Properties

Label 210.3.w.b.17.1
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.1
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.b.173.1

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.99378 - 0.193092i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.84166 + 1.24831i) q^{5} +(-4.01890 - 1.35957i) q^{6} +(-0.400482 - 6.98853i) q^{7} +(2.00000 + 2.00000i) q^{8} +(8.92543 + 1.15615i) q^{9} +O(q^{10})\) \(q+(1.36603 + 0.366025i) q^{2} +(-2.99378 - 0.193092i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.84166 + 1.24831i) q^{5} +(-4.01890 - 1.35957i) q^{6} +(-0.400482 - 6.98853i) q^{7} +(2.00000 + 2.00000i) q^{8} +(8.92543 + 1.15615i) q^{9} +(6.15692 + 3.47740i) q^{10} +(-4.21141 - 2.43146i) q^{11} +(-4.99229 - 3.32823i) q^{12} +(13.3745 + 13.3745i) q^{13} +(2.01091 - 9.69310i) q^{14} +(-14.2538 - 4.67206i) q^{15} +(2.00000 + 3.46410i) q^{16} +(25.3015 - 6.77952i) q^{17} +(11.7692 + 4.84627i) q^{18} +(6.44901 + 11.1700i) q^{19} +(7.13770 + 7.00381i) q^{20} +(-0.150479 + 20.9995i) q^{21} +(-4.86292 - 4.86292i) q^{22} +(5.04836 - 18.8407i) q^{23} +(-5.60137 - 6.37374i) q^{24} +(21.8834 + 12.0878i) q^{25} +(13.3745 + 23.1653i) q^{26} +(-26.4975 - 5.18469i) q^{27} +(6.29488 - 12.5050i) q^{28} -41.0872 q^{29} +(-17.7610 - 11.5994i) q^{30} +(28.4108 + 16.4030i) q^{31} +(1.46410 + 5.46410i) q^{32} +(12.1385 + 8.09244i) q^{33} +37.0440 q^{34} +(6.78488 - 34.3361i) q^{35} +(14.3031 + 10.9279i) q^{36} +(16.1378 - 60.2271i) q^{37} +(4.72101 + 17.6190i) q^{38} +(-37.4578 - 42.6228i) q^{39} +(7.18670 + 12.1800i) q^{40} -50.2823 q^{41} +(-7.89189 + 28.6307i) q^{42} +(-39.5246 + 39.5246i) q^{43} +(-4.86292 - 8.42282i) q^{44} +(41.7707 + 16.7394i) q^{45} +(13.7924 - 23.8891i) q^{46} +(0.928232 - 3.46421i) q^{47} +(-5.31867 - 10.7569i) q^{48} +(-48.6792 + 5.59756i) q^{49} +(25.4689 + 24.5222i) q^{50} +(-77.0562 + 15.4109i) q^{51} +(9.79081 + 36.5398i) q^{52} +(-55.8602 + 14.9677i) q^{53} +(-34.2986 - 16.7812i) q^{54} +(-17.3550 - 17.0295i) q^{55} +(13.1761 - 14.7780i) q^{56} +(-17.1501 - 34.6858i) q^{57} +(-56.1262 - 15.0390i) q^{58} +(-41.0549 - 23.7030i) q^{59} +(-20.0163 - 22.3461i) q^{60} +(-58.7846 + 33.9393i) q^{61} +(32.8059 + 32.8059i) q^{62} +(4.50533 - 62.8387i) q^{63} +8.00000i q^{64} +(48.0593 + 81.4504i) q^{65} +(13.6195 + 15.4975i) q^{66} +(40.3060 - 10.7999i) q^{67} +(50.6030 + 13.5590i) q^{68} +(-18.7517 + 55.4302i) q^{69} +(21.8362 - 44.4205i) q^{70} -30.7646i q^{71} +(15.5386 + 20.1632i) q^{72} +(52.4330 - 14.0494i) q^{73} +(44.0893 - 76.3649i) q^{74} +(-63.1801 - 40.4138i) q^{75} +25.7961i q^{76} +(-15.3057 + 30.4053i) q^{77} +(-35.5672 - 71.9343i) q^{78} +(-26.6943 + 15.4119i) q^{79} +(5.35905 + 19.2686i) q^{80} +(78.3266 + 20.6383i) q^{81} +(-68.6869 - 18.4046i) q^{82} +(43.6505 - 43.6505i) q^{83} +(-21.2601 + 36.2217i) q^{84} +(130.964 - 1.23996i) q^{85} +(-68.4587 + 39.5246i) q^{86} +(123.006 + 7.93362i) q^{87} +(-3.55990 - 13.2857i) q^{88} +(54.3696 - 31.3903i) q^{89} +(50.9328 + 38.1556i) q^{90} +(88.1119 - 98.8244i) q^{91} +(27.5847 - 27.5847i) q^{92} +(-81.8883 - 54.5928i) q^{93} +(2.53598 - 4.39244i) q^{94} +(17.2803 + 62.1319i) q^{95} +(-3.32812 - 16.6410i) q^{96} +(16.7634 - 16.7634i) q^{97} +(-68.5459 - 10.1714i) q^{98} +(-34.7775 - 26.5708i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + O(q^{10}) \) \( 64q + 32q^{2} + 6q^{3} + 12q^{5} + 4q^{7} + 128q^{8} + 16q^{9} + 24q^{10} - 12q^{12} + 16q^{14} + 68q^{15} + 128q^{16} - 12q^{18} + 36q^{21} + 16q^{22} + 12q^{23} - 16q^{25} + 8q^{28} + 112q^{29} + 22q^{30} - 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} - 24q^{38} - 64q^{39} - 88q^{42} + 32q^{43} + 16q^{44} - 474q^{45} - 24q^{46} + 96q^{47} - 40q^{50} - 84q^{51} - 56q^{53} + 72q^{54} - 220q^{57} + 56q^{58} - 672q^{59} + 24q^{60} + 600q^{61} - 114q^{63} - 28q^{65} + 16q^{67} + 40q^{72} - 624q^{73} + 64q^{74} - 144q^{75} - 208q^{77} - 248q^{78} + 48q^{80} - 64q^{81} - 192q^{82} - 160q^{84} - 152q^{85} - 672q^{87} - 16q^{88} - 144q^{89} - 232q^{91} - 48q^{92} - 202q^{93} - 136q^{95} - 48q^{96} - 128q^{98} - 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) −2.99378 0.193092i −0.997926 0.0643641i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 4.84166 + 1.24831i 0.968333 + 0.249663i
\(6\) −4.01890 1.35957i −0.669817 0.226595i
\(7\) −0.400482 6.98853i −0.0572117 0.998362i
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 8.92543 + 1.15615i 0.991715 + 0.128461i
\(10\) 6.15692 + 3.47740i 0.615692 + 0.347740i
\(11\) −4.21141 2.43146i −0.382856 0.221042i 0.296204 0.955125i \(-0.404279\pi\)
−0.679060 + 0.734083i \(0.737612\pi\)
\(12\) −4.99229 3.32823i −0.416024 0.277352i
\(13\) 13.3745 + 13.3745i 1.02881 + 1.02881i 0.999573 + 0.0292348i \(0.00930704\pi\)
0.0292348 + 0.999573i \(0.490693\pi\)
\(14\) 2.01091 9.69310i 0.143637 0.692364i
\(15\) −14.2538 4.67206i −0.950256 0.311471i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 25.3015 6.77952i 1.48832 0.398795i 0.579153 0.815219i \(-0.303383\pi\)
0.909171 + 0.416424i \(0.136717\pi\)
\(18\) 11.7692 + 4.84627i 0.653844 + 0.269237i
\(19\) 6.44901 + 11.1700i 0.339422 + 0.587896i 0.984324 0.176369i \(-0.0564353\pi\)
−0.644902 + 0.764265i \(0.723102\pi\)
\(20\) 7.13770 + 7.00381i 0.356885 + 0.350190i
\(21\) −0.150479 + 20.9995i −0.00716565 + 0.999974i
\(22\) −4.86292 4.86292i −0.221042 0.221042i
\(23\) 5.04836 18.8407i 0.219494 0.819162i −0.765042 0.643980i \(-0.777282\pi\)
0.984536 0.175182i \(-0.0560513\pi\)
\(24\) −5.60137 6.37374i −0.233391 0.265573i
\(25\) 21.8834 + 12.0878i 0.875337 + 0.483513i
\(26\) 13.3745 + 23.1653i 0.514404 + 0.890973i
\(27\) −26.4975 5.18469i −0.981390 0.192026i
\(28\) 6.29488 12.5050i 0.224817 0.446606i
\(29\) −41.0872 −1.41680 −0.708400 0.705811i \(-0.750583\pi\)
−0.708400 + 0.705811i \(0.750583\pi\)
\(30\) −17.7610 11.5994i −0.592034 0.386647i
\(31\) 28.4108 + 16.4030i 0.916477 + 0.529128i 0.882509 0.470295i \(-0.155852\pi\)
0.0339672 + 0.999423i \(0.489186\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 12.1385 + 8.09244i 0.367834 + 0.245226i
\(34\) 37.0440 1.08953
