.0948400i
\(269\) 26.6255 + 15.3722i 0.0989796 + 0.0571459i 0.548673 0.836037i \(-0.315133\pi\)
−0.449693 + 0.893183i \(0.648467\pi\)
\(270\) 120.409 + 148.161i 0.445959 + 0.548744i
\(271\) −171.601 + 99.0739i −0.633214 + 0.365586i −0.781996 0.623284i \(-0.785798\pi\)
0.148782 + 0.988870i \(0.452465\pi\)
\(272\) 47.9198 + 47.9198i 0.176176 + 0.176176i
\(273\) 340.054 + 91.8503i 1.24562 + 0.336448i
\(274\) 47.7279i 0.174189i
\(275\) −322.906 334.198i −1.17420 1.21526i
\(276\) 125.645 12.5356i 0.455235 0.0454190i
\(277\) 131.177 35.1489i 0.473564 0.126891i −0.0141400 0.999900i \(-0.504501\pi\)
0.487704 + 0.873009i \(0.337834\pi\)
\(278\) 129.273 + 34.6387i 0.465012 + 0.124600i
\(279\) 9.06355 26.9242i 0.0324858 0.0965025i
\(280\) 27.6104 + 95.0666i 0.0986087 + 0.339524i
\(281\) 132.622i 0.471966i −0.971757 0.235983i \(-0.924169\pi\)
0.971757 0.235983i \(-0.0758309\pi\)
\(282\) 201.532 76.1427i 0.714652 0.270010i
\(283\) −242.451 + 64.9646i −0.856718 + 0.229557i −0.660336 0.750971i \(-0.729586\pi\)
−0.196382 + 0.980527i \(0.562919\pi\)
\(284\) −81.2437 + 140.718i −0.286069 + 0.495486i
\(285\) −59.2716 18.4550i −0.207971 0.0647545i
\(286\) 440.939i 1.54174i
\(287\) 66.1723 174.083i 0.230565 0.606562i
\(288\) −45.6041 + 22.6333i −0.158348 + 0.0785877i
\(289\) −1.69906 + 0.980951i −0.00587909 + 0.00339429i
\(290\) −136.753 + 322.290i −0.471560 + 1.11134i
\(291\) 211.642 21.1156i 0.727291 0.0725621i
\(292\) −0.801041 0.214638i −0.00274329 0.000735063i
\(293\) 47.5472 47.5472i 0.162277 0.162277i −0.621298 0.783575i \(-0.713394\pi\)
0.783575 + 0.621298i \(0.213394\pi\)
\(294\) 21.4701 206.778i 0.0730277 0.703326i
\(295\) −165.634 + 212.060i −0.561470 + 0.718849i
\(296\) 76.8560 44.3728i 0.259649 0.149908i
\(297\) −425.194 + 266.648i −1.43163 + 0.897806i
\(298\) 105.384 + 393.297i 0.353636 + 1.31979i
\(299\) −305.700 + 176.496i −1.02241 + 0.590288i
\(300\) −12.3248 149.493i −0.0410828 0.498309i
\(301\) −102.706 228.667i −0.341216 0.759692i
\(302\) −23.5668 + 23.5668i −0.0780356 + 0.0780356i
\(303\) 36.5551 13.8113i 0.120644 0.0455817i
\(304\) 8.27711 14.3364i 0.0272273 0.0471591i
\(305\) −74.0615 183.237i −0.242825 0.600778i
\(306\) 42.6047 + 211.388i 0.139231 + 0.690811i
\(307\) 31.3108 31.3108i 0.101989 0.101989i −0.654271 0.756260i \(-0.727024\pi\)
0.756260 + 0.654271i \(0.227024\pi\)
\(308\) −256.900 + 41.5501i −0.834090 + 0.134903i
\(309\) −110.300 + 79.2516i −0.356959 + 0.256478i
\(310\) −17.8238 + 13.4350i −0.0574961 + 0.0433386i
\(311\) 205.600 356.110i 0.661094 1.14505i −0.319235 0.947676i \(-0.603426\pi\)
0.980329 0.197372i \(-0.0632407\pi\)
\(312\) 90.1517 110.134i 0.288948 0.352995i
\(313\) −8.46338 + 31.5858i −0.0270396 + 0.100913i −0.978127 0.208009i \(-0.933302\pi\)
0.951087 + 0.308922i \(0.0999683\pi\)
\(314\) 355.373i 1.13176i
\(315\) −94.2495 + 300.569i −0.299205 + 0.954189i
\(316\) −270.463 −0.855894
\(317\) −187.304 50.1880i −0.590864 0.158322i −0.0490162 0.998798i \(-0.515609\pi\)
−0.541848 + 0.840476i \(0.682275\pi\)
\(318\) 128.457 + 105.150i 0.403952 + 0.330660i
\(319\) −797.048 460.176i −2.49858 1.44256i
\(320\) 39.6115 + 5.56157i 0.123786 + 0.0173799i
\(321\) 340.628 + 474.076i 1.06115 + 1.47687i
\(322\) 131.637 + 161.476i 0.408809 + 0.501477i
\(323\) −49.5796 49.5796i −0.153497 0.153497i
\(324\) −160.719 20.3313i −0.496047 0.0627510i
\(325\) 203.396 + 366.703i 0.625835 + 1.12832i
\(326\) −172.984 99.8722i −0.530625 0.306357i
\(327\) 10.5445 + 27.9088i 0.0322462 + 0.0853480i
\(328\) −53.2102 53.2102i −0.162226 0.162226i
\(329\) 288.248 + 207.988i 0.876133 + 0.632183i
