Properties

Label 210.3.w.a.47.1
Level 210
Weight 3
Character 210.47
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 47.1
Character \(\chi\) \(=\) 210.47
Dual form 210.3.w.a.143.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-2.99647 - 0.145428i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(3.20777 + 3.83539i) q^{5} +(-0.898127 - 4.14649i) q^{6} +(6.79418 + 1.68496i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(8.95770 + 0.871542i) q^{9} +O(q^{10})\) \(q+(0.366025 + 1.36603i) q^{2} +(-2.99647 - 0.145428i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(3.20777 + 3.83539i) q^{5} +(-0.898127 - 4.14649i) q^{6} +(6.79418 + 1.68496i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(8.95770 + 0.871542i) q^{9} +(-4.06511 + 5.78575i) q^{10} +(-13.7602 + 7.94448i) q^{11} +(5.33547 - 2.74458i) q^{12} +(-5.32844 - 5.32844i) q^{13} +(0.185142 + 9.89776i) q^{14} +(-9.05423 - 11.9591i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-4.55096 + 16.9844i) q^{17} +(2.08820 + 12.5555i) q^{18} +(-5.62474 + 9.74233i) q^{19} +(-9.39141 - 3.43532i) q^{20} +(-20.1135 - 6.03701i) q^{21} +(-15.8890 - 15.8890i) q^{22} +(-39.1036 + 10.4778i) q^{23} +(5.70209 + 6.28380i) q^{24} +(-4.42041 + 24.6061i) q^{25} +(5.32844 - 9.22913i) q^{26} +(-26.7148 - 3.91425i) q^{27} +(-13.4528 + 3.87574i) q^{28} +22.8488 q^{29} +(13.0224 - 16.7457i) q^{30} +(36.0825 - 20.8322i) q^{31} +(5.46410 + 1.46410i) q^{32} +(42.3875 - 21.8043i) q^{33} -24.8669 q^{34} +(15.3317 + 31.4633i) q^{35} +(-16.3867 + 7.44815i) q^{36} +(-28.8409 + 7.72790i) q^{37} +(-15.3671 - 4.11759i) q^{38} +(15.1916 + 16.7414i) q^{39} +(1.25523 - 14.0863i) q^{40} +55.0717 q^{41} +(0.884639 - 29.6853i) q^{42} +(-14.2521 + 14.2521i) q^{43} +(15.8890 - 27.5205i) q^{44} +(25.3916 + 37.1520i) q^{45} +(-28.6258 - 49.5814i) q^{46} +(25.2813 - 6.77411i) q^{47} +(-6.49672 + 10.0892i) q^{48} +(43.3218 + 22.8959i) q^{49} +(-35.2305 + 2.96807i) q^{50} +(16.1068 - 50.2315i) q^{51} +(14.5576 + 3.90069i) q^{52} +(15.8246 - 59.0583i) q^{53} +(-4.43132 - 37.9258i) q^{54} +(-74.6098 - 27.2918i) q^{55} +(-10.2184 - 16.9583i) q^{56} +(18.2712 - 28.3746i) q^{57} +(8.36322 + 31.2120i) q^{58} +(-10.7056 + 6.18085i) q^{59} +(27.6415 + 11.6596i) q^{60} +(14.5577 + 8.40486i) q^{61} +(41.6644 + 41.6644i) q^{62} +(59.3917 + 21.0148i) q^{63} +8.00000i q^{64} +(3.34422 - 37.5290i) q^{65} +(45.3001 + 49.9215i) q^{66} +(-27.8041 + 103.766i) q^{67} +(-9.10191 - 33.9688i) q^{68} +(118.697 - 25.7096i) q^{69} +(-37.3679 + 32.4599i) q^{70} +34.7786i q^{71} +(-16.1723 - 19.6585i) q^{72} +(-15.2213 + 56.8067i) q^{73} +(-21.1130 - 36.5688i) q^{74} +(16.8240 - 73.0887i) q^{75} -22.4989i q^{76} +(-106.876 + 30.7907i) q^{77} +(-17.3087 + 26.8799i) q^{78} +(-40.5584 - 23.4164i) q^{79} +(19.7017 - 3.44127i) q^{80} +(79.4808 + 15.6140i) q^{81} +(20.1576 + 75.2293i) q^{82} +(75.6892 - 75.6892i) q^{83} +(40.8747 - 9.65714i) q^{84} +(-79.7402 + 37.0274i) q^{85} +(-24.6854 - 14.2521i) q^{86} +(-68.4657 - 3.32285i) q^{87} +(43.4094 + 11.6315i) q^{88} +(116.275 + 67.1315i) q^{89} +(-41.4566 + 48.2841i) q^{90} +(-27.2242 - 45.1806i) q^{91} +(57.2517 - 57.2517i) q^{92} +(-111.150 + 57.1758i) q^{93} +(18.5072 + 32.0554i) q^{94} +(-55.4085 + 9.67811i) q^{95} +(-16.1601 - 5.18177i) q^{96} +(75.7669 - 75.7669i) q^{97} +(-15.4195 + 67.5592i) q^{98} +(-130.184 + 59.1716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.183013 + 0.683013i
\(3\) −2.99647 0.145428i −0.998824 0.0484760i
\(4\) −1.73205 + 1.00000i −0.433013 + 0.250000i
\(5\) 3.20777 + 3.83539i 0.641554 + 0.767078i
\(6\) −0.898127 4.14649i −0.149688 0.691081i
\(7\) 6.79418 + 1.68496i 0.970597 + 0.240709i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 8.95770 + 0.871542i 0.995300 + 0.0968380i
\(10\) −4.06511 + 5.78575i −0.406511 + 0.578575i
\(11\) −13.7602 + 7.94448i −1.25093 + 0.722225i −0.971294 0.237881i \(-0.923547\pi\)
−0.279636 + 0.960106i \(0.590214\pi\)
\(12\) 5.33547 2.74458i 0.444623 0.228715i
\(13\) −5.32844 5.32844i −0.409880 0.409880i 0.471817 0.881697i \(-0.343598\pi\)
−0.881697 + 0.471817i \(0.843598\pi\)
\(14\) 0.185142 + 9.89776i 0.0132244 + 0.706983i
\(15\) −9.05423 11.9591i −0.603615 0.797276i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −4.55096 + 16.9844i −0.267703 + 0.999083i 0.692872 + 0.721061i \(0.256345\pi\)
−0.960575 + 0.278021i \(0.910321\pi\)
\(18\) 2.08820 + 12.5555i 0.116011 + 0.697525i
\(19\) −5.62474 + 9.74233i −0.296039 + 0.512754i −0.975226 0.221211i \(-0.928999\pi\)
0.679187 + 0.733965i \(0.262332\pi\)
\(20\) −9.39141 3.43532i −0.469571 0.171766i
\(21\) −20.1135 6.03701i −0.957788 0.287477i
\(22\) −15.8890 15.8890i −0.722225 0.722225i
\(23\) −39.1036 + 10.4778i −1.70016 + 0.455556i −0.972979 0.230893i \(-0.925835\pi\)
−0.727178 + 0.686449i \(0.759168\pi\)
\(24\) 5.70209 + 6.28380i 0.237587 + 0.261825i
\(25\) −4.42041 + 24.6061i −0.176816 + 0.984244i
\(26\) 5.32844 9.22913i 0.204940 0.354966i
\(27\) −26.7148 3.91425i −0.989436 0.144972i
\(28\) −13.4528 + 3.87574i −0.480458 + 0.138419i
\(29\) 22.8488 0.787888 0.393944 0.919134i \(-0.371110\pi\)
0.393944 + 0.919134i \(0.371110\pi\)
\(30\) 13.0224 16.7457i 0.434080 0.558188i
\(31\) 36.0825 20.8322i 1.16395 0.672007i 0.211703 0.977334i \(-0.432099\pi\)
0.952248 + 0.305327i \(0.0987658\pi\)
\(32\) 5.46410 + 1.46410i 0.170753 + 0.0457532i
\(33\) 42.3875 21.8043i 1.28447 0.660736i
\(34\) −24.8669 −0.731379
\(35\) 15.3317 + 31.4633i 0.438048 + 0.898951i
\(36\) −16.3867 + 7.44815i −0.455187 + 0.206893i