\(35\) 6.78488 34.3361i 0.193854 0.981030i
\(36\) 14.3031 + 10.9279i 0.397310 + 0.303554i
\(37\) 16.1378 60.2271i 0.436157 1.62776i −0.302127 0.953268i \(-0.597697\pi\)
0.738283 0.674491i \(-0.235637\pi\)
\(38\) 4.72101 + 17.6190i 0.124237 + 0.463659i
\(39\) −37.4578 42.6228i −0.960456 1.09289i
\(40\) 7.18670 + 12.1800i 0.179668 + 0.304499i
\(41\) −50.2823 −1.22640 −0.613199 0.789929i \(-0.710117\pi\)
−0.613199 + 0.789929i \(0.710117\pi\)
\(42\) −7.89189 + 28.6307i −0.187902 + 0.681684i
\(43\) −39.5246 + 39.5246i −0.919178 + 0.919178i −0.996970 0.0777918i \(-0.975213\pi\)
0.0777918 + 0.996970i \(0.475213\pi\)
\(44\) −4.86292 8.42282i −0.110521 0.191428i
\(45\) 41.7707 + 16.7394i 0.928238 + 0.371987i
\(46\) 13.7924 23.8891i 0.299834 0.519328i
\(47\) 0.928232 3.46421i 0.0197496 0.0737066i −0.955348 0.295484i \(-0.904519\pi\)
0.975097 + 0.221777i \(0.0711858\pi\)
\(48\) −5.31867 10.7569i −0.110806 0.224103i
\(49\) −48.6792 + 5.59756i −0.993454 + 0.114236i
\(50\) 25.4689 + 24.5222i 0.509377 + 0.490443i
\(51\) −77.0562 + 15.4109i −1.51091 + 0.302174i
\(52\) 9.79081 + 36.5398i 0.188285 + 0.702688i
\(53\) −55.8602 + 14.9677i −1.05397 + 0.282409i −0.743890 0.668302i \(-0.767021\pi\)
−0.310077 + 0.950712i \(0.600355\pi\)
\(54\) −34.2986 16.7812i −0.635159 0.310763i
\(55\) −17.3550 17.0295i −0.315546 0.309627i
\(56\) 13.1761 14.7780i 0.235288 0.263893i
\(57\) −17.1501 34.6858i −0.300879 0.608523i
\(58\) −56.1262 15.0390i −0.967693 0.259292i
\(59\) −41.0549 23.7030i −0.695845 0.401747i 0.109953 0.993937i \(-0.464930\pi\)
−0.805798 + 0.592190i \(0.798263\pi\)
\(60\) −20.0163 22.3461i −0.333605 0.372435i
\(61\) −58.7846 + 33.9393i −0.963682 + 0.556382i −0.897304 0.441412i \(-0.854478\pi\)
−0.0663780 + 0.997795i \(0.521144\pi\)
\(62\) 32.8059 + 32.8059i 0.529128 + 0.529128i
\(63\) 4.50533 62.8387i 0.0715132 0.997440i
\(64\) 8.00000i 0.125000i
\(65\) 48.0593 + 81.4504i 0.739373 + 1.25308i
\(66\) 13.6195 + 15.4975i 0.206356 + 0.234811i
\(67\) 40.3060 10.7999i 0.601581 0.161193i 0.0548406 0.998495i \(-0.482535\pi\)
0.546741 + 0.837302i \(0.315868\pi\)
\(68\) 50.6030 + 13.5590i 0.744162 + 0.199398i
\(69\) −18.7517 + 55.4302i −0.271763 + 0.803336i
\(70\) 21.8362 44.4205i 0.311946 0.634579i
\(71\) 30.7646i 0.433304i −0.976249 0.216652i \(-0.930486\pi\)
0.976249 0.216652i \(-0.0695137\pi\)
\(72\) 15.5386 + 20.1632i 0.215813 + 0.280044i
\(73\) 52.4330 14.0494i 0.718261 0.192457i 0.118865 0.992910i \(-0.462074\pi\)
0.599396 + 0.800453i \(0.295408\pi\)
\(74\) 44.0893 76.3649i 0.595801 1.03196i
\(75\) −63.1801 40.4138i −0.842401 0.538851i
\(76\) 25.7961i 0.339422i
\(77\) −15.3057 + 30.4053i −0.198776 + 0.394875i
\(78\) −35.5672 71.9343i −0.455990 0.922235i
\(79\) −26.6943 + 15.4119i −0.337902 + 0.195088i −0.659344 0.751842i \(-0.729166\pi\)
0.321442 + 0.946929i \(0.395833\pi\)
\(80\) 5.35905 + 19.2686i 0.0669881 + 0.240858i
\(81\) 78.3266 + 20.6383i 0.966995 + 0.254794i
\(82\) −68.6869 18.4046i −0.837645 0.224446i
\(83\) 43.6505 43.6505i 0.525910 0.525910i −0.393440 0.919350i \(-0.628715\pi\)
0.919350 + 0.393440i \(0.128715\pi\)
\(84\) −21.2601 + 36.2217i −0.253096 + 0.431210i
\(85\) 130.964 1.23996i 1.54076 0.0145878i
\(86\) −68.4587 + 39.5246i −0.796031 + 0.459589i
\(87\) 123.006 + 7.93362i 1.41386 + 0.0911911i
\(88\) −3.55990 13.2857i −0.0404534 0.150974i
\(89\) 54.3696 31.3903i 0.610894 0.352700i −0.162421 0.986722i \(-0.551930\pi\)
0.773315 + 0.634022i \(0.218597\pi\)
\(90\) 50.9328 + 38.1556i 0.565920 + 0.423951i
\(91\) 88.1119 98.8244i 0.968262 1.08598i
\(92\) 27.5847 27.5847i 0.299834 0.299834i
\(93\) −81.8883 54.5928i −0.880519 0.587019i
\(94\) 2.53598 4.39244i 0.0269785 0.0467281i
\(95\) 17.2803 + 62.1319i 0.181898 + 0.654020i
\(96\) −3.32812 16.6410i −0.0346679 0.173344i
\(97\) 16.7634 16.7634i 0.172819 0.172819i −0.615398 0.788217i \(-0.711005\pi\)
0.788217 + 0.615398i \(0.211005\pi\)
\(98\) −68.5459 10.1714i −0.699448 0.103790i
\(99\) −34.7775 26.5708i −0.351288 0.268392i
\(100\) 25.8154 + 42.8202i 0.258154 + 0.428202i
\(101\) −45.8307 + 79.3811i −0.453769 + 0.785951i −0.998617 0.0525839i \(-0.983254\pi\)
0.544847 + 0.838535i \(0.316588\pi\)
\(102\) −110.901 7.15290i −1.08727 0.0701265i
\(103\) −38.7970 + 144.792i −0.376670 + 1.40575i 0.474220 + 0.880406i \(0.342730\pi\)
−0.850890 + 0.525344i \(0.823937\pi\)
\(104\) 53.4980i 0.514404i
\(105\) −26.9425 + 101.485i −0.256595 + 0.966519i
\(106\) −81.7850 −0.771557
\(107\) −109.905 29.4490i −1.02715 0.275224i −0.294372 0.955691i \(-0.595110\pi\)
−0.732779 + 0.680467i \(0.761777\pi\)
\(108\) −40.7104 35.4777i −0.376948 0.328497i
\(109\) 35.4189 + 20.4491i 0.324944 + 0.187606i 0.653594 0.756845i \(-0.273260\pi\)
−0.328650 + 0.944452i \(0.606594\pi\)
\(110\) −17.4742 29.6151i −0.158856 0.269228i
\(111\) −59.9424 + 177.190i −0.540021 + 1.59631i
\(112\) 23.4080 15.3644i 0.209000 0.137182i
\(113\) −89.3288 89.3288i −0.790520 0.790520i 0.191059 0.981579i \(-0.438808\pi\)
−0.981579 + 0.191059i \(0.938808\pi\)
\(114\) −10.7315 53.6591i −0.0941364 0.470694i
\(115\) 47.9616 84.9185i 0.417057 0.738422i
\(116\) −71.1651 41.0872i −0.613493 0.354200i
\(117\) 103.910 + 134.836i 0.888121 + 1.15245i
\(118\) −47.4061 47.4061i −0.401747 0.401747i
\(119\) −57.5117 174.105i −0.483291 1.46307i
\(120\) −19.1636 37.8518i −0.159696 0.315432i
\(121\) −48.6760 84.3093i −0.402281 0.696771i
\(122\) −92.7240 + 24.8453i −0.760032 + 0.203650i
\(123\) 150.534 + 9.70912i 1.22385 + 0.0789360i
\(124\) 32.8059 + 56.8215i 0.264564 + 0.458238i
\(125\) 90.8629 + 85.8425i 0.726903 + 0.686740i
\(126\) 29.1550 84.1902i 0.231389 0.668176i
\(127\) 43.3151 + 43.3151i 0.341064 + 0.341064i 0.856767 0.515703i \(-0.172469\pi\)
−0.515703 + 0.856767i \(0.672469\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 125.960 110.696i 0.976434 0.858110i
\(130\) 35.8373 + 128.854i 0.275671 + 0.991186i
\(131\) 49.0812 + 85.0111i 0.374665 + 0.648939i 0.990277 0.139110i \(-0.0444243\pi\)
−0.615612 + 0.788050i \(0.711091\pi\)
\(132\) 12.9321 + 26.1551i 0.0979706 + 0.198144i
\(133\) 75.4794 49.5425i 0.567514 0.372500i