\(330\) 394.004 + 15.7883i 1.19395 + 0.0478432i
\(331\) 260.407 + 451.038i 0.786728 + 1.36265i 0.927961 + 0.372677i \(0.121560\pi\)
−0.141233 + 0.989976i \(0.545107\pi\)
\(332\) 75.2005 20.1499i 0.226508 0.0606925i
\(333\) 281.828 + 17.7552i 0.846331 + 0.0533189i
\(334\) −77.3220 133.926i −0.231503 0.400975i
\(335\) −29.9531 243.676i −0.0894124 0.727392i
\(336\) −72.6616 42.1461i −0.216255 0.125435i
\(337\) −341.923 341.923i −1.01461 1.01461i −0.999892 0.0147179i \(-0.995315\pi\)
−0.0147179 0.999892i \(-0.504685\pi\)
\(338\) −41.1214 + 153.467i −0.121661 + 0.454045i
\(339\) 9.54328 + 95.6525i 0.0281513 + 0.282161i
\(340\) 66.1774 155.963i 0.194639 0.458714i
\(341\) −29.3375 50.8141i −0.0860338 0.149015i
\(342\) 47.1838 23.4172i 0.137964 0.0684714i
\(343\) 304.074 158.708i 0.886512 0.462705i
\(344\) −101.287 −0.294440
\(345\) −146.763 279.480i −0.425401 0.810088i
\(346\) −95.1489 54.9342i −0.274997 0.158769i
\(347\) 16.0780 + 60.0039i 0.0463343 + 0.172922i 0.985216 0.171319i \(-0.0548029\pi\)
−0.938881 + 0.344241i \(0.888136\pi\)
\(348\) −104.996 277.899i −0.301712 0.798560i
\(349\) 426.154 1.22107 0.610535 0.791989i \(-0.290954\pi\)
0.610535 + 0.791989i \(0.290954\pi\)
\(350\) 194.482 153.058i 0.555664 0.437308i
\(351\) 432.877 133.110i 1.23327 0.379231i
\(352\) −27.2154 + 101.569i −0.0773164 + 0.288549i
\(353\) 100.819 + 376.260i 0.285605 + 1.06589i 0.948396 + 0.317089i \(0.102705\pi\)
−0.662791 + 0.748805i \(0.730628\pi\)
\(354\) −22.6672 227.194i −0.0640317 0.641791i
\(355\) 402.273 + 56.4803i 1.13316 + 0.159099i
\(356\) 46.8527 0.131609
\(357\) −252.084 + 251.073i −0.706118 + 0.703285i
\(358\) 9.07446 9.07446i 0.0253476 0.0253476i
\(359\) 238.699 + 413.439i 0.664901 + 1.15164i 0.979312 + 0.202355i \(0.0648595\pi\)
−0.314412 + 0.949287i \(0.601807\pi\)
\(360\) 95.1834 + 84.4992i 0.264398 + 0.234720i
\(361\) 171.936 297.802i 0.476278 0.824937i
\(362\) −122.304 + 456.445i −0.337857 + 1.26090i
\(363\) −108.883 + 664.732i −0.299953 + 1.83122i
\(364\) 233.620 + 23.7827i 0.641812 + 0.0653370i
\(365\) 0.252944 + 2.05776i 0.000692996 + 0.00563770i
\(366\) 152.841 + 69.0183i 0.417599 + 0.188574i
\(367\) 95.0809 + 354.847i 0.259076 + 0.966885i 0.965777 + 0.259373i \(0.0835158\pi\)
−0.706701 + 0.707512i \(0.749818\pi\)
\(368\) 81.3108 21.7872i 0.220953 0.0592043i
\(369\) −47.3083 234.726i −0.128207 0.636114i
\(370\) −174.850 136.570i −0.472567 0.369107i
\(371\) −27.7393 + 272.486i −0.0747689 + 0.734463i
\(372\) 3.06144 18.6901i 0.00822969 0.0502423i
\(373\) 151.528 + 40.6019i 0.406242 + 0.108852i 0.456153 0.889901i \(-0.349227\pi\)
−0.0499106 + 0.998754i \(0.515894\pi\)
\(374\) 385.708 + 222.688i 1.03130 + 0.595424i
\(375\) −334.953 + 168.616i −0.893208 + 0.449643i
\(376\) 124.382 71.8121i 0.330804 0.190990i
\(377\) 587.240 + 587.240i 1.55767 + 1.55767i
\(378\) −118.343 239.660i −0.313077 0.634021i
\(379\) 81.6721i 0.215494i 0.994178 + 0.107747i \(0.0343636\pi\)
−0.994178 + 0.107747i \(0.965636\pi\)
\(380\) −40.9836 5.75421i −0.107851 0.0151427i
\(381\) −63.3504 634.962i −0.166274 1.66657i
\(382\) −106.352 + 28.4968i −0.278407 + 0.0745990i
\(383\) −62.1694 16.6583i −0.162322 0.0434941i 0.176743 0.984257i \(-0.443444\pi\)
−0.339065 + 0.940763i \(0.610111\pi\)
\(384\) −27.5639 + 19.8049i −0.0717809 + 0.0515752i
\(385\) 336.978 + 556.525i 0.875267 + 1.44552i
\(386\) 146.114i 0.378534i
\(387\) −268.431 178.378i −0.693620 0.460925i
\(388\) 136.963 36.6992i 0.352998 0.0945857i
\(389\) 219.583 380.329i 0.564481 0.977710i −0.432616 0.901578i \(-0.642410\pi\)