\(37\) −28.8409 + 7.72790i −0.779484 + 0.208862i −0.626557 0.779375i \(-0.715537\pi\)
−0.152927 + 0.988238i \(0.548870\pi\)
\(38\) −15.3671 4.11759i −0.404396 0.108358i
\(39\) 15.1916 + 16.7414i 0.389529 + 0.429267i
\(40\) 1.25523 14.0863i 0.0313809 0.352158i
\(41\) 55.0717 1.34321 0.671606 0.740909i \(-0.265605\pi\)
0.671606 + 0.740909i \(0.265605\pi\)
\(42\) 0.884639 29.6853i 0.0210628 0.706793i
\(43\) −14.2521 + 14.2521i −0.331445 + 0.331445i −0.853135 0.521690i \(-0.825302\pi\)
0.521690 + 0.853135i \(0.325302\pi\)
\(44\) 15.8890 27.5205i 0.361113 0.625465i
\(45\) 25.3916 + 37.1520i 0.564257 + 0.825599i
\(46\) −28.6258 49.5814i −0.622301 1.07786i
\(47\) 25.2813 6.77411i 0.537900 0.144130i 0.0203662 0.999793i \(-0.493517\pi\)
0.517534 + 0.855663i \(0.326850\pi\)
\(48\) −6.49672 + 10.0892i −0.135348 + 0.210192i
\(49\) 43.3218 + 22.8959i 0.884118 + 0.467263i
\(50\) −35.2305 + 2.96807i −0.704611 + 0.0593614i
\(51\) 16.1068 50.2315i 0.315820 0.984931i
\(52\) 14.5576 + 3.90069i 0.279953 + 0.0750132i
\(53\) 15.8246 59.0583i 0.298578 1.11431i −0.639756 0.768578i \(-0.720965\pi\)
0.938334 0.345730i \(-0.112369\pi\)
\(54\) −4.43132 37.9258i −0.0820614 0.702329i
\(55\) −74.6098 27.2918i −1.35654 0.496214i
\(56\) −10.2184 16.9583i −0.182472 0.302827i
\(57\) 18.2712 28.3746i 0.320547 0.497801i
\(58\) 8.36322 + 31.2120i 0.144194 + 0.538138i
\(59\) −10.7056 + 6.18085i −0.181450 + 0.104760i −0.587974 0.808880i \(-0.700074\pi\)
0.406524 + 0.913640i \(0.366741\pi\)
\(60\) 27.6415 + 11.6596i 0.460692 + 0.194327i
\(61\) 14.5577 + 8.40486i 0.238650 + 0.137785i 0.614556 0.788873i \(-0.289335\pi\)
−0.375906 + 0.926658i \(0.622668\pi\)
\(62\) 41.6644 + 41.6644i 0.672007 + 0.672007i
\(63\) 59.3917 + 21.0148i 0.942726 + 0.333568i
\(64\) 8.00000i 0.125000i
\(65\) 3.34422 37.5290i 0.0514495 0.577370i
\(66\) 45.3001 + 49.9215i 0.686366 + 0.756387i
\(67\) −27.8041 + 103.766i −0.414987 + 1.54875i 0.369875 + 0.929082i \(0.379400\pi\)
−0.784862 + 0.619671i \(0.787266\pi\)
\(68\) −9.10191 33.9688i −0.133852 0.499541i
\(69\) 118.697 25.7096i 1.72024 0.372603i
\(70\) −37.3679 + 32.4599i −0.533827 + 0.463712i
\(71\) 34.7786i 0.489840i 0.969543 + 0.244920i \(0.0787617\pi\)
−0.969543 + 0.244920i \(0.921238\pi\)
\(72\) −16.1723 19.6585i −0.224616 0.273035i
\(73\) −15.2213 + 56.8067i −0.208511 + 0.778175i 0.779839 + 0.625980i \(0.215301\pi\)
−0.988351 + 0.152195i \(0.951366\pi\)
\(74\) −21.1130 36.5688i −0.285311 0.494173i
\(75\) 16.8240 73.0887i 0.224321 0.974515i
\(76\) 22.4989i 0.296039i
\(77\) −106.876 + 30.7907i −1.38800 + 0.399880i
\(78\) −17.3087 + 26.8799i −0.221906 + 0.344614i
\(79\) −40.5584 23.4164i −0.513398 0.296410i 0.220831 0.975312i \(-0.429123\pi\)
−0.734229 + 0.678902i \(0.762456\pi\)
\(80\) 19.7017 3.44127i 0.246271 0.0430159i
\(81\) 79.4808 + 15.6140i 0.981245 + 0.192766i
\(82\) 20.1576 + 75.2293i 0.245825 + 0.917431i
\(83\) 75.6892 75.6892i 0.911918 0.911918i −0.0845048 0.996423i \(-0.526931\pi\)
0.996423 + 0.0845048i \(0.0269308\pi\)
\(84\) 40.8747 9.65714i 0.486603 0.114966i
\(85\) −79.7402 + 37.0274i −0.938120 + 0.435616i
\(86\) −24.6854 14.2521i −0.287040 0.165722i
\(87\) −68.4657 3.32285i −0.786962 0.0381936i
\(88\) 43.4094 + 11.6315i 0.493289 + 0.132176i
\(89\) 116.275 + 67.1315i 1.30646 + 0.754286i 0.981504 0.191442i \(-0.0613163\pi\)
0.324958 + 0.945728i \(0.394650\pi\)
\(90\) −41.4566 + 48.2841i −0.460629 + 0.536490i
\(91\) −27.2242 45.1806i −0.299167 0.496490i
\(92\) 57.2517 57.2517i 0.622301 0.622301i
\(93\) −111.150 + 57.1758i −1.19516 + 0.614793i
\(94\) 18.5072 + 32.0554i 0.196885 + 0.341015i
\(95\) −55.4085 + 9.67811i −0.583247 + 0.101875i
\(96\) −16.1601 5.18177i −0.168334 0.0539768i
\(97\) 75.7669 75.7669i 0.781102 0.781102i −0.198915 0.980017i \(-0.563742\pi\)
0.980017 + 0.198915i \(0.0637416\pi\)
\(98\) −15.4195 + 67.5592i −0.157342 + 0.689379i
\(99\) −130.184 + 59.1716i −1.31499 + 0.597693i
\(100\) −16.9497 47.0394i −0.169497 0.470394i
\(101\) 39.6447 + 68.6665i 0.392521 + 0.679867i 0.992781 0.119938i \(-0.0382696\pi\)
−0.600260 + 0.799805i \(0.704936\pi\)
\(102\) 74.5130 + 3.61634i 0.730519 + 0.0354543i
\(103\) 48.2373 12.9252i 0.468323 0.125487i −0.0169370 0.999857i \(-0.505391\pi\)
0.485260 + 0.874370i \(0.338725\pi\)
\(104\) 21.3138i 0.204940i
\(105\) −41.3654 96.5086i −0.393956 0.919129i
\(106\) 86.4673 0.815730
\(107\) −47.7857 178.339i −0.446595 1.66672i −0.711690 0.702494i \(-0.752070\pi\)
0.265094 0.964223i \(-0.414597\pi\)
\(108\) 50.1856 19.9351i 0.464681 0.184584i
\(109\) 70.6679 40.8002i 0.648330 0.374313i −0.139486 0.990224i \(-0.544545\pi\)
0.787816 + 0.615911i \(0.211212\pi\)
\(110\) 9.97218 111.908i 0.0906562 1.01735i
\(111\) 87.5449 18.9622i 0.788692 0.170830i
\(112\) 19.4252 20.1658i 0.173440 0.180052i
\(113\) 56.2695 + 56.2695i 0.497960 + 0.497960i 0.910803 0.412842i \(-0.135464\pi\)
−0.412842 + 0.910803i \(0.635464\pi\)
\(114\) 45.4482 + 14.5731i 0.398668 + 0.127834i
\(115\) −165.622 116.367i −1.44019 1.01189i
\(116\) −39.5752 + 22.8488i −0.341166 + 0.196972i
\(117\) −43.0866 52.3745i −0.368262 0.447645i
\(118\) −12.3617 12.3617i −0.104760 0.104760i
\(119\) −59.5381 + 107.727i −0.500320 + 0.905268i
\(120\) −5.80982 + 42.0267i −0.0484152 + 0.350223i
\(121\) 65.7294 113.847i 0.543218 0.940882i
\(122\) −6.15279 + 22.9625i −0.0504327 + 0.188217i
\(123\) −165.021 8.00896i −1.34163 0.0651135i
\(124\) −41.6644 + 72.1649i −0.336004 + 0.581975i
\(125\) −108.554 + 61.9767i −0.868429 + 0.495814i
\(126\) −6.96787 + 88.8226i −0.0553006 + 0.704941i
\(127\) 29.9204 + 29.9204i 0.235594 + 0.235594i 0.815023 0.579429i \(-0.196724\pi\)