\(134\) 59.0120 0.440388
\(135\) −121.820 58.1797i −0.902371 0.430961i
\(136\) 64.1620 + 37.0440i 0.471780 + 0.272382i
\(137\) 19.5210 + 72.8533i 0.142489 + 0.531776i 0.999854 + 0.0170677i \(0.00543307\pi\)
−0.857365 + 0.514708i \(0.827900\pi\)
\(138\) −45.9041 + 68.8554i −0.332638 + 0.498952i
\(139\) −84.6039 −0.608661 −0.304331 0.952567i \(-0.598433\pi\)
−0.304331 + 0.952567i \(0.598433\pi\)
\(140\) 46.0878 52.6869i 0.329199 0.376335i
\(141\) −3.44783 + 10.1918i −0.0244527 + 0.0722826i
\(142\) 11.2606 42.0252i 0.0793002 0.295952i
\(143\) −23.8060 88.8450i −0.166475 0.621294i
\(144\) 13.8458 + 33.2309i 0.0961516 + 0.230770i
\(145\) −198.930 51.2897i −1.37193 0.353722i
\(146\) 76.7673 0.525803
\(147\) 146.816 7.35827i 0.998746 0.0500563i
\(148\) 88.1785 88.1785i 0.595801 0.595801i
\(149\) 5.31113 + 9.19914i 0.0356452 + 0.0617392i 0.883298 0.468813i \(-0.155318\pi\)
−0.847652 + 0.530552i \(0.821985\pi\)
\(150\) −71.5131 78.3318i −0.476754 0.522212i
\(151\) −106.623 + 184.676i −0.706110 + 1.22302i 0.260179 + 0.965560i \(0.416218\pi\)
−0.966289 + 0.257458i \(0.917115\pi\)
\(152\) −9.44201 + 35.2381i −0.0621185 + 0.231829i
\(153\) 233.665 31.2577i 1.52722 0.204299i
\(154\) −32.0372 + 35.9322i −0.208034 + 0.233326i
\(155\) 117.079 + 114.883i 0.755351 + 0.741182i
\(156\) −22.2560 111.283i −0.142666 0.713350i
\(157\) 3.85205 + 14.3760i 0.0245354 + 0.0915672i 0.977108 0.212745i \(-0.0682402\pi\)
−0.952572 + 0.304312i \(0.901574\pi\)
\(158\) −42.1062 + 11.2823i −0.266495 + 0.0714071i
\(159\) 170.123 34.0238i 1.06996 0.213986i
\(160\) 0.267782 + 28.2830i 0.00167364 + 0.176769i
\(161\) −133.691 27.7353i −0.830378 0.172269i
\(162\) 99.4420 + 56.8620i 0.613840 + 0.351000i
\(163\) 137.975 + 36.9704i 0.846474 + 0.226812i 0.655888 0.754858i \(-0.272294\pi\)
0.190586 + 0.981670i \(0.438961\pi\)
\(164\) −87.0915 50.2823i −0.531046 0.306599i
\(165\) 48.6688 + 54.3336i 0.294963 + 0.329294i
\(166\) 75.6049 43.6505i 0.455451 0.262955i
\(167\) −155.302 155.302i −0.929954 0.929954i 0.0677484 0.997702i \(-0.478418\pi\)
−0.997702 + 0.0677484i \(0.978418\pi\)
\(168\) −42.2999 + 41.6980i −0.251785 + 0.248202i
\(169\) 188.754i 1.11689i
\(170\) 179.354 + 46.2424i 1.05503 + 0.272014i
\(171\) 44.6460 + 107.153i 0.261088 + 0.626627i
\(172\) −107.983 + 28.9340i −0.627810 + 0.168221i
\(173\) −9.31283 2.49537i −0.0538314 0.0144241i 0.231803 0.972763i \(-0.425538\pi\)
−0.285634 + 0.958339i \(0.592204\pi\)
\(174\) 165.125 + 55.8609i 0.948997 + 0.321039i
\(175\) 75.7122 157.774i 0.432641 0.901566i
\(176\) 19.4517i 0.110521i
\(177\) 118.332 + 78.8891i 0.668545 + 0.445701i
\(178\) 85.7599 22.9793i 0.481797 0.129097i
\(179\) −88.5445 + 153.364i −0.494662 + 0.856780i −0.999981 0.00615276i \(-0.998042\pi\)
0.505319 + 0.862933i \(0.331375\pi\)
\(180\) 55.6096 + 70.7642i 0.308942 + 0.393135i
\(181\) 156.164i 0.862785i 0.902164 + 0.431392i \(0.141978\pi\)
−0.902164 + 0.431392i \(0.858022\pi\)
\(182\) 156.535 102.745i 0.860084 0.564535i
\(183\) 182.542 90.2560i 0.997495 0.493202i
\(184\) 47.7782 27.5847i 0.259664 0.149917i
\(185\) 153.316 271.454i 0.828735 1.46732i
\(186\) −91.8792 104.548i −0.493974 0.562088i
\(187\) −123.039 32.9682i −0.657963 0.176301i
\(188\) 5.07195 5.07195i 0.0269785 0.0269785i
\(189\) −25.6216 + 187.255i −0.135564 + 0.990769i
\(190\) 0.863466 + 91.1987i 0.00454456 + 0.479993i
\(191\) 169.386 97.7951i 0.886839 0.512016i 0.0139315 0.999903i \(-0.495565\pi\)
0.872907 + 0.487886i \(0.162232\pi\)
\(192\) 1.54474 23.9502i 0.00804551 0.124741i
\(193\) −43.3945 161.950i −0.224842 0.839121i −0.982468 0.186432i \(-0.940308\pi\)
0.757626 0.652689i \(-0.226359\pi\)
\(194\) 29.0351 16.7634i 0.149666 0.0864094i
\(195\) −128.151 253.124i −0.657187 1.29807i
\(196\) −89.9125 38.9840i −0.458737 0.198898i
\(197\) 133.654 133.654i 0.678445 0.678445i −0.281203 0.959648i \(-0.590733\pi\)
0.959648 + 0.281203i \(0.0907335\pi\)
\(198\) −37.7814 49.0259i −0.190815 0.247606i
\(199\) −9.32884 + 16.1580i −0.0468786 + 0.0811961i −0.888513 0.458852i \(-0.848261\pi\)
0.841634 + 0.540048i \(0.181594\pi\)
\(200\) 19.5912 + 67.9425i 0.0979561 + 0.339713i
\(201\) −122.753 + 24.5499i −0.610709 + 0.122139i
\(202\) −91.6614 + 91.6614i −0.453769 + 0.453769i
\(203\) 16.4547 + 287.139i 0.0810575 + 1.41448i
\(204\) −148.876 50.3638i −0.729785 0.246881i
\(205\) −243.450 62.7680i −1.18756 0.306185i
\(206\) −105.995 + 183.589i −0.514540 + 0.891210i
\(207\) 66.8415 162.325i 0.322906 0.784178i
\(208\) −19.5816 + 73.0796i −0.0941424 + 0.351344i
\(209\) 62.7220i 0.300105i
\(210\) −73.9500 + 128.769i −0.352143 + 0.613185i
\(211\) −103.762 −0.491763 −0.245881 0.969300i \(-0.579077\pi\)
−0.245881 + 0.969300i \(0.579077\pi\)
\(212\) −111.720 29.9354i −0.526983 0.141205i
\(213\) −5.94041 + 92.1024i −0.0278892 + 0.432406i
\(214\) −139.354 80.4561i −0.651187 0.375963i
\(215\) −240.704 + 142.026i −1.11955 + 0.660586i
\(216\) −42.6257 63.3644i −0.197341 0.293354i
\(217\) 103.255 205.119i 0.475828 0.945248i
\(218\) 40.8982 + 40.8982i 0.187606 + 0.187606i
\(219\) −159.686 + 31.9364i −0.729159 + 0.145828i
\(220\) −13.0303 46.8509i −0.0592287 0.212959i
\(221\) 429.067 + 247.722i 1.94148 + 1.12091i
\(222\) −146.739 + 220.106i −0.660987 + 0.991470i
\(223\) −207.251 207.251i −0.929375 0.929375i 0.0682903 0.997665i \(-0.478246\pi\)
−0.997665 + 0.0682903i \(0.978246\pi\)
\(224\) 37.5997 12.4202i 0.167856 0.0554473i
\(225\) 181.344 + 133.190i 0.805972 + 0.591954i
\(226\) −89.3288 154.722i −0.395260 0.684610i
\(227\) 132.012 35.3725i 0.581550 0.155826i 0.0439617 0.999033i \(-0.486002\pi\)
0.537589 + 0.843207i \(0.319335\pi\)
\(228\) 4.98102 77.2277i 0.0218466 0.338718i
\(229\) −31.2046 54.0479i −0.136264 0.236017i 0.789815 0.613345i \(-0.210176\pi\)
−0.926080 + 0.377328i \(0.876843\pi\)
\(230\) 96.5990 98.4457i 0.419996 0.428025i
\(231\) 51.6931 88.0715i 0.223779 0.381262i
\(232\) −82.1744 82.1744i −0.354200 0.354200i
\(233\) −61.6527 + 230.091i −0.264604 + 0.987515i 0.697888 + 0.716207i \(0.254123\pi\)
−0.962492 + 0.271309i \(0.912544\pi\)
\(234\) 92.5905 + 222.223i 0.395686 + 0.949672i