0.997098 0.0761323i \(-0.0242571\pi\)
\(390\) −339.730 105.779i −0.871102 0.271229i
\(391\) 356.545i 0.911880i
\(392\) −8.15797 138.353i −0.0208112 0.352940i
\(393\) −69.1253 + 422.011i −0.175891 + 1.07382i
\(394\) −163.906 + 94.6311i −0.416005 + 0.240181i
\(395\) 253.377 + 626.887i 0.641462 + 1.58706i
\(396\) −251.000 + 221.248i −0.633838 + 0.558708i
\(397\) −568.946 152.449i −1.43311 0.384001i −0.542996 0.839735i \(-0.682710\pi\)
−0.890116 + 0.455734i \(0.849377\pi\)
\(398\) 252.807 252.807i 0.635193 0.635193i
\(399\) 75.1785 + 43.6060i 0.188417 + 0.109288i
\(400\) −24.2184 97.0230i −0.0605461 0.242558i
\(401\) 399.245 230.504i 0.995623 0.574823i 0.0886729 0.996061i \(-0.471737\pi\)
0.906950 + 0.421237i \(0.138404\pi\)
\(402\) 161.203 + 131.954i 0.401002 + 0.328245i
\(403\) 13.7034 + 51.1416i 0.0340034 + 0.126902i
\(404\) 22.5612 13.0257i 0.0558447 0.0322419i
\(405\) 103.442 + 391.567i 0.255412 + 0.966832i
\(406\) 286.802 397.474i 0.706409 0.979001i
\(407\) 412.411 412.411i 1.01329 1.01329i
\(408\) 50.8096 + 134.481i 0.124533 + 0.329610i
\(409\) −28.2219 + 48.8817i −0.0690021 + 0.119515i −0.898462 0.439051i \(-0.855315\pi\)
0.829460 + 0.558566i \(0.188648\pi\)
\(410\) −73.4835 + 173.181i −0.179228 + 0.422393i
\(411\) 41.6682 92.2743i 0.101382 0.224512i
\(412\) −64.0259 + 64.0259i −0.155403 + 0.155403i
\(413\) 291.984 238.028i 0.706983 0.576339i
\(414\) 253.859 + 85.4569i 0.613185 + 0.206418i
\(415\) −117.154 155.425i −0.282299 0.374518i
\(416\) 47.4422 82.1724i 0.114044 0.197530i
\(417\) 219.689 + 179.829i 0.526831 + 0.431244i
\(418\) 28.1581 105.087i 0.0673638 0.251405i
\(419\) 44.8421i 0.107022i −0.998567 0.0535108i \(-0.982959\pi\)
0.998567 0.0535108i \(-0.0170412\pi\)
\(420\) −29.6162 + 207.901i −0.0705147 + 0.495003i
\(421\) −100.693 −0.239175 −0.119588 0.992824i \(-0.538157\pi\)
−0.119588 + 0.992824i \(0.538157\pi\)
\(422\) −375.055 100.496i −0.888755 0.238141i
\(423\) 456.105 + 28.7346i 1.07826 + 0.0679306i
\(424\) 95.8430 + 55.3350i 0.226045 + 0.130507i
\(425\) −423.492 7.27754i −0.996453 0.0171236i
\(426\) −279.924 + 201.128i −0.657098 + 0.472130i
\(427\) 44.1775 + 273.145i 0.103460 + 0.639683i
\(428\) 275.187 + 275.187i 0.642960 + 0.642960i
\(429\) 384.955 852.485i 0.897332 1.98714i
\(430\) 94.8891 + 234.767i 0.220672 + 0.545971i
\(431\) −72.4981 41.8568i −0.168209 0.0971156i 0.413532 0.910490i \(-0.364295\pi\)
−0.581741 + 0.813374i \(0.697628\pi\)
\(432\) −107.928 + 3.94376i −0.249833 + 0.00912907i
\(433\) −372.450 372.450i −0.860161 0.860161i 0.131196 0.991357i \(-0.458118\pi\)
−0.991357 + 0.131196i \(0.958118\pi\)
\(434\) 28.5049 12.8030i 0.0656794 0.0295000i
\(435\) −545.760 + 503.707i −1.25462 + 1.15795i
\(436\) 9.94478 + 17.2249i 0.0228091 + 0.0395066i
\(437\) −84.1273 + 22.5418i −0.192511 + 0.0515832i
\(438\) −1.36130 1.11431i −0.00310799 0.00254408i
\(439\) 132.970 + 230.312i 0.302894 + 0.524628i 0.976790 0.214198i \(-0.0687139\pi\)
−0.673896 + 0.738826i \(0.735381\pi\)
\(440\) 260.916 32.0723i 0.592992 0.0728916i
\(441\) 222.034 381.028i 0.503477 0.864008i
\(442\) −284.178 284.178i −0.642936 0.642936i
\(443\) 148.820 555.402i 0.335936 1.25373i −0.566915 0.823776i \(-0.691863\pi\)
0.902851 0.429954i \(-0.141470\pi\)
\(444\) 187.328 18.6898i 0.421910 0.0420941i
\(445\) −43.8930 108.597i −0.0986360 0.244038i
\(446\) 87.9432 + 152.322i 0.197182 + 0.341529i
\(447\) −139.620 + 852.381i −0.312349 + 1.90689i
\(448\) −52.3458 19.8976i −0.116843 0.0444143i
\(449\) −237.928 −0.529906 −0.264953 0.964261i \(-0.585356\pi\)
−0.264953 + 0.964261i \(0.585356\pi\)
\(450\) 106.684 299.781i 0.237077 0.666179i