−0.579429 + 0.815023i \(0.696724\pi\)
\(128\) −10.9282 + 2.92820i −0.0853766 + 0.0228766i
\(129\) 44.7788 40.6335i 0.347122 0.314988i
\(130\) 52.4897 9.16829i 0.403767 0.0705253i
\(131\) 82.2110 142.394i 0.627565 1.08697i −0.360474 0.932769i \(-0.617385\pi\)
0.988039 0.154205i \(-0.0492816\pi\)
\(132\) −51.6131 + 80.1537i −0.391008 + 0.607225i
\(133\) −54.6309 + 56.7137i −0.410759 + 0.426419i
\(134\) −151.925 −1.13377
\(135\) −70.6822 115.018i −0.523572 0.851982i
\(136\) 43.0707 24.8669i 0.316696 0.182845i
\(137\) −34.5846 9.26691i −0.252442 0.0676417i 0.130379 0.991464i \(-0.458381\pi\)
−0.382821 + 0.923823i \(0.625047\pi\)
\(138\) 78.5660 + 152.732i 0.569319 + 1.10676i
\(139\) 29.1666 0.209832 0.104916 0.994481i \(-0.466543\pi\)
0.104916 + 0.994481i \(0.466543\pi\)
\(140\) −58.0186 39.1643i −0.414418 0.279745i
\(141\) −76.7399 + 16.6218i −0.544255 + 0.117885i
\(142\) −47.5085 + 12.7299i −0.334567 + 0.0896469i
\(143\) 115.652 + 30.9889i 0.808757 + 0.216706i
\(144\) 20.9345 29.2873i 0.145379 0.203384i
\(145\) 73.2936 + 87.6338i 0.505473 + 0.604371i
\(146\) −83.1709 −0.569663
\(147\) −126.483 74.9071i −0.860428 0.509572i
\(148\) 42.2260 42.2260i 0.285311 0.285311i
\(149\) −62.7849 + 108.747i −0.421375 + 0.729843i −0.996074 0.0885216i \(-0.971786\pi\)
0.574699 + 0.818365i \(0.305119\pi\)
\(150\) 105.999 3.77023i 0.706660 0.0251349i
\(151\) −93.1064 161.265i −0.616599 1.06798i −0.990102 0.140352i \(-0.955177\pi\)
0.373503 0.927629i \(-0.378157\pi\)
\(152\) 30.7341 8.23519i 0.202198 0.0541788i
\(153\) −55.5687 + 148.175i −0.363194 + 0.968463i
\(154\) −81.1801 134.725i −0.527144 0.874836i
\(155\) 195.644 + 71.5653i 1.26222 + 0.461711i
\(156\) −43.0541 13.8054i −0.275988 0.0884960i
\(157\) −101.730 27.2585i −0.647962 0.173621i −0.0801548 0.996782i \(-0.525541\pi\)
−0.567807 + 0.823162i \(0.692208\pi\)
\(158\) 17.1420 63.9748i 0.108494 0.404904i
\(159\) −56.0068 + 174.665i −0.352244 + 1.09852i
\(160\) 11.9122 + 25.6535i 0.0744512 + 0.160334i
\(161\) −283.332 + 5.29983i −1.75982 + 0.0329182i
\(162\) 7.76285 + 114.288i 0.0479188 + 0.705481i
\(163\) 52.7878 + 197.007i 0.323852 + 1.20863i 0.915461 + 0.402406i \(0.131826\pi\)
−0.591610 + 0.806225i \(0.701507\pi\)
\(164\) −95.3870 + 55.0717i −0.581628 + 0.335803i
\(165\) 219.597 + 92.6295i 1.33089 + 0.561391i
\(166\) 131.098 + 75.6892i 0.789744 + 0.455959i
\(167\) 168.308 + 168.308i 1.00783 + 1.00783i 0.999969 + 0.00786180i \(0.00250252\pi\)
0.00786180 + 0.999969i \(0.497497\pi\)
\(168\) 28.1531 + 52.3011i 0.167578 + 0.311316i
\(169\) 112.215i 0.663997i
\(170\) −79.7673 95.3742i −0.469219 0.561025i
\(171\) −58.8756 + 82.3667i −0.344301 + 0.481676i
\(172\) 10.4333 38.9375i 0.0606586 0.226381i
\(173\) −37.5901 140.288i −0.217284 0.810914i −0.985350 0.170544i \(-0.945448\pi\)
0.768066 0.640370i \(-0.221219\pi\)
\(174\) −20.5211 94.7421i −0.117937 0.544495i
\(175\) −71.4934 + 159.730i −0.408534 + 0.912743i
\(176\) 63.5558i 0.361113i
\(177\) 32.9778 16.9639i 0.186315 0.0958411i
\(178\) −49.1437 + 183.407i −0.276088 + 1.03037i
\(179\) 53.3572 + 92.4174i 0.298085 + 0.516298i 0.975698 0.219120i \(-0.0703188\pi\)
−0.677613 + 0.735419i \(0.736985\pi\)
\(180\) −81.1314 38.9575i −0.450730 0.216431i
\(181\) 16.9570i 0.0936850i 0.998902 + 0.0468425i \(0.0149159\pi\)
−0.998902 + 0.0468425i \(0.985084\pi\)
\(182\) 51.7531 53.7261i 0.284358 0.295199i
\(183\) −42.3993 27.3020i −0.231690 0.149191i
\(184\) 99.1628 + 57.2517i 0.538928 + 0.311150i
\(185\) −122.155 85.8268i −0.660295 0.463928i
\(186\) −118.787 130.906i −0.638641 0.703793i
\(187\) −72.3099 269.864i −0.386684 1.44313i
\(188\) −37.0144 + 37.0144i −0.196885 + 0.196885i
\(189\) −174.910 71.6075i −0.925448 0.378876i
\(190\) −33.5015 72.1470i −0.176323 0.379721i
\(191\) 30.1768 + 17.4226i 0.157994 + 0.0912178i 0.576912 0.816806i \(-0.304257\pi\)
−0.418919 + 0.908024i \(0.637591\pi\)
\(192\) 1.16342 23.9718i 0.00605950 0.124853i
\(193\) 187.117 + 50.1378i 0.969517 + 0.259781i 0.708624 0.705586i \(-0.249316\pi\)
0.260893 + 0.965368i \(0.415983\pi\)
\(194\) 131.232 + 75.7669i 0.676454 + 0.390551i
\(195\) −15.4786 + 111.968i −0.0793776 + 0.574197i
\(196\) −97.9314 + 3.66498i −0.499650 + 0.0186989i
\(197\) −48.4192 + 48.4192i −0.245783 + 0.245783i −0.819237 0.573455i \(-0.805603\pi\)
0.573455 + 0.819237i \(0.305603\pi\)
\(198\) −128.481 156.176i −0.648892 0.788770i
\(199\) −30.8142 53.3717i −0.154845 0.268200i 0.778157 0.628069i \(-0.216155\pi\)
−0.933003 + 0.359870i \(0.882821\pi\)
\(200\) 58.0530 40.3714i 0.290265 0.201857i
\(201\) 98.4048 306.890i 0.489576 1.52681i
\(202\) −79.2893 + 79.2893i −0.392521 + 0.392521i
\(203\) 155.239 + 38.4993i 0.764722 + 0.189652i
\(204\) 22.3336 + 103.110i 0.109479 + 0.505443i
\(205\) 176.657 + 211.221i 0.861743 + 1.03035i
\(206\) 35.3122 + 61.1625i 0.171418 + 0.296905i
\(207\) −359.410 + 59.7764i −1.73628 + 0.288775i
\(208\) −29.1151 + 7.80137i −0.139977 + 0.0375066i
\(209\) 178.742i 0.855227i
\(210\) 116.692 91.8307i 0.555678 0.437289i
\(211\) 312.769 1.48232 0.741158 0.671331i \(-0.234277\pi\)
0.741158 + 0.671331i \(0.234277\pi\)
\(212\) 31.6492 + 118.117i 0.149289 + 0.557154i
\(213\) 5.05779 104.213i 0.0237455 0.489264i
\(214\) 226.124 130.553i 1.05666 0.610061i
\(215\) −100.380 8.94488i −0.466884 0.0416041i
\(216\) 45.6010 + 61.2580i 0.211116 + 0.283602i
\(217\) 280.252 80.7403i 1.29149 0.372075i
\(218\) 81.6003 + 81.6003i 0.374313 + 0.374313i
\(219\) 53.8716 168.006i 0.245989 0.767152i
\(220\) 156.520 27.3391i 0.711454 0.124269i