\(235\) 8.81861 15.6138i 0.0375260 0.0664418i
\(236\) −47.4061 82.1098i −0.200873 0.347923i
\(237\) 82.8926 40.9855i 0.349758 0.172935i
\(238\) −14.8354 258.883i −0.0623337 1.08774i
\(239\) 112.005 0.468641 0.234321 0.972159i \(-0.424713\pi\)
0.234321 + 0.972159i \(0.424713\pi\)
\(240\) −12.3232 58.7209i −0.0513466 0.244670i
\(241\) −49.3895 28.5150i −0.204936 0.118320i 0.394020 0.919102i \(-0.371084\pi\)
−0.598956 + 0.800782i \(0.704417\pi\)
\(242\) −35.6333 132.985i −0.147245 0.549526i
\(243\) −230.508 76.9108i −0.948591 0.316505i
\(244\) −135.757 −0.556382
\(245\) −242.676 33.6654i −0.990514 0.137410i
\(246\) 202.080 + 68.3622i 0.821462 + 0.277895i
\(247\) −63.1411 + 235.646i −0.255632 + 0.954031i
\(248\) 24.0156 + 89.6275i 0.0968371 + 0.361401i
\(249\) −139.109 + 122.251i −0.558669 + 0.490970i
\(250\) 92.7004 + 150.521i 0.370802 + 0.602085i
\(251\) −78.0529 −0.310968 −0.155484 0.987838i \(-0.549694\pi\)
−0.155484 + 0.987838i \(0.549694\pi\)
\(252\) 70.6422 104.334i 0.280326 0.414026i
\(253\) −67.0711 + 67.0711i −0.265103 + 0.265103i
\(254\) 43.3151 + 75.0240i 0.170532 + 0.295370i
\(255\) −392.318 21.5760i −1.53850 0.0846119i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 51.7312 193.064i 0.201289 0.751220i −0.789260 0.614059i \(-0.789536\pi\)
0.990549 0.137161i \(-0.0437977\pi\)
\(258\) 212.582 105.109i 0.823962 0.407400i
\(259\) −427.362 88.6597i −1.65005 0.342315i
\(260\) 1.79073 + 189.135i 0.00688741 + 0.727444i
\(261\) −366.721 47.5030i −1.40506 0.182004i
\(262\) 35.9299 + 134.092i 0.137137 + 0.511802i
\(263\) −206.919 + 55.4438i −0.786765 + 0.210813i −0.629765 0.776786i \(-0.716849\pi\)
−0.157000 + 0.987599i \(0.550182\pi\)
\(264\) 8.09219 + 40.4620i 0.0306522 + 0.153265i
\(265\) −289.141 + 2.73757i −1.09110 + 0.0103305i
\(266\) 121.241 40.0490i 0.455792 0.150560i
\(267\) −168.832 + 83.4773i −0.632329 + 0.312649i
\(268\) 80.6119 + 21.5999i 0.300791 + 0.0805966i
\(269\) −234.338 135.295i −0.871146 0.502956i −0.00341699 0.999994i \(-0.501088\pi\)
−0.867729 + 0.497038i \(0.834421\pi\)
\(270\) −145.114 124.064i −0.537459 0.459497i
\(271\) 202.450 116.885i 0.747048 0.431308i −0.0775784 0.996986i \(-0.524719\pi\)
0.824626 + 0.565678i \(0.191385\pi\)
\(272\) 74.0879 + 74.0879i 0.272382 + 0.272382i
\(273\) −282.870 + 278.845i −1.03615 + 1.02141i
\(274\) 106.665i 0.389287i
\(275\) −62.7691 104.115i −0.228251 0.378602i
\(276\) −87.9090 + 77.2562i −0.318511 + 0.279914i
\(277\) 38.2508 10.2493i 0.138089 0.0370009i −0.189112 0.981955i \(-0.560561\pi\)
0.327202 + 0.944955i \(0.393894\pi\)
\(278\) −115.571 30.9672i −0.415723 0.111393i
\(279\) 234.614 + 179.251i 0.840911 + 0.642476i
\(280\) 82.2419 55.1024i 0.293721 0.196794i
\(281\) 324.293i 1.15407i −0.816720 0.577034i \(-0.804210\pi\)
0.816720 0.577034i \(-0.195790\pi\)
\(282\) −8.44030 + 12.6603i −0.0299302 + 0.0448948i
\(283\) 100.622 26.9616i 0.355555 0.0952707i −0.0766202 0.997060i \(-0.524413\pi\)
0.432175 + 0.901790i \(0.357746\pi\)
\(284\) 30.7646 53.2858i 0.108326 0.187626i
\(285\) −39.7362 189.346i −0.139425 0.664371i
\(286\) 130.078i 0.454819i
\(287\) 20.1371 + 351.399i 0.0701642 + 1.22439i
\(288\) 6.75041 + 50.4622i 0.0234389 + 0.175216i
\(289\) 343.923 198.564i 1.19004 0.687072i
\(290\) −252.971 142.877i −0.872313 0.492678i
\(291\) −53.4229 + 46.9491i −0.183584 + 0.161337i
\(292\) 104.866 + 28.0988i 0.359130 + 0.0962287i
\(293\) −155.222 + 155.222i −0.529767 + 0.529767i −0.920503 0.390736i \(-0.872220\pi\)
0.390736 + 0.920503i \(0.372220\pi\)
\(294\) 203.247 + 43.6867i 0.691317 + 0.148594i
\(295\) −169.185 166.012i −0.573509 0.562751i
\(296\) 152.730 88.1785i 0.515979 0.297900i
\(297\) 98.9856 + 86.2625i 0.333285 + 0.290446i
\(298\) 3.88802 + 14.5103i 0.0130470 + 0.0486922i
\(299\) 319.504 184.466i 1.06858 0.616943i
\(300\) −69.0174 133.179i −0.230058 0.443929i
\(301\) 292.048 + 260.390i 0.970260 + 0.865085i
\(302\) −213.245 + 213.245i −0.706110 + 0.706110i
\(303\) 152.535 228.800i 0.503415 0.755115i
\(304\) −25.7961 + 44.6801i −0.0848554 + 0.146974i
\(305\) −326.982 + 90.9412i −1.07207 + 0.298168i
\(306\) 330.633 + 42.8284i 1.08050 + 0.139962i
\(307\) 12.5079 12.5079i 0.0407422 0.0407422i −0.686442 0.727184i \(-0.740829\pi\)
0.727184 + 0.686442i \(0.240829\pi\)
\(308\) −56.9157 + 37.3579i −0.184791 + 0.121292i
\(309\) 144.108 425.985i 0.466369 1.37859i
\(310\) 117.883 + 199.787i 0.380269 + 0.644475i
\(311\) 256.759 444.719i 0.825591 1.42996i −0.0758765 0.997117i \(-0.524175\pi\)
0.901467 0.432848i \(-0.142491\pi\)
\(312\) 10.3300 160.161i 0.0331091 0.513337i
\(313\) −120.241 + 448.747i −0.384158 + 1.43370i 0.455333 + 0.890321i \(0.349520\pi\)
−0.839490 + 0.543375i \(0.817146\pi\)
\(314\) 21.0480i 0.0670318i
\(315\) 100.256 298.620i 0.318272 0.947999i
\(316\) −61.6477 −0.195088
\(317\) −368.670 98.7847i −1.16300 0.311624i −0.374834 0.927092i \(-0.622300\pi\)
−0.788162 + 0.615468i \(0.788967\pi\)
\(318\) 244.846 + 15.7921i 0.769957 + 0.0496606i
\(319\) 173.035 + 99.9019i 0.542430 + 0.313172i
\(320\) −9.98650 + 38.7333i −0.0312078 + 0.121042i
\(321\) 323.345 + 109.386i 1.00731 + 0.340765i
\(322\) −172.473 86.8213i −0.535631 0.269631i
\(323\) 238.897 + 238.897i 0.739619 + 0.739619i
\(324\) 115.027 + 114.073i 0.355023 + 0.352078i
\(325\) 131.011 + 454.348i 0.403112 + 1.39799i
\(326\) 174.946 + 101.005i 0.536643 + 0.309831i
\(327\) −102.088 68.0592i −0.312195 0.208132i
\(328\) −100.565 100.565i −0.306599 0.306599i
\(329\) −24.5815 5.09963i −0.0747158 0.0155004i
\(330\) 46.5954 + 92.0351i 0.141198 + 0.278894i
\(331\) 1.24808 + 2.16173i 0.00377062 + 0.00653091i 0.867905 0.496731i \(-0.165466\pi\)
−0.864134 + 0.503262i \(0.832133\pi\)
\(332\) 119.255 31.9544i 0.359203 0.0962482i
\(333\) 213.668 518.895i 0.641647 1.55824i
\(334\) −155.302 268.992i −0.464977 0.805364i
\(335\) 208.630 1.97530i 0.622775 0.00589641i
\(336\) −73.0452 + 41.4776i −0.217396 + 0.123445i
\(337\) −42.5517 42.5517i −0.126266 0.126266i 0.641150 0.767416i \(-0.278458\pi\)
−0.767416 + 0.641150i \(0.778458\pi\)
\(338\) −69.0889 + 257.843i −0.204405 + 0.762849i
\(339\) 250.182 + 284.679i 0.738000 + 0.839762i