\(451\) −428.291 247.274i −0.949647 0.548279i
\(452\) 16.5864 + 61.9013i 0.0366956 + 0.136950i
\(453\) −66.1372 + 24.9880i −0.145998 + 0.0551611i
\(454\) −81.8724 −0.180336
\(455\) −163.738 563.772i −0.359863 1.23906i
\(456\) 28.5186 20.4909i 0.0625409 0.0449362i
\(457\) 225.617 842.012i 0.493690 1.84248i −0.0435541 0.999051i \(-0.513868\pi\)
0.537244 0.843427i \(-0.319465\pi\)
\(458\) −125.467 468.249i −0.273945 1.02238i
\(459\) −102.180 + 445.881i −0.222615 + 0.971419i
\(460\) −126.673 168.054i −0.275377 0.365335i
\(461\) −713.872 −1.54853 −0.774264 0.632862i \(-0.781880\pi\)
−0.774264 + 0.632862i \(0.781880\pi\)
\(462\) −532.950 143.952i −1.15357 0.311585i
\(463\) 308.178 308.178i 0.665611 0.665611i −0.291086 0.956697i \(-0.594017\pi\)
0.956697 + 0.291086i \(0.0940166\pi\)
\(464\) −99.0241 171.515i −0.213414 0.369644i
\(465\) −46.1887 + 10.4136i −0.0993305 + 0.0223948i
\(466\) −174.093 + 301.538i −0.373590 + 0.647078i
\(467\) −7.58452 + 28.3058i −0.0162409 + 0.0606120i −0.973571 0.228386i \(-0.926655\pi\)
0.957330 + 0.288998i \(0.0933220\pi\)
\(468\) 270.445 134.222i 0.577874 0.286798i
\(469\) −34.8105 + 341.947i −0.0742228 + 0.729099i
\(470\) −282.973 221.021i −0.602071 0.470258i
\(471\) −310.253 + 687.057i −0.658712 + 1.45872i
\(472\) −39.3961 147.028i −0.0834662 0.311500i
\(473\) −642.980 + 172.286i −1.35937 + 0.364241i
\(474\) −522.896 236.124i −1.10316 0.498151i
\(475\) 25.0573 + 100.384i 0.0527522 + 0.211334i
\(476\) −138.789 + 192.346i −0.291574 + 0.404088i
\(477\) 156.551 + 315.438i 0.328200 + 0.661295i
\(478\) 253.971 + 68.0513i 0.531320 + 0.142367i
\(479\) 307.185 + 177.353i 0.641304 + 0.370257i 0.785117 0.619348i \(-0.212603\pi\)
−0.143813 + 0.989605i \(0.545936\pi\)
\(480\) 71.7270 + 45.3347i 0.149431 + 0.0944472i
\(481\) −455.777 + 263.143i −0.947562 + 0.547075i
\(482\) −179.730 179.730i −0.372883 0.372883i
\(483\) 113.524 + 427.111i 0.235040 + 0.884288i
\(484\) 449.060i 0.927811i
\(485\) −213.374 283.077i −0.439947 0.583665i
\(486\) −292.975 179.621i −0.602829 0.369590i
\(487\) 315.298 84.4839i 0.647429 0.173478i 0.0798630 0.996806i \(-0.474552\pi\)
0.567566 + 0.823328i \(0.307885\pi\)
\(488\) 107.992 + 28.9363i 0.221295 + 0.0592957i
\(489\) −247.245 344.108i −0.505613 0.703698i
\(490\) −313.036 + 148.522i −0.638848 + 0.303105i
\(491\) 59.9040i 0.122004i 0.998138 + 0.0610020i \(0.0194296\pi\)
−0.998138 + 0.0610020i \(0.980570\pi\)
\(492\) −56.4191 149.328i −0.114673 0.303512i
\(493\) −810.260 + 217.108i −1.64353 + 0.440382i
\(494\) −49.0856 + 85.0187i −0.0993635 + 0.172103i
\(495\) 747.961 + 374.504i 1.51103 + 0.756574i
\(496\) 12.6261i 0.0254559i
\(497\) −531.596 202.069i −1.06961 0.406578i
\(498\) 162.980 + 26.6961i 0.327269 + 0.0536066i
\(499\) −158.397 + 91.4504i −0.317428 + 0.183267i −0.650246 0.759724i \(-0.725334\pi\)
0.332817 + 0.942991i \(0.392001\pi\)
\(500\) −202.195 + 147.028i −0.404389 + 0.294057i
\(501\) −32.5679 326.429i −0.0650058 0.651555i
\(502\) −102.523 27.4709i −0.204229 0.0547229i
\(503\) −347.910 + 347.910i −0.691671 + 0.691671i −0.962599 0.270929i \(-0.912669\pi\)
0.270929 + 0.962599i \(0.412669\pi\)
\(504\) −103.685 144.919i −0.205723 0.287538i
\(505\) −51.3275 40.0903i −0.101639 0.0793867i
\(506\) 479.108 276.613i 0.946853 0.546666i
\(507\) −213.484 + 260.804i −0.421073 + 0.514406i
\(508\) −110.104 410.914i −0.216740 0.808886i
\(509\) −651.706 + 376.263i −1.28037 + 0.739219i −0.976915 0.213628i \(-0.931472\pi\)
−0.303450 + 0.952847i \(0.598139\pi\)
\(510\) 264.104 243.754i 0.517852 0.477949i