\(221\) 114.750 66.2508i 0.519230 0.299778i
\(222\) 57.9464 + 112.648i 0.261020 + 0.507423i
\(223\) −128.865 128.865i −0.577870 0.577870i 0.356446 0.934316i \(-0.383988\pi\)
−0.934316 + 0.356446i \(0.883988\pi\)
\(224\) 34.6571 + 19.1542i 0.154719 + 0.0855097i
\(225\) −61.0419 + 216.561i −0.271297 + 0.962496i
\(226\) −56.2695 + 97.4616i −0.248980 + 0.431246i
\(227\) −97.9428 + 365.528i −0.431466 + 1.61025i 0.317918 + 0.948118i \(0.397016\pi\)
−0.749384 + 0.662135i \(0.769650\pi\)
\(228\) −3.27198 + 67.4175i −0.0143508 + 0.295691i
\(229\) 78.9305 136.712i 0.344675 0.596994i −0.640620 0.767858i \(-0.721323\pi\)
0.985295 + 0.170864i \(0.0546558\pi\)
\(230\) 98.3388 268.837i 0.427560 1.16886i
\(231\) 324.728 76.7209i 1.40575 0.332125i
\(232\) −45.6975 45.6975i −0.196972 0.196972i
\(233\) 88.7869 23.7904i 0.381060 0.102105i −0.0632042 0.998001i \(-0.520132\pi\)
0.444264 + 0.895896i \(0.353465\pi\)
\(234\) 55.7741 78.0278i 0.238351 0.333452i
\(235\) 107.078 + 75.2338i 0.455651 + 0.320144i
\(236\) 12.3617 21.4111i 0.0523801 0.0907250i
\(237\) 118.127 + 76.0650i 0.498425 + 0.320949i
\(238\) −168.950 41.8998i −0.709875 0.176049i
\(239\) −77.3170 −0.323502 −0.161751 0.986832i \(-0.551714\pi\)
−0.161751 + 0.986832i \(0.551714\pi\)
\(240\) −59.5361 + 7.44649i −0.248067 + 0.0310270i
\(241\) −372.723 + 215.192i −1.54657 + 0.892912i −0.548168 + 0.836368i \(0.684675\pi\)
−0.998400 + 0.0565436i \(0.981992\pi\)
\(242\) 179.576 + 48.1173i 0.742050 + 0.198832i
\(243\) −235.891 58.3457i −0.970747 0.240106i
\(244\) −33.6195 −0.137785
\(245\) 51.1518 + 239.601i 0.208783 + 0.977962i
\(246\) −49.4614 228.354i −0.201062 0.928269i
\(247\) 81.8824 21.9403i 0.331508 0.0888273i
\(248\) −113.829 30.5005i −0.458989 0.122986i
\(249\) −237.808 + 215.793i −0.955052 + 0.866640i
\(250\) −124.395 125.602i −0.497581 0.502408i
\(251\) 17.9306 0.0714367 0.0357184 0.999362i \(-0.488628\pi\)
0.0357184 + 0.999362i \(0.488628\pi\)
\(252\) −123.884 + 22.9930i −0.491604 + 0.0912422i
\(253\) 454.834 454.834i 1.79776 1.79776i
\(254\) −29.9204 + 51.8237i −0.117797 + 0.204030i
\(255\) 244.324 99.3551i 0.958134 0.389628i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −146.201 + 39.1745i −0.568876 + 0.152430i −0.531781 0.846882i \(-0.678477\pi\)
−0.0370950 + 0.999312i \(0.511810\pi\)
\(258\) 71.8965 + 46.2961i 0.278669 + 0.179442i
\(259\) −208.972 + 3.90890i −0.806840 + 0.0150923i
\(260\) 31.7367 + 68.3464i 0.122064 + 0.262871i
\(261\) 204.672 + 19.9136i 0.784185 + 0.0762975i
\(262\) 224.605 + 60.1826i 0.857270 + 0.229705i
\(263\) 114.591 427.661i 0.435709 1.62609i −0.303655 0.952782i \(-0.598207\pi\)
0.739364 0.673306i \(-0.235126\pi\)
\(264\) −128.384 41.1665i −0.486302 0.155934i
\(265\) 277.273 128.752i 1.04631 0.485856i
\(266\) −97.4686 53.8686i −0.366423 0.202514i
\(267\) −338.653 218.067i −1.26836 0.816732i
\(268\) −55.6082 207.533i −0.207493 0.774376i
\(269\) 53.4816 30.8776i 0.198817 0.114787i −0.397287 0.917694i \(-0.630048\pi\)
0.596103 + 0.802908i \(0.296715\pi\)
\(270\) 131.245 138.653i 0.486094 0.513530i
\(271\) 100.182 + 57.8400i 0.369675 + 0.213432i 0.673316 0.739355i \(-0.264869\pi\)
−0.303642 + 0.952786i \(0.598203\pi\)
\(272\) 49.7338 + 49.7338i 0.182845 + 0.182845i
\(273\) 75.0059 + 139.342i 0.274747 + 0.510409i
\(274\) 50.6354i 0.184801i
\(275\) −134.657 373.704i −0.489661 1.35892i
\(276\) −179.879 + 163.227i −0.651736 + 0.591402i
\(277\) −96.8189 + 361.333i −0.349527 + 1.30445i 0.537707 + 0.843132i \(0.319291\pi\)
−0.887234 + 0.461320i \(0.847376\pi\)
\(278\) 10.6757 + 39.8424i 0.0384019 + 0.143318i
\(279\) 341.372 155.161i 1.22356 0.556134i
\(280\) 32.2632 93.5900i 0.115226 0.334250i
\(281\) 236.224i 0.840656i −0.907372 0.420328i \(-0.861915\pi\)
0.907372 0.420328i \(-0.138085\pi\)
\(282\) −50.7946 98.7446i −0.180123 0.350158i
\(283\) −6.13887 + 22.9106i −0.0216921 + 0.0809561i −0.975923 0.218114i \(-0.930010\pi\)
0.954231 + 0.299070i \(0.0966763\pi\)
\(284\) −34.7786 60.2384i −0.122460 0.212107i
\(285\) 167.437 20.9423i 0.587500 0.0734816i
\(286\) 169.327i 0.592051i
\(287\) 374.167 + 92.7937i 1.30372 + 0.323323i
\(288\) 47.6698 + 17.8772i 0.165520 + 0.0620735i
\(289\) −17.4774 10.0906i −0.0604754 0.0349155i
\(290\) −92.8827 + 132.197i −0.320285 + 0.455852i
\(291\) −238.052 + 216.015i −0.818049 + 0.742319i
\(292\) −30.4426 113.613i −0.104256 0.389087i
\(293\) 89.0653 89.0653i 0.303977 0.303977i −0.538591 0.842568i \(-0.681043\pi\)
0.842568 + 0.538591i \(0.181043\pi\)
\(294\) 56.0290 200.197i 0.190575 0.680941i
\(295\) −58.0469 21.2332i −0.196769 0.0719769i
\(296\) 73.1376 + 42.2260i 0.247087 + 0.142655i
\(297\) 398.698 158.374i 1.34242 0.533245i
\(298\) −171.532 45.9617i −0.575609 0.154234i
\(299\) 264.191 + 152.531i 0.883583 + 0.510137i
\(300\) 43.9486 + 143.417i 0.146495 + 0.478058i
\(301\) −120.846 + 72.8172i −0.401481 + 0.241918i
\(302\) 186.213 186.213i 0.616599 0.616599i
\(303\) −108.808 211.523i −0.359103 0.698095i
\(304\) 22.4989 + 38.9693i 0.0740097 + 0.128189i
\(305\) 14.4617 + 82.7951i 0.0474154 + 0.271459i
\(306\) −222.750 21.6725i −0.727942 0.0708253i
\(307\) −79.6418 + 79.6418i −0.259419 + 0.259419i −0.824818 0.565398i \(-0.808722\pi\)
0.565398 + 0.824818i \(0.308722\pi\)
\(308\) 154.323 160.207i 0.501050 0.520152i
\(309\) −146.422 + 31.7148i −0.473856 + 0.102637i
\(310\) −26.1493 + 293.449i −0.0843526 + 0.946611i
\(311\) −53.4146 92.5167i −0.171751 0.297481i 0.767281 0.641311i \(-0.221609\pi\)
−0.939032 + 0.343829i \(0.888276\pi\)
\(312\) 3.09962 63.8661i 0.00993466 0.204699i