\(340\) 228.077 + 128.817i 0.670814 + 0.378872i
\(341\) −79.7663 138.159i −0.233919 0.405159i
\(342\) 21.7667 + 162.716i 0.0636454 + 0.475777i
\(343\) 58.6139 + 337.955i 0.170886 + 0.985291i
\(344\) −158.099 −0.459589
\(345\) −159.983 + 244.966i −0.463720 + 0.710047i
\(346\) −11.8082 6.81746i −0.0341277 0.0197037i
\(347\) −79.5200 296.773i −0.229164 0.855253i −0.980693 0.195553i \(-0.937350\pi\)
0.751529 0.659700i \(-0.229317\pi\)
\(348\) 205.119 + 136.747i 0.589423 + 0.392953i
\(349\) 299.276 0.857526 0.428763 0.903417i \(-0.358950\pi\)
0.428763 + 0.903417i \(0.358950\pi\)
\(350\) 161.174 187.811i 0.460498 0.536602i
\(351\) −285.048 423.734i −0.812104 1.20722i
\(352\) 7.11981 26.5715i 0.0202267 0.0754872i
\(353\) 136.317 + 508.741i 0.386166 + 1.44119i 0.836320 + 0.548242i \(0.184703\pi\)
−0.450154 + 0.892951i \(0.648631\pi\)
\(354\) 132.770 + 151.077i 0.375055 + 0.426772i
\(355\) 38.4038 148.952i 0.108180 0.419583i
\(356\) 125.561 0.352700
\(357\) 138.559 + 532.338i 0.388120 + 1.49114i
\(358\) −177.089 + 177.089i −0.494662 + 0.494662i
\(359\) −21.3535 36.9854i −0.0594805 0.103023i 0.834752 0.550626i \(-0.185611\pi\)
−0.894232 + 0.447603i \(0.852278\pi\)
\(360\) 50.0626 + 117.020i 0.139063 + 0.325056i
\(361\) 97.3204 168.564i 0.269586 0.466936i
\(362\) −57.1600 + 213.324i −0.157901 + 0.589293i
\(363\) 129.446 + 261.803i 0.356600 + 0.721219i
\(364\) 251.439 83.0569i 0.690765 0.228178i
\(365\) 271.401 2.56962i 0.743565 0.00704004i
\(366\) 282.392 56.4771i 0.771564 0.154309i
\(367\) −160.689 599.699i −0.437844 1.63406i −0.734167 0.678969i \(-0.762427\pi\)
0.296323 0.955088i \(-0.404240\pi\)
\(368\) 75.3629 20.1934i 0.204790 0.0548734i
\(369\) −448.791 58.1339i −1.21624 0.157545i
\(370\) 308.793 314.696i 0.834575 0.850529i
\(371\) 126.973 + 384.387i 0.342246 + 1.03608i
\(372\) −87.2419 176.446i −0.234521 0.474317i
\(373\) 596.218 + 159.756i 1.59844 + 0.428301i 0.944571 0.328307i \(-0.106478\pi\)
0.653869 + 0.756607i \(0.273145\pi\)
\(374\) −156.007 90.0709i −0.417132 0.240831i
\(375\) −255.448 274.539i −0.681194 0.732103i
\(376\) 8.78488 5.07195i 0.0233641 0.0134892i
\(377\) −549.521 549.521i −1.45761 1.45761i
\(378\) −103.540 + 246.417i −0.273915 + 0.651898i
\(379\) 310.044i 0.818057i 0.912522 + 0.409029i \(0.134132\pi\)
−0.912522 + 0.409029i \(0.865868\pi\)
\(380\) −32.2015 + 124.896i −0.0847409 + 0.328673i
\(381\) −121.312 138.040i −0.318404 0.362309i
\(382\) 267.181 71.5910i 0.699428 0.187411i
\(383\) −193.781 51.9235i −0.505956 0.135570i −0.00319298 0.999995i \(-0.501016\pi\)
−0.502763 + 0.864425i \(0.667683\pi\)
\(384\) 10.8765 32.1512i 0.0283243 0.0837271i
\(385\) −112.061 + 128.106i −0.291067 + 0.332743i
\(386\) 237.112i 0.614279i
\(387\) −398.471 + 307.078i −1.02964 + 0.793483i
\(388\) 45.7985 12.2717i 0.118037 0.0316280i
\(389\) 186.399 322.853i 0.479176 0.829956i −0.520539 0.853838i \(-0.674269\pi\)
0.999715 + 0.0238813i \(0.00760238\pi\)
\(390\) −82.4082 392.681i −0.211303 1.00687i
\(391\) 510.924i 1.30671i
\(392\) −108.554 86.1633i −0.276922 0.219804i
\(393\) −130.523 263.982i −0.332120 0.671709i
\(394\) 231.495 133.654i 0.587551 0.339223i
\(395\) −148.484 + 41.2966i −0.375908 + 0.104548i
\(396\) −33.6656 80.7996i −0.0850141 0.204039i
\(397\) 275.003 + 73.6867i 0.692702 + 0.185609i 0.587959 0.808890i \(-0.299932\pi\)
0.104742 + 0.994499i \(0.466598\pi\)
\(398\) −18.6577 + 18.6577i −0.0468786 + 0.0468786i
\(399\) −235.535 + 133.745i −0.590313 + 0.335200i
\(400\) 1.89342 + 99.9821i 0.00473355 + 0.249955i
\(401\) 338.657 195.524i 0.844532 0.487591i −0.0142702 0.999898i \(-0.504542\pi\)
0.858802 + 0.512307i \(0.171209\pi\)
\(402\) −176.669 11.3948i −0.439475 0.0283452i
\(403\) 160.598 + 599.361i 0.398507 + 1.48725i
\(404\) −158.762 + 91.6614i −0.392976 + 0.226885i
\(405\) 353.468 + 197.700i 0.872761 + 0.488148i
\(406\) −82.6228 + 398.262i −0.203504 + 0.980942i
\(407\) −214.403 + 214.403i −0.526788 + 0.526788i
\(408\) −184.934 123.291i −0.453270 0.302183i
\(409\) 258.676 448.041i 0.632461 1.09545i −0.354586 0.935023i \(-0.615378\pi\)
0.987047 0.160431i \(-0.0512883\pi\)
\(410\) −309.584 174.852i −0.755083 0.426467i
\(411\) −44.3741 221.876i −0.107966 0.539844i
\(412\) −211.991 + 211.991i −0.514540 + 0.514540i
\(413\) −149.208 + 296.406i −0.361278 + 0.717690i
\(414\) 150.722 197.274i 0.364063 0.476508i
\(415\) 265.831 156.852i 0.640556 0.377956i
\(416\) −53.4980 + 92.6612i −0.128601 + 0.222743i
\(417\) 253.285 + 16.3364i 0.607399 + 0.0391759i
\(418\) 22.9579 85.6799i 0.0549231 0.204976i
\(419\) 748.983i 1.78755i 0.448517 + 0.893774i \(0.351952\pi\)
−0.448517 + 0.893774i \(0.648048\pi\)
\(420\) −148.150 + 148.834i −0.352739 + 0.354366i
\(421\) −761.887 −1.80971 −0.904854 0.425722i \(-0.860020\pi\)
−0.904854 + 0.425722i \(0.860020\pi\)
\(422\) −141.741 37.9795i −0.335880 0.0899989i
\(423\) 12.2900 29.8464i 0.0290544 0.0705588i
\(424\) −141.656 81.7850i −0.334094 0.192889i
\(425\) 635.633 + 157.481i 1.49561 + 0.370543i
\(426\) −41.8266 + 123.640i −0.0981844 + 0.290235i
\(427\) 260.728 + 397.226i 0.610605 + 0.930272i
\(428\) −160.912 160.912i −0.375963 0.375963i
\(429\) 54.1145 + 270.579i 0.126141 + 0.630721i
\(430\) −380.793 + 105.907i −0.885565 + 0.246296i
\(431\) 452.105 + 261.023i 1.04897 + 0.605622i 0.922360 0.386331i \(-0.126258\pi\)
0.126608 + 0.991953i \(0.459591\pi\)
\(432\) −35.0347 102.160i −0.0810989 0.236480i
\(433\) −506.772 506.772i −1.17037 1.17037i −0.982120 0.188254i \(-0.939717\pi\)
−0.188254 0.982120i \(-0.560283\pi\)
\(434\) 216.127 242.404i 0.497989 0.558534i
\(435\) 585.650 + 191.962i 1.34632 + 0.441292i
\(436\) 40.8982 + 70.8377i 0.0938032 + 0.162472i
\(437\) 243.008 65.1138i 0.556083 0.149002i
\(438\) −229.824 14.8232i −0.524713 0.0338429i
\(439\) 280.958 + 486.634i 0.639996 + 1.10851i 0.985433 + 0.170063i \(0.0543973\pi\)
−0.345437 + 0.938442i \(0.612269\pi\)
\(440\) −0.651102 68.7690i −0.00147978 0.156293i
\(441\) −440.955 6.31994i −0.999897 0.0143309i
\(442\) 495.444 + 495.444i 1.12091 + 1.12091i
\(443\) 130.727 487.881i 0.295096 1.10131i −0.646046 0.763299i \(-0.723578\pi\)