\(511\) 0.293962 2.88762i 0.000575268 0.00565092i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 111.666 4.08036i 0.217673 0.00795392i
\(514\) 139.452 241.537i 0.271307 0.469917i
\(515\) 208.383 + 88.4200i 0.404627 + 0.171689i
\(516\) −195.823 88.4276i −0.379502 0.171371i
\(517\) 667.437 667.437i 1.29098 1.29098i
\(518\) 196.261 + 240.749i 0.378882 + 0.464766i
\(519\) −135.996 189.275i −0.262034 0.364692i
\(520\) −234.907 32.9817i −0.451745 0.0634263i
\(521\) 75.4946 130.760i 0.144903 0.250980i −0.784434 0.620213i \(-0.787046\pi\)
0.929337 + 0.369233i \(0.120380\pi\)
\(522\) 39.6231 628.938i 0.0759064 1.20486i
\(523\) 135.847 506.986i 0.259745 0.969381i −0.705644 0.708566i \(-0.749342\pi\)
0.965389 0.260815i \(-0.0839911\pi\)
\(524\) 285.090i 0.544064i
\(525\) 509.625 126.123i 0.970715 0.240234i
\(526\) 597.042 1.13506
\(527\) −51.6564 13.8413i −0.0980198 0.0262643i
\(528\) −141.290 + 172.608i −0.267595 + 0.326909i
\(529\) 74.5794 + 43.0584i 0.140982 + 0.0813959i
\(530\) 38.4686 273.987i 0.0725823 0.516957i
\(531\) 154.525 459.033i 0.291008 0.864469i
\(532\) 54.1590 + 20.5868i 0.101803 + 0.0386971i
\(533\) 315.551 + 315.551i 0.592029 + 0.592029i
\(534\) 90.5823 + 40.9041i 0.169630 + 0.0765995i
\(535\) 380.034 895.641i 0.710344 1.67410i
\(536\) 120.275 + 69.4408i 0.224394 + 0.129554i
\(537\) 25.4664 9.62170i 0.0474234 0.0179175i
\(538\) 30.7445 + 30.7445i 0.0571459 + 0.0571459i
\(539\) −287.120 864.396i −0.532690 1.60370i
\(540\) 110.251 + 246.464i 0.204169 + 0.456416i
\(541\) −241.371 418.067i −0.446157 0.772767i 0.551975 0.833861i \(-0.313875\pi\)
−0.998132 + 0.0610936i \(0.980541\pi\)
\(542\) −270.675 + 72.5271i −0.499400 + 0.133814i
\(543\) −634.949 + 775.688i −1.16933 + 1.42852i
\(544\) 47.9198 + 82.9995i 0.0880878 + 0.152573i
\(545\) 30.6078 39.1871i 0.0561611 0.0719030i
\(546\) 430.903 + 249.938i 0.789200 + 0.457763i
\(547\) 488.174 + 488.174i 0.892457 + 0.892457i 0.994754 0.102297i \(-0.0326191\pi\)
−0.102297 + 0.994754i \(0.532619\pi\)
\(548\) 17.4696 65.1975i 0.0318789 0.118974i
\(549\) 235.239 + 266.872i 0.428486 + 0.486105i
\(550\) −318.773 574.714i −0.579587 1.04494i
\(551\) 102.454 + 177.456i 0.185942 + 0.322061i
\(552\) 176.223 + 28.8652i 0.319244 + 0.0522921i
\(553\) −151.139 934.475i −0.273307 1.68983i
\(554\) 192.057 0.346673
\(555\) −218.814 416.686i −0.394260 0.750785i
\(556\) 163.912 + 94.6346i 0.294806 + 0.170206i
\(557\) 120.019 + 447.919i 0.215475 + 0.804163i 0.985999 + 0.166752i \(0.0533280\pi\)
−0.770524 + 0.637411i \(0.780005\pi\)
\(558\) 22.2360 33.4617i 0.0398494 0.0599671i
\(559\) 600.663 1.07453
\(560\) 2.91977 + 139.970i 0.00521387 + 0.249946i
\(561\) 551.290 + 767.270i 0.982691 + 1.36768i
\(562\) 48.5431 181.165i 0.0863757 0.322358i
\(563\) −214.711 801.314i −0.381370 1.42329i −0.843810 0.536642i \(-0.819692\pi\)
0.462440 0.886651i \(-0.346974\pi\)
\(564\) 303.168 30.2471i 0.537531 0.0536297i
\(565\) 127.938 96.4355i 0.226439 0.170682i
\(566\) −354.973 −0.627161
\(567\) −19.5658 566.662i −0.0345075 0.999404i
\(568\) −162.487 + 162.487i −0.286069 + 0.286069i
\(569\) 231.074 + 400.231i 0.406105 + 0.703394i 0.994449 0.105216i \(-0.0335535\pi\)
−0.588345 + 0.808610i \(0.700220\pi\)
\(570\) −74.2116 46.9050i −0.130196 0.0822894i
\(571\) −536.808 + 929.779i −0.940119 + 1.62833i −0.174879 + 0.984590i \(0.555953\pi\)
−0.765240 + 0.643745i \(0.777380\pi\)
\(572\) 161.395 602.333i 0.282159 1.05303i
\(573\) −230.492 37.7547i −0.402256 0.0658894i
\(574\) 154.112 213.581i 0.268488 0.372093i
\(575\) −270.850 + 451.046i −0.471043 + 0.784428i
\(576\) −70.5807 + 14.2253i −0.122536 + 0.0246967i