\(313\) −130.207 + 34.8889i −0.415998 + 0.111466i −0.460746 0.887532i \(-0.652418\pi\)
0.0447483 + 0.998998i \(0.485751\pi\)
\(314\) 148.943i 0.474341i
\(315\) 109.915 + 295.201i 0.348937 + 0.937146i
\(316\) 93.6657 0.296410
\(317\) −85.1391 317.743i −0.268578 1.00235i −0.960024 0.279917i \(-0.909693\pi\)
0.691447 0.722428i \(-0.256974\pi\)
\(318\) −259.097 12.5748i −0.814771 0.0395433i
\(319\) −314.404 + 181.521i −0.985593 + 0.569033i
\(320\) −30.6831 + 25.6622i −0.0958847 + 0.0801943i
\(321\) 117.253 + 541.336i 0.365275 + 1.68641i
\(322\) −110.946 385.098i −0.344554 1.19596i
\(323\) −139.870 139.870i −0.433033 0.433033i
\(324\) −153.279 + 52.4365i −0.473083 + 0.161841i
\(325\) 154.666 107.558i 0.475895 0.330948i
\(326\) −249.795 + 144.219i −0.766241 + 0.442390i
\(327\) −217.688 + 111.979i −0.665713 + 0.342445i
\(328\) −110.143 110.143i −0.335803 0.335803i
\(329\) 183.180 3.42645i 0.556778 0.0104148i
\(330\) −46.1560 + 333.880i −0.139867 + 1.01176i
\(331\) −275.493 + 477.168i −0.832305 + 1.44160i 0.0639004 + 0.997956i \(0.479646\pi\)
−0.896206 + 0.443639i \(0.853687\pi\)
\(332\) −55.4084 + 206.787i −0.166893 + 0.622852i
\(333\) −265.083 + 44.0882i −0.796046 + 0.132397i
\(334\) −168.308 + 291.518i −0.503915 + 0.872807i
\(335\) −487.174 + 226.219i −1.45425 + 0.675281i
\(336\) −61.1399 + 57.6013i −0.181964 + 0.171433i
\(337\) 174.856 + 174.856i 0.518861 + 0.518861i 0.917227 0.398366i \(-0.130423\pi\)
−0.398366 + 0.917227i \(0.630423\pi\)
\(338\) 153.289 41.0737i 0.453518 0.121520i
\(339\) −160.427 176.793i −0.473236 0.521514i
\(340\) 101.087 143.874i 0.297314 0.423157i
\(341\) −331.002 + 573.313i −0.970681 + 1.68127i
\(342\) −134.065 50.2772i −0.392003 0.147009i
\(343\) 255.758 + 228.554i 0.745649 + 0.666339i
\(344\) 57.0085 0.165722
\(345\) 479.358 + 372.777i 1.38944 + 1.08051i
\(346\) 177.878 102.698i 0.514099 0.296815i
\(347\) 121.043 + 32.4333i 0.348827 + 0.0934678i 0.428978 0.903315i \(-0.358874\pi\)
−0.0801515 + 0.996783i \(0.525540\pi\)
\(348\) 121.909 62.7103i 0.350313 0.180202i
\(349\) −82.2163 −0.235577 −0.117788 0.993039i \(-0.537580\pi\)
−0.117788 + 0.993039i \(0.537580\pi\)
\(350\) −244.364 39.1965i −0.698182 0.111990i
\(351\) 121.491 + 163.205i 0.346129 + 0.464971i
\(352\) −86.8189 + 23.2630i −0.246644 + 0.0660882i
\(353\) −405.413 108.630i −1.14848 0.307734i −0.366124 0.930566i \(-0.619315\pi\)
−0.782356 + 0.622832i \(0.785982\pi\)
\(354\) 35.2438 + 38.8393i 0.0995587 + 0.109715i
\(355\) −133.390 + 111.562i −0.375745 + 0.314259i
\(356\) −268.526 −0.754286
\(357\) 194.071 314.142i 0.543616 0.879950i
\(358\) −106.714 + 106.714i −0.298085 + 0.298085i
\(359\) −222.108 + 384.703i −0.618687 + 1.07160i 0.371039 + 0.928617i \(0.379002\pi\)
−0.989726 + 0.142979i \(0.954332\pi\)
\(360\) 23.5208 125.087i 0.0653356 0.347464i
\(361\) 117.225 + 203.039i 0.324722 + 0.562435i
\(362\) −23.1637 + 6.20669i −0.0639880 + 0.0171455i
\(363\) −213.513 + 331.580i −0.588190 + 0.913443i
\(364\) 92.3342 + 51.0309i 0.253665 + 0.140195i
\(365\) −266.702 + 123.843i −0.730692 + 0.339297i
\(366\) 21.7761 67.9118i 0.0594974 0.185551i
\(367\) 538.984 + 144.420i 1.46862 + 0.393516i 0.902458 0.430777i \(-0.141761\pi\)
0.566163 + 0.824293i \(0.308427\pi\)
\(368\) −41.9111 + 156.414i −0.113889 + 0.425039i
\(369\) 493.316 + 47.9973i 1.33690 + 0.130074i
\(370\) 72.5299 198.281i 0.196027 0.535895i
\(371\) 207.026 374.589i 0.558023 1.00967i
\(372\) 135.341 210.181i 0.363820 0.565003i
\(373\) −79.6048 297.089i −0.213418 0.796485i −0.986718 0.162445i \(-0.948062\pi\)
0.773300 0.634040i \(-0.218605\pi\)
\(374\) 342.174 197.554i 0.914905 0.528220i
\(375\) 334.291 169.925i 0.891443 0.453133i
\(376\) −64.1108 37.0144i −0.170507 0.0984425i
\(377\) −121.748 121.748i −0.322939 0.322939i
\(378\) 33.7963 265.141i 0.0894083 0.701432i
\(379\) 7.39316i 0.0195070i 0.999952 + 0.00975351i \(0.00310469\pi\)
−0.999952 + 0.00975351i \(0.996895\pi\)
\(380\) 86.2922 72.1715i 0.227085 0.189925i
\(381\) −85.3045 94.0070i −0.223896 0.246738i
\(382\) −12.7542 + 47.5994i −0.0333880 + 0.124606i
\(383\) 42.7344 + 159.487i 0.111578 + 0.416415i 0.999008 0.0445273i \(-0.0141782\pi\)
−0.887430 + 0.460942i \(0.847512\pi\)
\(384\) 33.1719 7.18502i 0.0863852 0.0187110i
\(385\) −460.927 311.140i −1.19721 0.808156i
\(386\) 273.958i 0.709736i
\(387\) −140.088 + 115.245i −0.361984 + 0.297791i
\(388\) −55.4652 + 206.999i −0.142952 + 0.533503i
\(389\) −209.686 363.187i −0.539038 0.933641i −0.998956 0.0456801i \(-0.985455\pi\)
0.459918 0.887961i \(-0.347879\pi\)
\(390\) −158.617 + 19.8391i −0.406711 + 0.0508694i
\(391\) 711.835i 1.82055i
\(392\) −40.8518 132.435i −0.104214 0.337845i
\(393\) −267.051 + 414.723i −0.679519 + 1.05527i
\(394\) −83.8645 48.4192i −0.212854 0.122891i
\(395\) −40.2911 230.672i −0.102003 0.583979i
\(396\) 166.314 232.672i 0.419984 0.587556i
\(397\) −78.2133 291.896i −0.197011 0.735255i −0.991737 0.128287i \(-0.959052\pi\)
0.794726 0.606968i \(-0.207614\pi\)
\(398\) 61.6284 61.6284i 0.154845 0.154845i
\(399\) 171.948 161.996i 0.430947 0.406005i
\(400\) 76.3972 + 64.5249i 0.190993 + 0.161312i
\(401\) 322.132 + 185.983i 0.803320 + 0.463797i 0.844631 0.535349i \(-0.179820\pi\)
−0.0413104 + 0.999146i \(0.513153\pi\)
\(402\) 455.238 + 22.0941i 1.13243 + 0.0549604i
\(403\) −303.266 81.2600i −0.752522 0.201638i
\(404\) −137.333 79.2893i −0.339933 0.196261i
\(405\) 195.070 + 354.926i 0.481655 + 0.876361i
\(406\) 4.23026 + 226.152i 0.0104193 + 0.557024i
\(407\) 335.464 335.464i 0.824235 0.824235i
\(408\) −132.677 + 68.2493i −0.325188 + 0.167278i