0.941141 0.338013i \(-0.109755\pi\)
\(444\) −281.014 + 246.961i −0.632914 + 0.556217i
\(445\) 302.424 84.1110i 0.679605 0.189014i
\(446\) −207.251 358.969i −0.464688 0.804863i
\(447\) −14.1241 28.5657i −0.0315975 0.0639055i
\(448\) 55.9083 3.20385i 0.124795 0.00715146i
\(449\) −111.200 −0.247661 −0.123830 0.992303i \(-0.539518\pi\)
−0.123830 + 0.992303i \(0.539518\pi\)
\(450\) 198.969 + 248.317i 0.442154 + 0.551815i
\(451\) 211.759 + 122.259i 0.469533 + 0.271085i
\(452\) −65.3932 244.051i −0.144675 0.539935i
\(453\) 354.864 532.291i 0.783364 1.17503i
\(454\) 193.279 0.425724
\(455\) 549.972 368.483i 1.20873 0.809853i
\(456\) 35.0715 103.672i 0.0769112 0.227350i
\(457\) −75.8846 + 283.205i −0.166049 + 0.619705i 0.831855 + 0.554994i \(0.187279\pi\)
−0.997904 + 0.0647113i \(0.979387\pi\)
\(458\) −22.8433 85.2525i −0.0498763 0.186141i
\(459\) −705.577 + 48.4599i −1.53720 + 0.105577i
\(460\) 167.990 99.1217i 0.365196 0.215482i
\(461\) −249.905 −0.542092 −0.271046 0.962566i \(-0.587370\pi\)
−0.271046 + 0.962566i \(0.587370\pi\)
\(462\) 102.850 101.387i 0.222620 0.219452i
\(463\) 38.5398 38.5398i 0.0832394 0.0832394i −0.664261 0.747501i \(-0.731254\pi\)
0.747501 + 0.664261i \(0.231254\pi\)
\(464\) −82.1744 142.330i −0.177100 0.306746i
\(465\) −328.327 366.542i −0.706079 0.788262i
\(466\) −168.438 + 291.744i −0.361456 + 0.626060i
\(467\) −189.900 + 708.715i −0.406638 + 1.51759i 0.394378 + 0.918948i \(0.370960\pi\)
−0.801016 + 0.598644i \(0.795707\pi\)
\(468\) 45.1416 + 337.453i 0.0964565 + 0.721054i
\(469\) −91.6176 277.354i −0.195347 0.591374i
\(470\) 17.7615 18.1010i 0.0377904 0.0385128i
\(471\) −8.75629 43.7825i −0.0185908 0.0929565i
\(472\) −34.7037 129.516i −0.0735247 0.274398i
\(473\) 262.557 70.3520i 0.555089 0.148736i
\(474\) 128.235 25.6464i 0.270538 0.0541063i
\(475\) 6.10535 + 322.393i 0.0128534 + 0.678722i
\(476\) 74.4922 359.071i 0.156496 0.754351i
\(477\) −515.882 + 69.0103i −1.08151 + 0.144676i
\(478\) 153.002 + 40.9968i 0.320088 + 0.0857673i
\(479\) 58.6930 + 33.8864i 0.122532 + 0.0707441i 0.560013 0.828484i \(-0.310796\pi\)
−0.437481 + 0.899228i \(0.644129\pi\)
\(480\) 4.65955 84.7248i 0.00970739 0.176510i
\(481\) 1021.34 589.672i 2.12337 1.22593i
\(482\) −57.0301 57.0301i −0.118320 0.118320i
\(483\) 394.885 + 108.848i 0.817568 + 0.225358i
\(484\) 194.704i 0.402281i
\(485\) 102.089 60.2369i 0.210493 0.124200i
\(486\) −286.728 189.434i −0.589975 0.389781i
\(487\) −384.662 + 103.070i −0.789859 + 0.211642i −0.631127 0.775679i \(-0.717407\pi\)
−0.158732 + 0.987322i \(0.550741\pi\)
\(488\) −185.448 49.6906i −0.380016 0.101825i
\(489\) −405.929 137.323i −0.830121 0.280824i
\(490\) −319.179 134.813i −0.651386 0.275129i
\(491\) 359.608i 0.732400i 0.930536 + 0.366200i \(0.119341\pi\)
−0.930536 + 0.366200i \(0.880659\pi\)
\(492\) 251.024 + 167.351i 0.510210 + 0.340144i
\(493\) −1039.57 + 278.551i −2.10866 + 0.565013i
\(494\) −172.505 + 298.787i −0.349200 + 0.604831i
\(495\) −135.212 172.060i −0.273156 0.347597i
\(496\) 131.224i 0.264564i
\(497\) −214.999 + 12.3207i −0.432594 + 0.0247900i
\(498\) −234.773 + 116.081i −0.471432 + 0.233095i
\(499\) 443.265 255.919i 0.888307 0.512864i 0.0149186 0.999889i \(-0.495251\pi\)
0.873388 + 0.487025i \(0.161918\pi\)
\(500\) 71.5365 + 239.546i 0.143073 + 0.479093i
\(501\) 434.953 + 494.929i 0.868170 + 0.987881i
\(502\) −106.622 28.5693i −0.212395 0.0569110i
\(503\) −159.644 + 159.644i −0.317383 + 0.317383i −0.847761 0.530378i \(-0.822050\pi\)
0.530378 + 0.847761i \(0.322050\pi\)
\(504\) 134.688 116.667i 0.267238 0.231482i
\(505\) −320.989 + 327.126i −0.635622 + 0.647773i
\(506\) −116.171 + 67.0711i −0.229586 + 0.132552i
\(507\) 36.4470 565.089i 0.0718876 1.11457i
\(508\) 31.7089 + 118.339i 0.0624190 + 0.232951i
\(509\) 506.116 292.206i 0.994334 0.574079i 0.0877670 0.996141i \(-0.472027\pi\)
0.906567 + 0.422062i \(0.138694\pi\)
\(510\) −528.019 173.072i −1.03533 0.339356i
\(511\) −119.183 360.804i −0.233235 0.706074i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) −112.970 329.414i −0.220214 0.642133i
\(514\) 141.332 244.795i 0.274966 0.476254i
\(515\) −368.588 + 652.605i −0.715705 + 1.26719i
\(516\) 328.865 65.7714i 0.637336 0.127464i
\(517\) −12.3323 + 12.3323i −0.0238535 + 0.0238535i
\(518\) −551.335 277.537i −1.06435 0.535785i
\(519\) 27.3987 + 9.26881i 0.0527914 + 0.0178590i
\(520\) −66.7822 + 259.019i −0.128427 + 0.498114i
\(521\) −412.424 + 714.339i −0.791600 + 1.37109i 0.133375 + 0.991066i \(0.457418\pi\)
−0.924976 + 0.380026i \(0.875915\pi\)
\(522\) −483.563 199.120i −0.926366 0.381455i
\(523\) 200.803 749.406i 0.383944 1.43290i −0.455880 0.890041i \(-0.650676\pi\)
0.839825 0.542858i \(-0.182658\pi\)
\(524\) 196.325i 0.374665i
\(525\) −257.131 + 457.721i −0.489773 + 0.871850i
\(526\) −302.951 −0.575952
\(527\) 830.039 + 222.408i 1.57503 + 0.422027i
\(528\) −3.75597 + 58.2340i −0.00711358 + 0.110292i
\(529\) 128.641 + 74.2706i 0.243177 + 0.140398i
\(530\) −395.976 102.093i −0.747124 0.192629i
\(531\) −339.028 259.026i −0.638471 0.487807i
\(532\) 180.277 10.3308i 0.338866 0.0194189i
\(533\) −672.500 672.500i −1.26173 1.26173i
\(534\) −261.183 + 52.2353i −0.489107 + 0.0978190i
\(535\) −495.362 279.778i −0.925911 0.522950i
\(536\) 102.212 + 59.0120i 0.190694 + 0.110097i
\(537\) 294.696 442.040i 0.548782 0.823165i
\(538\) −270.590 270.590i −0.502956 0.502956i
\(539\) 218.618 + 94.7879i 0.405600 + 0.175859i
\(540\) −152.819 222.590i −0.282998 0.412204i
\(541\) 385.549 + 667.791i 0.712660 + 1.23436i 0.963855 + 0.266427i \(0.0858432\pi\)
−0.251195 + 0.967937i \(0.580823\pi\)
\(542\) 319.335 85.5654i 0.589178 0.157870i
\(543\) 30.1541 467.521i 0.0555324 0.860996i
\(544\) 74.0879 + 128.324i 0.136191 + 0.235890i
\(545\) 145.959 + 143.221i 0.267815 + 0.262792i
\(546\) −488.472 + 277.371i −0.894636 + 0.508006i
\(547\) 451.313 + 451.313i 0.825069 + 0.825069i 0.986830 0.161761i \(-0.0517174\pi\)
−0.161761 + 0.986830i \(0.551717\pi\)
\(548\) −39.0420 + 145.707i −0.0712445 + 0.265888i
\(549\) −563.917 + 234.959i −1.02717 + 0.427977i
\(550\) −47.6352 165.199i −0.0866095 0.300363i