\(577\) 173.892 + 648.972i 0.301372 + 1.12473i 0.936024 + 0.351937i \(0.114477\pi\)
−0.634652 + 0.772798i \(0.718857\pi\)
\(578\) −2.68001 + 0.718106i −0.00463669 + 0.00124240i
\(579\) −127.563 + 282.488i −0.220316 + 0.487890i
\(580\) −304.774 + 390.201i −0.525472 + 0.672761i
\(581\) 111.643 + 248.565i 0.192157 + 0.427823i
\(582\) 296.837 + 48.6218i 0.510029 + 0.0835427i
\(583\) 702.540 + 188.245i 1.20504 + 0.322890i
\(584\) −1.01568 0.586403i −0.00173918 0.00100411i
\(585\) −564.464 501.104i −0.964896 0.856588i
\(586\) 82.3542 47.5472i 0.140536 0.0811386i
\(587\) 162.434 + 162.434i 0.276719 + 0.276719i 0.831798 0.555079i \(-0.187312\pi\)
−0.555079 + 0.831798i \(0.687312\pi\)
\(588\) 105.015 274.605i 0.178596 0.467015i
\(589\) 13.0635i 0.0221791i
\(590\) −303.879 + 229.054i −0.515049 + 0.388227i
\(591\) −399.503 + 39.8585i −0.675977 + 0.0674425i
\(592\) 121.229 32.4832i 0.204778 0.0548702i
\(593\) −265.648 71.1803i −0.447974 0.120034i 0.0277775 0.999614i \(-0.491157\pi\)
−0.475751 + 0.879580i \(0.657824\pi\)
\(594\) −678.426 + 208.616i −1.14213 + 0.351206i
\(595\) 575.848 + 141.495i 0.967812 + 0.237807i
\(596\) 575.827i 0.966152i
\(597\) 709.472 268.053i 1.18839 0.448999i
\(598\) −482.196 + 129.204i −0.806348 + 0.216060i
\(599\) 383.068 663.494i 0.639513 1.10767i −0.346027 0.938225i \(-0.612469\pi\)
0.985540 0.169444i \(-0.0541972\pi\)
\(600\) 37.8821 208.722i 0.0631369 0.347870i
\(601\) 229.955i 0.382621i −0.981530 0.191311i \(-0.938726\pi\)
0.981530 0.191311i \(-0.0612737\pi\)
\(602\) −56.6011 349.958i −0.0940218 0.581326i
\(603\) 196.459 + 395.849i 0.325803 + 0.656465i
\(604\) −40.8188 + 23.5668i −0.0675808 + 0.0390178i
\(605\) 1040.85 420.693i 1.72041 0.695360i
\(606\) 54.9905 5.48642i 0.0907434 0.00905350i
\(607\) −1111.47 297.819i −1.83110 0.490640i −0.833053 0.553193i \(-0.813409\pi\)
−0.998042 + 0.0625521i \(0.980076\pi\)
\(608\) 16.5542 16.5542i 0.0272273 0.0272273i
\(609\) 901.495 518.065i 1.48029 0.850682i
\(610\) −34.1004 277.415i −0.0559023 0.454779i
\(611\) −737.621 + 425.866i −1.20724 + 0.696998i
\(612\) −19.1744 + 304.356i −0.0313308 + 0.497314i
\(613\) 165.098 + 616.155i 0.269328 + 1.00515i 0.959548 + 0.281546i \(0.0908473\pi\)
−0.690220 + 0.723600i \(0.742486\pi\)
\(614\) 54.2318 31.3108i 0.0883254 0.0509947i
\(615\) −293.262 + 270.665i −0.476849 + 0.440105i
\(616\) −366.140 37.2733i −0.594383 0.0605086i
\(617\) 373.893 373.893i 0.605986 0.605986i −0.335909 0.941895i \(-0.609043\pi\)
0.941895 + 0.335909i \(0.109043\pi\)
\(618\) −179.681 + 67.8870i −0.290746 + 0.109850i
\(619\) −335.003 + 580.243i −0.541201 + 0.937388i 0.457634 + 0.889140i \(0.348697\pi\)
−0.998835 + 0.0482471i \(0.984637\pi\)
\(620\) −29.2653 + 11.8285i −0.0472021 + 0.0190783i
\(621\) 416.188 + 386.845i 0.670191 + 0.622939i
\(622\) 411.200 411.200i 0.661094 0.661094i
\(623\) 26.1821 + 161.881i 0.0420258 + 0.259841i
\(624\) 163.461 117.448i 0.261957 0.188219i
\(625\) 530.209 + 330.913i 0.848335 + 0.529461i
\(626\) −23.1224 + 40.0491i −0.0369367 + 0.0639763i
\(627\) 146.184 178.587i 0.233149 0.284827i
\(628\) −130.076 + 485.448i −0.207127 + 0.773007i
\(629\) 531.584i 0.845125i
\(630\) −238.763 + 376.088i −0.378989 + 0.596965i
\(631\) 104.805 0.166094 0.0830468 0.996546i \(-0.473535\pi\)
0.0830468 + 0.996546i \(0.473535\pi\)
\(632\) −369.459 98.9962i −0.584587 0.156639i
\(633\) −637.372 521.729i −1.00691 0.824216i
\(634\) −237.492 137.116i −0.374593 0.216271i
\(635\) −849.282 + 640.160i −1.33745 + 1.00813i
\(636\) 136.988 + 190.656i 0.215389 + 0.299773i