\(409\) −148.294 256.853i −0.362577 0.628001i 0.625807 0.779978i \(-0.284770\pi\)
−0.988384 + 0.151976i \(0.951436\pi\)
\(410\) −223.873 + 318.631i −0.546031 + 0.777148i
\(411\) 102.284 + 32.7976i 0.248866 + 0.0797996i
\(412\) −70.6243 + 70.6243i −0.171418 + 0.171418i
\(413\) −83.1500 + 23.9554i −0.201332 + 0.0580033i
\(414\) −213.209 469.084i −0.514998 1.13305i
\(415\) 533.091 + 47.5038i 1.28456 + 0.114467i
\(416\) −21.3138 36.9165i −0.0512350 0.0887416i
\(417\) −87.3971 4.24165i −0.209585 0.0101718i
\(418\) 244.167 65.4242i 0.584131 0.156517i
\(419\) 564.525i 1.34732i 0.739044 + 0.673658i \(0.235278\pi\)
−0.739044 + 0.673658i \(0.764722\pi\)
\(420\) 168.156 + 125.792i 0.400370 + 0.299506i
\(421\) −576.949 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(422\) 114.481 + 427.250i 0.271283 + 1.01244i
\(423\) 232.366 38.6467i 0.549329 0.0913633i
\(424\) −149.766 + 86.4673i −0.353221 + 0.203932i
\(425\) −397.803 187.059i −0.936007 0.440139i
\(426\) 144.209 31.2356i 0.338519 0.0733231i
\(427\) 84.7454 + 81.6333i 0.198467 + 0.191179i
\(428\) 261.106 + 261.106i 0.610061 + 0.610061i
\(429\) −342.042 109.677i −0.797301 0.255656i
\(430\) −24.5227 140.396i −0.0570295 0.326502i
\(431\) −443.346 + 255.966i −1.02864 + 0.593888i −0.916596 0.399815i \(-0.869075\pi\)
−0.112048 + 0.993703i \(0.535741\pi\)
\(432\) −66.9889 + 84.7142i −0.155067 + 0.196098i
\(433\) −545.122 545.122i −1.25894 1.25894i −0.951599 0.307343i \(-0.900560\pi\)
−0.307343 0.951599i \(-0.599440\pi\)
\(434\) 212.873 + 353.279i 0.490490 + 0.814006i
\(435\) −206.878 273.251i −0.475581 0.628164i
\(436\) −81.6003 + 141.336i −0.187157 + 0.324165i
\(437\) 117.869 439.895i 0.269724 1.00662i
\(438\) 249.219 + 12.0954i 0.568994 + 0.0276150i
\(439\) 135.516 234.721i 0.308693 0.534673i −0.669383 0.742917i \(-0.733442\pi\)
0.978077 + 0.208245i \(0.0667750\pi\)
\(440\) 94.6361 + 203.803i 0.215082 + 0.463189i
\(441\) 368.109 + 242.851i 0.834714 + 0.550683i
\(442\) 132.502 + 132.502i 0.299778 + 0.299778i
\(443\) −110.503 + 29.6092i −0.249443 + 0.0668380i −0.381374 0.924421i \(-0.624549\pi\)
0.131931 + 0.991259i \(0.457882\pi\)
\(444\) −132.670 + 120.388i −0.298806 + 0.271145i
\(445\) 115.509 + 661.303i 0.259570 + 1.48607i
\(446\) 128.865 223.201i 0.288935 0.500450i
\(447\) 203.948 316.726i 0.456260 0.708559i
\(448\) −13.4797 + 54.3535i −0.0300886 + 0.121325i
\(449\) 113.813 0.253482 0.126741 0.991936i \(-0.459548\pi\)
0.126741 + 0.991936i \(0.459548\pi\)
\(450\) −318.171 4.11782i −0.707048 0.00915071i
\(451\) −757.799 + 437.516i −1.68026 + 0.970101i
\(452\) −153.731 41.1921i −0.340113 0.0911330i
\(453\) 255.538 + 496.767i 0.564103 + 1.09662i
\(454\) −535.169 −1.17879
\(455\) 85.9562 249.344i 0.188915 0.548009i
\(456\) −93.2916 + 20.2069i −0.204587 + 0.0443134i
\(457\) −666.119 + 178.486i −1.45759 + 0.390560i −0.898657 0.438652i \(-0.855456\pi\)
−0.558934 + 0.829212i \(0.688789\pi\)
\(458\) 215.642 + 57.7812i 0.470835 + 0.126160i
\(459\) 188.059 435.921i 0.409715 0.949718i
\(460\) 403.233 + 35.9321i 0.876593 + 0.0781133i
\(461\) −195.653 −0.424410 −0.212205 0.977225i \(-0.568065\pi\)
−0.212205 + 0.977225i \(0.568065\pi\)
\(462\) 223.661 + 415.505i 0.484116 + 0.899361i
\(463\) 478.759 478.759i 1.03404 1.03404i 0.0346360 0.999400i \(-0.488973\pi\)
0.999400 0.0346360i \(-0.0110272\pi\)
\(464\) 45.6975 79.1504i 0.0984860 0.170583i
\(465\) −575.834 242.895i −1.23835 0.522356i
\(466\) 64.9965 + 112.577i 0.139478 + 0.241582i
\(467\) −99.9487 + 26.7812i −0.214023 + 0.0573472i −0.364237 0.931306i \(-0.618670\pi\)
0.150214 + 0.988653i \(0.452004\pi\)
\(468\) 127.003 + 47.6287i 0.271373 + 0.101771i
\(469\) −363.749 + 658.159i −0.775584 + 1.40332i
\(470\) −63.5781 + 173.809i −0.135273 + 0.369806i
\(471\) 300.867 + 96.4737i 0.638784 + 0.204827i
\(472\) 33.7728 + 9.04940i 0.0715526 + 0.0191724i
\(473\) 82.8870 309.338i 0.175237 0.653992i
\(474\) −60.6693 + 189.206i −0.127994 + 0.399169i
\(475\) −214.857 181.468i −0.452331 0.382038i
\(476\) −4.60390 246.127i −0.00967205 0.517073i
\(477\) 193.224 515.235i 0.405082 1.08016i
\(478\) −28.3000 105.617i −0.0592050 0.220956i
\(479\) 170.076 98.1933i 0.355064 0.204997i −0.311849 0.950132i \(-0.600948\pi\)
0.666914 + 0.745135i \(0.267615\pi\)
\(480\) −31.9638 78.6023i −0.0665913 0.163755i
\(481\) 194.855 + 112.499i 0.405103 + 0.233886i
\(482\) −430.383 430.383i −0.892912 0.892912i
\(483\) 849.766 + 25.3235i 1.75935 + 0.0524297i
\(484\) 262.918i 0.543218i
\(485\) 533.638 + 47.5526i 1.10029 + 0.0980466i
\(486\) −6.64051 343.590i −0.0136636 0.706975i
\(487\) 25.0464 93.4744i 0.0514299 0.191939i −0.935431 0.353508i \(-0.884989\pi\)
0.986861 + 0.161569i \(0.0516554\pi\)
\(488\) −12.3056 45.9250i −0.0252163 0.0941087i
\(489\) −129.527 598.002i −0.264881 1.22291i
\(490\) −308.578 + 157.575i −0.629751 + 0.321581i
\(491\) 54.8531i 0.111717i −0.998439 0.0558585i \(-0.982210\pi\)
0.998439 0.0558585i \(-0.0177896\pi\)
\(492\) 293.833 151.149i 0.597222 0.307213i
\(493\) −103.984 + 388.072i −0.210920 + 0.787165i
\(494\) 59.9421 + 103.823i 0.121340 + 0.210168i
\(495\) −644.547 309.497i −1.30211 0.625247i
\(496\) 166.658i 0.336004i
\(497\) −58.6007 + 236.292i −0.117909 + 0.475437i
\(498\) −381.823 245.866i −0.766713 0.493707i
\(499\) 617.735 + 356.650i 1.23795 + 0.714729i 0.968674 0.248335i \(-0.0798835\pi\)
0.269272 + 0.963064i \(0.413217\pi\)
\(500\) 126.044 215.900i 0.252087 0.431801i
\(501\) −479.853 528.806i −0.957790 1.05550i
\(502\) 6.56306 + 24.4937i 0.0130738 + 0.0487922i
\(503\) 662.424 662.424i 1.31695 1.31695i 0.400767 0.916180i \(-0.368744\pi\)