\(551\) −264.972 458.945i −0.480893 0.832931i
\(552\) −148.364 + 73.3570i −0.268775 + 0.132893i
\(553\) 118.397 + 180.382i 0.214100 + 0.326187i
\(554\) 56.0030 0.101088
\(555\) −511.410 + 783.070i −0.921459 + 1.41094i
\(556\) −146.538 84.6039i −0.263558 0.152165i
\(557\) −228.129 851.390i −0.409568 1.52853i −0.795473 0.605989i \(-0.792778\pi\)
0.385905 0.922538i \(-0.373889\pi\)
\(558\) 254.878 + 330.736i 0.456771 + 0.592716i
\(559\) −1057.24 −1.89131
\(560\) 132.513 45.1686i 0.236631 0.0806583i
\(561\) 361.986 + 122.458i 0.645251 + 0.218284i
\(562\) 118.699 442.992i 0.211209 0.788243i
\(563\) 268.513 + 1002.11i 0.476933 + 1.77994i 0.613923 + 0.789366i \(0.289590\pi\)
−0.136990 + 0.990572i \(0.543743\pi\)
\(564\) −16.1637 + 14.2050i −0.0286590 + 0.0251861i
\(565\) −320.990 544.010i −0.568123 0.962850i
\(566\) 147.321 0.260284
\(567\) 112.863 555.654i 0.199053 0.979989i
\(568\) 61.5292 61.5292i 0.108326 0.108326i
\(569\) 310.277 + 537.415i 0.545302 + 0.944491i 0.998588 + 0.0531258i \(0.0169184\pi\)
−0.453286 + 0.891365i \(0.649748\pi\)
\(570\) 15.0247 273.196i 0.0263592 0.479291i
\(571\) 294.339 509.811i 0.515480 0.892838i −0.484358 0.874870i \(-0.660947\pi\)
0.999839 0.0179685i \(-0.00571985\pi\)
\(572\) 47.6119 177.690i 0.0832376 0.310647i
\(573\) −525.988 + 260.070i −0.917955 + 0.453874i
\(574\) −101.113 + 487.391i −0.176156 + 0.849114i
\(575\) 338.219 351.276i 0.588206 0.610915i
\(576\) −9.24921 + 71.4034i −0.0160577 + 0.123964i
\(577\) −64.7801 241.763i −0.112271 0.418999i 0.886798 0.462158i \(-0.152925\pi\)
−0.999068 + 0.0431585i \(0.986258\pi\)
\(578\) 542.487 145.359i 0.938558 0.251486i
\(579\) 98.6421 + 493.223i 0.170366 + 0.851853i
\(580\) −293.268 287.767i −0.505635 0.496150i
\(581\) −322.534 287.572i −0.555137 0.494960i
\(582\) −90.1616 + 44.5795i −0.154917 + 0.0765972i
\(583\) 271.644 + 72.7867i 0.465941 + 0.124849i
\(584\) 132.965 + 76.7673i 0.227680 + 0.131451i
\(585\) 334.781 + 782.543i 0.572275 + 1.33768i
\(586\) −268.852 + 155.222i −0.458791 + 0.264883i
\(587\) 404.063 + 404.063i 0.688352 + 0.688352i 0.961868 0.273516i \(-0.0881865\pi\)
−0.273516 + 0.961868i \(0.588187\pi\)
\(588\) 261.651 + 134.071i 0.444984 + 0.228012i
\(589\) 423.132i 0.718390i
\(590\) −170.347 288.702i −0.288723 0.489325i
\(591\) −425.937 + 374.322i −0.720706 + 0.633371i
\(592\) 240.908 64.5512i 0.406940 0.109039i
\(593\) 578.702 + 155.063i 0.975888 + 0.261488i 0.711312 0.702876i \(-0.248101\pi\)
0.264576 + 0.964365i \(0.414768\pi\)
\(594\) 103.643 + 154.068i 0.174482 + 0.259374i
\(595\) −61.1143 914.752i −0.102713 1.53740i
\(596\) 21.2445i 0.0356452i
\(597\) 31.0485 46.5722i 0.0520075 0.0780105i
\(598\) 503.970 135.038i 0.842760 0.225817i
\(599\) −181.060 + 313.605i −0.302271 + 0.523548i −0.976650 0.214837i \(-0.931078\pi\)
0.674379 + 0.738385i \(0.264411\pi\)
\(600\) −45.5326 207.188i −0.0758877 0.345313i
\(601\) 184.720i 0.307354i −0.988121 0.153677i \(-0.950889\pi\)
0.988121 0.153677i \(-0.0491115\pi\)
\(602\) 303.636 + 462.597i 0.504378 + 0.768434i
\(603\) 372.234 49.7944i 0.617304 0.0825778i
\(604\) −369.352 + 213.245i −0.611509 + 0.353055i
\(605\) −130.429 468.960i −0.215584 0.775141i
\(606\) 292.113 256.715i 0.482035 0.423622i
\(607\) −58.3935 15.6465i −0.0962002 0.0257768i 0.210398 0.977616i \(-0.432524\pi\)
−0.306598 + 0.951839i \(0.599191\pi\)
\(608\) −51.5921 + 51.5921i −0.0848554 + 0.0848554i
\(609\) 6.18275 862.809i 0.0101523 1.41676i
\(610\) −479.953 + 4.54417i −0.786808 + 0.00744946i
\(611\) 58.7467 33.9174i 0.0961484 0.0555113i
\(612\) 435.977 + 179.525i 0.712381 + 0.293341i
\(613\) −212.984 794.867i −0.347445 1.29668i −0.889729 0.456488i \(-0.849107\pi\)
0.542284 0.840195i \(-0.317560\pi\)
\(614\) 21.6642 12.5079i 0.0352838 0.0203711i
\(615\) 716.715 + 234.922i 1.16539 + 0.381987i
\(616\) −91.4222 + 30.1992i −0.148413 + 0.0490247i
\(617\) −675.877 + 675.877i −1.09542 + 1.09542i −0.100486 + 0.994938i \(0.532040\pi\)
−0.994938 + 0.100486i \(0.967960\pi\)
\(618\) 352.776 529.159i 0.570835 0.856244i
\(619\) −146.229 + 253.276i −0.236234 + 0.409169i −0.959631 0.281263i \(-0.909247\pi\)
0.723397 + 0.690433i \(0.242580\pi\)
\(620\) 87.9043 + 316.063i 0.141781 + 0.509779i
\(621\) −231.452 + 473.058i −0.372709 + 0.761769i
\(622\) 513.517 513.517i 0.825591 0.825591i
\(623\) −241.146 367.392i −0.387072 0.589715i
\(624\) 72.7342 215.003i 0.116561 0.344556i
\(625\) 332.769 + 529.046i 0.532431 + 0.846474i
\(626\) −328.505 + 568.988i −0.524769 + 0.908927i
\(627\) −12.1111 + 187.776i −0.0193160 + 0.299483i
\(628\) −7.70410 + 28.7521i −0.0122677 + 0.0457836i
\(629\) 1633.24i 2.59657i
\(630\) 246.254 371.226i 0.390880 0.589248i
\(631\) 93.3919 0.148006 0.0740031 0.997258i \(-0.476423\pi\)
0.0740031 + 0.997258i \(0.476423\pi\)
\(632\) −84.2124 22.5646i −0.133247 0.0357035i
\(633\) 310.640 + 20.0356i 0.490743 + 0.0316519i
\(634\) −467.454 269.885i −0.737310 0.425686i
\(635\) 155.646 + 263.788i 0.245113 + 0.415414i
\(636\) 328.686 + 111.192i 0.516802 + 0.174831i
\(637\) −725.925 576.196i −1.13960 0.904546i
\(638\) 199.804 + 199.804i 0.313172 + 0.313172i
\(639\) 35.5685 274.587i 0.0556628 0.429714i
\(640\) −27.8192 + 49.2554i −0.0434675 + 0.0769615i
\(641\) −675.541 390.024i −1.05389 0.608462i −0.130152 0.991494i \(-0.541546\pi\)
−0.923735 + 0.383032i \(0.874880\pi\)
\(642\) 401.660 + 267.776i 0.625639 + 0.417097i
\(643\) 563.561 + 563.561i 0.876455 + 0.876455i 0.993166 0.116711i \(-0.0372350\pi\)
−0.116711 + 0.993166i \(0.537235\pi\)
\(644\) −203.824 181.730i −0.316497 0.282189i
\(645\) 748.039 378.716i 1.15975 0.587157i
\(646\) 238.897 + 413.782i 0.369810 + 0.640529i
\(647\) 1197.10 320.761i 1.85022 0.495766i 0.850672 0.525696i \(-0.176195\pi\)
0.999552 + 0.0299300i \(0.00952843\pi\)
\(648\) 115.377 + 197.930i 0.178050 + 0.305447i
\(649\) 115.266 + 199.647i 0.177605 + 0.307622i
\(650\) 12.6618 + 668.605i 0.0194797 + 1.02862i
\(651\) −348.729 + 594.143i −0.535682 + 0.912661i
\(652\) 202.010 + 202.010i 0.309831 + 0.309831i
\(653\) 120.711 450.501i 0.184856 0.689894i −0.809805 0.586700i \(-0.800427\pi\)