\(637\) 48.3791 + 820.470i 0.0759483 + 1.28802i
\(638\) −920.351 920.351i −1.44256 1.44256i
\(639\) −716.780 + 144.465i −1.12172 + 0.226079i
\(640\) 52.0746 + 22.0961i 0.0813666 + 0.0345251i
\(641\) 135.845 + 78.4299i 0.211926 + 0.122356i 0.602206 0.798341i \(-0.294289\pi\)
−0.390280 + 0.920696i \(0.627622\pi\)
\(642\) 291.782 + 772.279i 0.454489 + 1.20293i
\(643\) −39.2621 39.2621i −0.0610608 0.0610608i 0.675917 0.736978i \(-0.263748\pi\)
−0.736978 + 0.675917i \(0.763748\pi\)
\(644\) 120.715 + 268.762i 0.187445 + 0.417332i
\(645\) −21.5074 + 536.727i −0.0333447 + 0.832135i
\(646\) −49.5796 85.8745i −0.0767487 0.132933i
\(647\) 80.4669 21.5610i 0.124369 0.0333246i −0.196098 0.980584i \(-0.562827\pi\)
0.320467 + 0.947260i \(0.396160\pi\)
\(648\) −212.105 86.6004i −0.327322 0.133643i
\(649\) −500.178 866.333i −0.770690 1.33487i
\(650\) 143.622 + 575.374i 0.220957 + 0.885190i
\(651\) 66.2871 + 0.133237i 0.101824 + 0.000204665i
\(652\) −199.744 199.744i −0.306357 0.306357i
\(653\) −62.2397 + 232.282i −0.0953134 + 0.355715i −0.997067 0.0765364i \(-0.975614\pi\)
0.901753 + 0.432251i \(0.142281\pi\)
\(654\) 4.18873 + 41.9837i 0.00640478 + 0.0641953i
\(655\) 660.790 267.081i 1.00884 0.407757i
\(656\) −53.2102 92.1628i −0.0811131 0.140492i
\(657\) −1.65903 3.34280i −0.00252515 0.00508797i
\(658\) 317.625 + 389.623i 0.482712 + 0.592132i
\(659\) 342.093 0.519109 0.259554 0.965728i \(-0.416424\pi\)
0.259554 + 0.965728i \(0.416424\pi\)
\(660\) 532.441 + 165.783i 0.806729 + 0.251186i
\(661\) 878.546 + 507.229i 1.32912 + 0.767366i 0.985163 0.171620i \(-0.0549003\pi\)
0.343954 + 0.938987i \(0.388234\pi\)
\(662\) 190.631 + 711.445i 0.287963 + 1.07469i
\(663\) −301.315 797.510i −0.454472 1.20288i
\(664\) 110.101 0.165815
\(665\) −3.02090 144.818i −0.00454271 0.217771i
\(666\) 378.486 + 127.410i 0.568297 + 0.191307i
\(667\) −269.682 + 1006.47i −0.404320 + 1.50894i
\(668\) −56.6036 211.248i −0.0847360 0.316239i
\(669\) 37.0416 + 371.268i 0.0553685 + 0.554960i
\(670\) 48.2750 343.832i 0.0720522 0.513182i
\(671\) 734.759 1.09502
\(672\) −83.8310 84.1687i −0.124748 0.125251i
\(673\) −506.413 + 506.413i −0.752471 + 0.752471i −0.974940 0.222469i \(-0.928588\pi\)
0.222469 + 0.974940i \(0.428588\pi\)
\(674\) −341.923 592.229i −0.507305 0.878678i
\(675\) 467.977 486.439i 0.693299 0.720650i
\(676\) −112.346 + 194.589i −0.166192 + 0.287853i
\(677\) 98.4123 367.280i 0.145365 0.542510i −0.854374 0.519659i \(-0.826059\pi\)
0.999739 0.0228512i \(-0.00727440\pi\)
\(678\) −21.9749 + 134.157i −0.0324113 + 0.197871i
\(679\) 203.337 + 452.714i 0.299465 + 0.666737i
\(680\) 147.486 188.826i 0.216892 0.277686i
\(681\) −158.287 71.4775i −0.232434 0.104960i
\(682\) −21.4766 80.1516i −0.0314906 0.117524i
\(683\) −30.5301 + 8.18051i −0.0447000 + 0.0119773i −0.281100 0.959679i \(-0.590699\pi\)
0.236400 + 0.971656i \(0.424033\pi\)
\(684\) 73.0255 14.7181i 0.106762 0.0215176i
\(685\) −167.483 + 20.5873i −0.244501 + 0.0300545i
\(686\) 473.463 105.500i 0.690180 0.153791i
\(687\) 166.228 1014.82i 0.241962 1.47718i
\(688\) −138.361 37.0738i −0.201106 0.0538863i
\(689\) −568.376 328.152i −0.824928 0.476273i
\(690\) −98.1857 435.496i −0.142298 0.631154i
\(691\) 586.007 338.331i 0.848057 0.489626i −0.0119380 0.999929i \(-0.503800\pi\)
0.859995 + 0.510303i \(0.170467\pi\)
\(692\) −109.868 109.868i −0.158769 0.158769i
\(693\) −904.698 743.593i −1.30548 1.07301i
\(694\) 87.8518i 0.126588i
\(695\) 65.7896 468.577i 0.0946613 0.674212i
\(696\) −41.7088 418.048i −0.0599264 0.600644i
\(697\) −435.390 + 116.662i −0.624663 + 0.167378i