0.916180 0.400767i \(-0.131256\pi\)
\(504\) −76.7539 160.813i −0.152289 0.319074i
\(505\) −136.192 + 372.319i −0.269687 + 0.737266i
\(506\) 787.796 + 454.834i 1.55691 + 0.898882i
\(507\) −16.3193 + 336.251i −0.0321879 + 0.663216i
\(508\) −81.7441 21.9033i −0.160914 0.0431167i
\(509\) −330.632 190.890i −0.649572 0.375030i 0.138721 0.990332i \(-0.455701\pi\)
−0.788292 + 0.615301i \(0.789034\pi\)
\(510\) 225.150 + 297.387i 0.441472 + 0.583111i
\(511\) −199.134 + 360.308i −0.389694 + 0.705104i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 188.397 238.247i 0.367246 0.464420i
\(514\) −107.027 185.376i −0.208223 0.360653i
\(515\) 204.307 + 143.548i 0.396713 + 0.278734i
\(516\) −36.9257 + 115.158i −0.0715613 + 0.223174i
\(517\) −294.060 + 294.060i −0.568781 + 0.568781i
\(518\) −81.8286 284.030i −0.157970 0.548320i
\(519\) 92.2358 + 425.836i 0.177718 + 0.820493i
\(520\) −81.7465 + 68.3696i −0.157205 + 0.131480i
\(521\) −389.610 674.824i −0.747812 1.29525i −0.948870 0.315668i \(-0.897771\pi\)
0.201058 0.979579i \(-0.435562\pi\)
\(522\) 47.7127 + 286.876i 0.0914037 + 0.549572i
\(523\) −211.381 + 56.6393i −0.404170 + 0.108297i −0.455176 0.890401i \(-0.650424\pi\)
0.0510066 + 0.998698i \(0.483757\pi\)
\(524\) 328.844i 0.627565i
\(525\) 237.457 468.230i 0.452300 0.891866i
\(526\) 626.139 1.19038
\(527\) 189.613 + 707.646i 0.359797 + 1.34278i
\(528\) 9.24279 190.443i 0.0175053 0.360688i
\(529\) 961.181 554.938i 1.81698 1.04903i
\(530\) 277.367 + 331.636i 0.523335 + 0.625728i
\(531\) −101.284 + 46.0359i −0.190742 + 0.0866966i
\(532\) 37.9099 152.862i 0.0712592 0.287334i
\(533\) −293.446 293.446i −0.550555 0.550555i
\(534\) 173.930 542.426i 0.325712 1.01578i
\(535\) 530.712 755.346i 0.991986 1.41186i
\(536\) 263.141 151.925i 0.490935 0.283441i
\(537\) −146.443 284.686i −0.272706 0.530141i
\(538\) 61.7553 + 61.7553i 0.114787 + 0.114787i
\(539\) −778.014 + 29.1163i −1.44344 + 0.0540191i
\(540\) 237.443 + 128.534i 0.439709 + 0.238026i
\(541\) 280.957 486.632i 0.519329 0.899504i −0.480419 0.877039i \(-0.659515\pi\)
0.999748 0.0224649i \(-0.00715140\pi\)
\(542\) −42.3418 + 158.022i −0.0781215 + 0.291553i
\(543\) 2.46602 50.8111i 0.00454147 0.0935749i
\(544\) −49.7338 + 86.1414i −0.0914224 + 0.158348i
\(545\) 383.171 + 140.161i 0.703066 + 0.257177i
\(546\) −162.890 + 153.463i −0.298333 + 0.281067i
\(547\) −706.567 706.567i −1.29171 1.29171i −0.933727 0.357987i \(-0.883463\pi\)
−0.357987 0.933727i \(-0.616537\pi\)
\(548\) 69.1692 18.5338i 0.126221 0.0338208i
\(549\) 123.078 + 87.9759i 0.224186 + 0.160247i
\(550\) 461.201 320.729i 0.838547 0.583145i
\(551\) −128.518 + 222.600i −0.233245 + 0.403993i
\(552\) −288.813 185.974i −0.523211 0.336910i
\(553\) −236.105 227.435i −0.426954 0.411274i
\(554\) −529.028 −0.954925
\(555\) 353.551 + 274.942i 0.637029 + 0.495391i
\(556\) −50.5181 + 29.1666i −0.0908599 + 0.0524580i
\(557\) 516.348 + 138.355i 0.927016 + 0.248393i 0.690582 0.723254i \(-0.257355\pi\)
0.236434 + 0.971648i \(0.424021\pi\)
\(558\) 336.905 + 409.530i 0.603773 + 0.733925i
\(559\) 151.883 0.271705
\(560\) 139.655 + 9.81605i 0.249385 + 0.0175287i
\(561\) 177.429 + 819.157i 0.316273 + 1.46017i
\(562\) 322.689 86.4641i 0.574179 0.153851i
\(563\) 169.172 + 45.3296i 0.300484 + 0.0805144i 0.405911 0.913913i \(-0.366954\pi\)
−0.105427 + 0.994427i \(0.533621\pi\)
\(564\) 116.296 105.530i 0.206198 0.187109i
\(565\) −35.3157 + 396.315i −0.0625057 + 0.701443i
\(566\) −33.5434 −0.0592640
\(567\) 513.698 + 240.007i 0.905993 + 0.423292i
\(568\) 69.5573 69.5573i 0.122460 0.122460i
\(569\) −3.43082 + 5.94235i −0.00602955 + 0.0104435i −0.869024 0.494769i \(-0.835253\pi\)
0.862995 + 0.505213i \(0.168586\pi\)
\(570\) 89.8940 + 221.058i 0.157709 + 0.387822i
\(571\) −282.742 489.723i −0.495169 0.857658i 0.504815 0.863227i \(-0.331561\pi\)
−0.999984 + 0.00556934i \(0.998227\pi\)
\(572\) −231.304 + 61.9778i −0.404378 + 0.108353i
\(573\) −87.8903 56.5949i −0.153386 0.0987694i
\(574\) 10.1961 + 545.086i 0.0177632 + 0.949628i
\(575\) −84.9634 1008.50i −0.147762 1.75392i
\(576\) −6.97233 + 71.6616i −0.0121047 + 0.124413i
\(577\) 646.672 + 173.275i 1.12075 + 0.300304i 0.771186 0.636610i \(-0.219664\pi\)
0.349562 + 0.936913i \(0.386330\pi\)
\(578\) 7.38681 27.5680i 0.0127799 0.0476954i
\(579\) −553.399 177.449i −0.955784 0.306474i
\(580\) −214.582 78.4927i −0.369969 0.135332i
\(581\) 641.780 386.713i 1.10461 0.665599i
\(582\) −382.215 246.118i −0.656727 0.422884i
\(583\) 251.437 + 938.375i 0.431281 + 1.60956i
\(584\) 144.056 83.1709i 0.246671 0.142416i
\(585\) 62.6646 333.259i 0.107119 0.569674i
\(586\) 154.266 + 89.0653i 0.263252 + 0.151989i
\(587\) 120.200 + 120.200i 0.204770 + 0.204770i 0.802040 0.597270i \(-0.203748\pi\)
−0.597270 + 0.802040i \(0.703748\pi\)
\(588\) 293.982 + 3.25997i 0.499969 + 0.00554416i
\(589\) 468.703i 0.795761i
\(590\) 7.75842 87.0655i 0.0131499 0.147569i
\(591\) 152.128 138.045i 0.257408 0.233579i
\(592\) −30.9116 + 115.364i −0.0522155 + 0.194871i
\(593\) 155.006 + 578.491i 0.261393 + 0.975534i 0.964421 + 0.264371i \(0.0851643\pi\)
−0.703028 + 0.711163i \(0.748169\pi\)
\(594\) 362.276 + 486.663i 0.609893 + 0.819298i
\(595\) −604.159 + 117.212i −1.01539 + 0.196994i
\(596\) 251.140i 0.421375i
\(597\) 84.5721 + 164.408i 0.141662 + 0.275391i
\(598\) −111.660 + 416.722i −0.186723 + 0.696860i
\(599\) 312.822 + 541.824i 0.522241 + 0.904548i 0.999665 + 0.0258747i \(0.00823710\pi\)
−0.477424 + 0.878673i \(0.658430\pi\)
\(600\) −179.825 + 112.529i −0.299709 + 0.187549i