0.994661 0.103194i \(-0.0329064\pi\)
\(654\) −114.543 130.337i −0.175142 0.199292i
\(655\) 131.514 + 472.864i 0.200785 + 0.721929i
\(656\) −100.565 174.183i −0.153300 0.265523i
\(657\) 484.231 64.7763i 0.737033 0.0985941i
\(658\) −31.7123 15.9637i −0.0481951 0.0242609i
\(659\) 127.507 0.193485 0.0967424 0.995309i \(-0.469158\pi\)
0.0967424 + 0.995309i \(0.469158\pi\)
\(660\) 29.9633 + 142.777i 0.0453989 + 0.216329i
\(661\) 313.149 + 180.796i 0.473750 + 0.273520i 0.717808 0.696241i \(-0.245145\pi\)
−0.244058 + 0.969761i \(0.578479\pi\)
\(662\) 0.913655 + 3.40981i 0.00138014 + 0.00515076i
\(663\) −1236.70 824.475i −1.86531 1.24355i
\(664\) 174.602 0.262955
\(665\) 427.290 145.647i 0.642542 0.219017i
\(666\) 481.805 630.615i 0.723431 0.946870i
\(667\) −207.423 + 774.113i −0.310979 + 1.16059i
\(668\) −113.689 424.294i −0.170193 0.635170i
\(669\) 580.444 + 660.481i 0.867630 + 0.987267i
\(670\) 285.716 + 73.6654i 0.426442 + 0.109948i
\(671\) 330.088 0.491935
\(672\) −114.964 + 29.9231i −0.171077 + 0.0445284i
\(673\) −487.993 + 487.993i −0.725101 + 0.725101i −0.969640 0.244539i \(-0.921363\pi\)
0.244539 + 0.969640i \(0.421363\pi\)
\(674\) −42.5517 73.7017i −0.0631331 0.109350i
\(675\) −517.185 433.756i −0.766200 0.642602i
\(676\) −188.754 + 326.932i −0.279222 + 0.483627i
\(677\) −109.671 + 409.298i −0.161996 + 0.604576i 0.836409 + 0.548106i \(0.184651\pi\)
−0.998404 + 0.0564694i \(0.982016\pi\)
\(678\) 237.555 + 480.452i 0.350376 + 0.708631i
\(679\) −123.865 110.438i −0.182423 0.162649i
\(680\) 264.409 + 259.449i 0.388836 + 0.381542i
\(681\) −402.045 + 80.4069i −0.590374 + 0.118072i
\(682\) −58.3930 217.926i −0.0856202 0.319539i
\(683\) 419.380 112.373i 0.614027 0.164528i 0.0616158 0.998100i \(-0.480375\pi\)
0.552411 + 0.833572i \(0.313708\pi\)
\(684\) −29.8241 + 230.241i −0.0436026 + 0.336609i
\(685\) 3.57036 + 377.099i 0.00521221 + 0.550510i
\(686\) −43.6320 + 483.109i −0.0636035 + 0.704240i
\(687\) 82.9833 + 167.833i 0.120791 + 0.244298i
\(688\) −215.967 57.8681i −0.313905 0.0841106i
\(689\) −947.288 546.917i −1.37487 0.793784i
\(690\) −308.205 + 276.072i −0.446674 + 0.400105i
\(691\) −781.153 + 450.999i −1.13047 + 0.652676i −0.944052 0.329795i \(-0.893020\pi\)
−0.186415 + 0.982471i \(0.559687\pi\)
\(692\) −13.6349 13.6349i −0.0197037 0.0197037i
\(693\) −171.764 + 253.685i −0.247855 + 0.366068i
\(694\) 434.505i 0.626088i
\(695\) −409.624 105.612i −0.589387 0.151960i
\(696\) 230.145 + 261.879i 0.330668 + 0.376263i
\(697\) −1272.22 + 340.890i −1.82528 + 0.489081i
\(698\) 408.819 + 109.543i 0.585701 + 0.156938i
\(699\) 229.003 676.937i 0.327616 0.968437i
\(700\) 288.912 197.560i 0.412731 0.282229i
\(701\) 367.006i 0.523546i −0.965129 0.261773i \(-0.915693\pi\)
0.965129 0.261773i \(-0.0843072\pi\)
\(702\) −234.286 683.166i −0.333741 0.973171i
\(703\) 776.810 208.146i 1.10499 0.296082i
\(704\) 19.4517 33.6913i 0.0276302 0.0478569i
\(705\) −29.4159 + 45.0415i −0.0417246 + 0.0638887i
\(706\) 744.849i 1.05503i
\(707\) 573.112 + 288.499i 0.810625 + 0.408060i
\(708\) 126.069 + 254.972i 0.178063 + 0.360130i
\(709\) 391.615 226.099i 0.552349 0.318899i −0.197720 0.980259i \(-0.563354\pi\)
0.750069 + 0.661360i \(0.230020\pi\)
\(710\) 106.981 189.415i 0.150677 0.266782i
\(711\) −256.076 + 106.696i −0.360163 + 0.150064i
\(712\) 171.520 + 45.9586i 0.240899 + 0.0645486i
\(713\) 452.471 452.471i 0.634602 0.634602i
\(714\) −5.57433 + 777.903i −0.00780718 + 1.08950i
\(715\) −4.35408 459.875i −0.00608962 0.643182i
\(716\) −306.727 + 177.089i −0.428390 + 0.247331i
\(717\) −335.319 21.6274i −0.467670 0.0301637i
\(718\) −15.6319 58.3389i −0.0217714 0.0812519i
\(719\) −683.443 + 394.586i −0.950546 + 0.548798i −0.893251 0.449559i \(-0.851581\pi\)
−0.0572956 + 0.998357i \(0.518248\pi\)
\(720\) 25.5543 + 178.177i 0.0354921 + 0.247468i
\(721\) 1027.42 + 213.147i 1.42500 + 0.295627i
\(722\) 194.641 194.641i 0.269586 0.269586i
\(723\) 142.355 + 94.9044i 0.196895 + 0.131265i
\(724\) −156.164 + 270.484i −0.215696 + 0.373597i
\(725\) −899.129 496.655i −1.24018 0.685041i
\(726\) 80.9998 + 405.009i 0.111570 + 0.557864i
\(727\) 261.618 261.618i 0.359859 0.359859i −0.503902 0.863761i \(-0.668103\pi\)
0.863761 + 0.503902i \(0.168103\pi\)
\(728\) 373.872 21.4250i 0.513561 0.0294299i
\(729\) 675.238 + 274.763i 0.926252 + 0.376904i
\(730\) 371.682 + 95.8296i 0.509153 + 0.131273i
\(731\) −732.075 + 1267.99i −1.00147 + 1.73460i
\(732\) 406.427 + 26.2137i 0.555229 + 0.0358110i
\(733\) −50.1170 + 187.039i −0.0683725 + 0.255170i −0.991649 0.128967i \(-0.958834\pi\)
0.923276 + 0.384136i \(0.125501\pi\)
\(734\) 878.020i 1.19621i
\(735\) 720.018 + 147.646i 0.979616 + 0.200878i
\(736\) 110.339 0.149917
\(737\) −196.005 52.5193i −0.265949 0.0712609i
\(738\) −591.781 243.681i −0.801872 0.330192i
\(739\) 693.344 + 400.303i 0.938220 + 0.541681i 0.889402 0.457126i \(-0.151121\pi\)
0.0488179 + 0.998808i \(0.484455\pi\)
\(740\) 537.005 316.857i 0.725683 0.428185i
\(741\) 234.532 693.279i 0.316507 0.935599i
\(742\) 32.7534 + 571.558i 0.0441421 + 0.770293i
\(743\) −671.297 671.297i −0.903495 0.903495i 0.0922418 0.995737i \(-0.470597\pi\)
−0.995737 + 0.0922418i \(0.970597\pi\)
\(744\) −54.5911 272.962i −0.0733751 0.366885i
\(745\) 14.2313 + 51.1691i 0.0191024 + 0.0686834i
\(746\) 755.975 + 436.462i 1.01337 + 0.585070i
\(747\) 440.066 339.133i 0.589111 0.453993i
\(748\) −180.142 180.142i −0.240831 0.240831i
\(749\) −161.790 + 779.870i −0.216008 + 1.04121i
\(750\) −248.460 468.527i −0.331280 0.624703i
\(751\) −399.490 691.937i −0.531944 0.921354i −0.999305 0.0372875i \(-0.988128\pi\)
0.467360 0.884067i \(-0.345205\pi\)
\(752\) 13.8568 3.71293i 0.0184266 0.00493741i
\(753\) 233.673 + 15.0714i 0.310323 + 0.0200152i
\(754\) −549.521 951.798i −0.728807 1.26233i
\(755\) −746.764 + 761.040i −0.989091 + 1.00800i
\(756\) −231.633 + 298.714i −0.306393 + 0.395124i
\(757\) −449.959 449.959i −0.594398 0.594398i 0.344418 0.938816i \(-0.388076\pi\)
−0.938816 + 0.344418i \(0.888076\pi\)
\(758\) −113.484 + 423.528i −0.149715 + 0.558743i
\(759\) 213.747 187.845i 0.281617 0.247491i
\(760\) −89.7032