\(698\) 582.137 + 155.983i 0.834007 + 0.223471i
\(699\) −599.835 + 430.987i −0.858133 + 0.616576i
\(700\) 321.691 137.895i 0.459558 0.196993i
\(701\) 537.271i 0.766435i −0.923658 0.383217i \(-0.874816\pi\)
0.923658 0.383217i \(-0.125184\pi\)
\(702\) 640.043 23.3876i 0.911742 0.0333156i
\(703\) −125.428 + 33.6083i −0.178418 + 0.0478070i
\(704\) −74.3538 + 128.784i −0.105616 + 0.182933i
\(705\) −354.124 674.356i −0.502304 0.956533i
\(706\) 550.883i 0.780288i
\(707\) 57.6128 + 70.6724i 0.0814892 + 0.0999609i
\(708\) 52.1948 318.650i 0.0737214 0.450070i
\(709\) −712.410 + 411.310i −1.00481 + 0.580127i −0.909668 0.415336i \(-0.863664\pi\)
−0.0951423 + 0.995464i \(0.530331\pi\)
\(710\) 528.841 + 224.396i 0.744847 + 0.316050i
\(711\) −804.793 913.015i −1.13192 1.28413i
\(712\) 64.0020 + 17.1493i 0.0898905 + 0.0240861i
\(713\) −46.9721 + 46.9721i −0.0658796 + 0.0658796i
\(714\) −436.252 + 250.702i −0.610997 + 0.351124i
\(715\) −1547.31 + 190.198i −2.16407 + 0.266011i
\(716\) 15.7174 9.07446i 0.0219517 0.0126738i
\(717\) 431.601 + 353.292i 0.601954 + 0.492737i
\(718\) 174.740 + 652.139i 0.243371 + 0.908271i
\(719\) 802.651 463.411i 1.11634 0.644521i 0.175879 0.984412i \(-0.443723\pi\)
0.940465 + 0.339890i \(0.110390\pi\)
\(720\) 99.0941 + 150.268i 0.137631 + 0.208705i
\(721\) −256.995 185.437i −0.356442 0.257195i
\(722\) 343.872 343.872i 0.476278 0.476278i
\(723\) −190.568 504.390i −0.263580 0.697634i
\(724\) −334.141 + 578.749i −0.461521 + 0.799377i
\(725\) 1189.94 + 340.862i 1.64130 + 0.470155i
\(726\) −392.046 + 868.187i −0.540008 + 1.19585i
\(727\) 267.158 267.158i 0.367480 0.367480i −0.499078 0.866557i \(-0.666328\pi\)
0.866557 + 0.499078i \(0.166328\pi\)
\(728\) 310.425 + 117.998i 0.426408 + 0.162086i
\(729\) −409.605 603.046i −0.561872 0.827224i
\(730\) −0.407665 + 2.90354i −0.000558445 + 0.00397745i
\(731\) −303.354 + 525.425i −0.414986 + 0.718776i
\(732\) 183.523 + 150.224i 0.250714 + 0.205225i
\(733\) −85.4042 + 318.733i −0.116513 + 0.434833i −0.999396 0.0347608i \(-0.988933\pi\)
0.882882 + 0.469594i \(0.155600\pi\)
\(734\) 519.532i 0.707809i
\(735\) −734.869 + 13.8517i −0.999822 + 0.0188459i
\(736\) 119.047 0.161749
\(737\) 881.631 + 236.232i 1.19624 + 0.320532i
\(738\) 21.2913 337.958i 0.0288501 0.457937i
\(739\) 109.617 + 63.2875i 0.148332 + 0.0856393i 0.572329 0.820024i \(-0.306040\pi\)
−0.423997 + 0.905663i \(0.639373\pi\)
\(740\) −188.861 250.557i −0.255218 0.338590i
\(741\) −169.124 + 121.517i −0.228237 + 0.163990i
\(742\) −137.629 + 362.069i −0.185484 + 0.487964i
\(743\) 30.4455 + 30.4455i 0.0409764 + 0.0409764i 0.727298 0.686322i \(-0.240776\pi\)
−0.686322 + 0.727298i \(0.740776\pi\)
\(744\) 11.0231 24.4106i 0.0148160 0.0328100i
\(745\) 1334.67 539.452i 1.79150 0.724096i
\(746\) 192.130 + 110.926i 0.257547 + 0.148695i
\(747\) 291.789 + 193.900i 0.390614 + 0.259571i
\(748\) 445.377 + 445.377i 0.595424 + 0.595424i
\(749\) −797.020 + 1104.58i −1.06411 + 1.47474i
\(750\) −519.272 + 107.733i −0.692363 + 0.143644i
\(751\) 461.384 + 799.140i 0.614359 + 1.06410i 0.990497 + 0.137537i \(0.0439186\pi\)
−0.376138 + 0.926564i \(0.622748\pi\)
\(752\) 196.194 52.5701i 0.260897 0.0699070i
\(753\) −174.228 142.617i −0.231379 0.189398i
\(754\) 587.240 + 1017.13i 0.778833 + 1.34898i
\(755\) 92.8641 + 72.5332i 0.122999 + 0.0960704i
\(756\) −73.9380 370.698i −0.0978016 0.490342i
\(757\) −719.532 719.532i −0.950505 0.950505i 0.0483268 0.998832i \(-0.484611\pi\)
−0.998832 + 0.0483268i \(0.984611\pi\)
\(758\) −29.8941 + 111.566i −0.0394381 + 0.147185i
\(759\) 1167.77 116.509i 1.53857 0.153503i
\(760\)