\(601\) 564.677i 0.939563i −0.882783 0.469782i \(-0.844333\pi\)
0.882783 0.469782i \(-0.155667\pi\)
\(602\) −143.703 138.426i −0.238709 0.229943i
\(603\) −339.498 + 905.276i −0.563015 + 1.50129i
\(604\) 322.530 + 186.213i 0.533990 + 0.308299i
\(605\) 647.491 113.096i 1.07023 0.186936i
\(606\) 249.119 226.057i 0.411088 0.373032i
\(607\) 116.002 + 432.927i 0.191108 + 0.713224i 0.993240 + 0.116078i \(0.0370322\pi\)
−0.802132 + 0.597146i \(0.796301\pi\)
\(608\) −44.9979 + 44.9979i −0.0740097 + 0.0740097i
\(609\) −459.569 137.938i −0.754629 0.226499i
\(610\) −107.807 + 50.0602i −0.176733 + 0.0820658i
\(611\) −170.805 98.6145i −0.279550 0.161398i
\(612\) −51.9270 312.215i −0.0848480 0.510155i
\(613\) −589.092 157.847i −0.960998 0.257499i −0.255975 0.966683i \(-0.582397\pi\)
−0.705023 + 0.709185i \(0.749063\pi\)
\(614\) −137.944 79.6418i −0.224664 0.129710i
\(615\) −498.632 658.610i −0.810783 1.07091i
\(616\) 275.333 + 152.170i 0.446969 + 0.247029i
\(617\) −717.965 + 717.965i −1.16364 + 1.16364i −0.179965 + 0.983673i \(0.557598\pi\)
−0.983673 + 0.179965i \(0.942402\pi\)
\(618\) −96.9172 188.407i −0.156824 0.304866i
\(619\) −282.875 489.955i −0.456988 0.791526i 0.541812 0.840499i \(-0.317738\pi\)
−0.998800 + 0.0489736i \(0.984405\pi\)
\(620\) −410.431 + 71.6893i −0.661985 + 0.115628i
\(621\) 1085.66 126.850i 1.74824 0.204267i
\(622\) 106.829 106.829i 0.171751 0.171751i
\(623\) 676.880 + 652.023i 1.08649 + 1.04659i
\(624\) 88.3772 19.1425i 0.141630 0.0306770i
\(625\) −585.920 217.538i −0.937472 0.348061i
\(626\) −95.3183 165.096i −0.152266 0.263732i
\(627\) −25.9941 + 535.597i −0.0414579 + 0.854221i
\(628\) 203.460 54.5170i 0.323981 0.0868105i
\(629\) 525.015i 0.834682i
\(630\) −363.020 + 258.198i −0.576223 + 0.409838i
\(631\) 1216.92 1.92856 0.964281 0.264880i \(-0.0853323\pi\)
0.964281 + 0.264880i \(0.0853323\pi\)
\(632\) 34.2840 + 127.950i 0.0542469 + 0.202452i
\(633\) −937.203 45.4853i −1.48057 0.0718567i
\(634\) 402.882 232.604i 0.635461 0.366884i
\(635\) −18.7786 + 210.734i −0.0295725 + 0.331865i
\(636\) −77.6587 358.536i −0.122105 0.563736i
\(637\) −108.838 352.837i −0.170861 0.553904i
\(638\) −363.043 363.043i −0.569033 0.569033i
\(639\) −30.3110 + 311.537i −0.0474351 + 0.487538i
\(640\) −46.2860 32.5209i −0.0723218 0.0508139i
\(641\) 14.4603 8.34866i 0.0225590 0.0130244i −0.488678 0.872464i \(-0.662521\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(642\) −696.562 + 358.314i −1.08499 + 0.558121i
\(643\) 838.779 + 838.779i 1.30448 + 1.30448i 0.925341 + 0.379137i \(0.123779\pi\)
0.379137 + 0.925341i \(0.376221\pi\)
\(644\) 485.445 292.511i 0.753797 0.454210i
\(645\) 299.485 + 41.4012i 0.464318 + 0.0641878i
\(646\) 139.870 242.261i 0.216517 0.375018i
\(647\) 52.3263 195.284i 0.0808752 0.301830i −0.913626 0.406556i \(-0.866730\pi\)
0.994501 + 0.104725i \(0.0333964\pi\)
\(648\) −127.734 190.190i −0.197120 0.293503i
\(649\) 98.2073 170.100i 0.151321 0.262096i
\(650\) 203.539 + 171.909i 0.313137 + 0.264475i
\(651\) −851.510 + 201.180i −1.30800 + 0.309032i
\(652\) −288.438 288.438i −0.442390 0.442390i
\(653\) −770.473 + 206.448i −1.17990 + 0.316152i −0.794886 0.606759i \(-0.792469\pi\)
−0.385011 + 0.922912i \(0.625802\pi\)
\(654\) −232.646 256.380i −0.355728 0.392019i
\(655\) 809.849 141.455i 1.23641 0.215962i
\(656\) 110.143 190.774i 0.167901 0.290814i
\(657\) −185.858 + 495.592i −0.282888 + 0.754326i
\(658\) 71.7291 + 248.974i 0.109011 + 0.378380i
\(659\) 897.874 1.36248 0.681240 0.732061i \(-0.261441\pi\)
0.681240 + 0.732061i \(0.261441\pi\)
\(660\) −472.983 + 59.1585i −0.716641 + 0.0896340i
\(661\) −373.944 + 215.897i −0.565725 + 0.326621i −0.755440 0.655218i \(-0.772577\pi\)
0.189715 + 0.981839i \(0.439244\pi\)
\(662\) −752.661 201.675i −1.13695 0.304645i
\(663\) −353.479 + 181.831i −0.533152 + 0.274255i
\(664\) −302.757 −0.455959
\(665\) −392.763 27.6063i −0.590620 0.0415133i
\(666\) −157.253 345.973i −0.236115 0.519480i
\(667\) −893.469 + 239.404i −1.33953 + 0.358927i
\(668\) −459.825 123.210i −0.688361 0.184446i
\(669\) 367.400 + 404.881i 0.549177 + 0.605203i
\(670\) −487.339 582.690i −0.727372 0.869686i
\(671\) −267.089 −0.398046
\(672\) −101.064 62.4351i −0.150392 0.0929094i
\(673\) 286.300 286.300i 0.425408 0.425408i −0.461653 0.887061i \(-0.652743\pi\)
0.887061 + 0.461653i \(0.152743\pi\)
\(674\) −174.856 + 302.860i −0.259430 + 0.449347i
\(675\) 214.405 640.043i 0.317636 0.948213i
\(676\) 112.215 + 194.363i 0.165999 + 0.287519i
\(677\) −98.9049 + 26.5015i −0.146093 + 0.0391455i −0.331124 0.943587i \(-0.607428\pi\)
0.185031 + 0.982733i \(0.440761\pi\)
\(678\) 182.784 283.858i 0.269592 0.418670i
\(679\) 642.439 387.110i 0.946154 0.570117i
\(680\) 233.535 + 85.4256i 0.343434 + 0.125626i
\(681\) 346.641 1081.05i 0.509017 1.58744i
\(682\) −904.315 242.310i −1.32597 0.355294i
\(683\) −196.511 + 733.390i −0.287718 + 1.07378i 0.659113 + 0.752044i \(0.270932\pi\)
−0.946831 + 0.321733i \(0.895735\pi\)
\(684\) 19.6088 201.539i 0.0286678 0.294647i
\(685\) −75.3972 162.371i −0.110069 0.237039i
\(686\) −218.597 + 433.028i −0.318655 + 0.631236i
\(687\) −256.395 + 398.174i −0.373210 + 0.579584i
\(688\) 20.8666 + 77.8751i 0.0303293 + 0.113191i
\(689\) −399.009 + 230.368i −0.579113 + 0.334351i
\(690\) −333.766 + 791.261i −0.483719 + 1.14676i
\(691\) −651.620 376.213i −0.943010 0.544447i −0.0521077 0.998641i \(-0.516594\pi\)
−0.890903 + 0.454194i \(0.849927\pi\)
\(692\) 205.396 + 205.396i 0.296815 + 0.296815i
\(693\) −984.196 + 182.668i −1.42020 + 0.263590i
\(694\) 177.219i 0.255359i
\(695\) 93.5599 + 111.865i 0.134619 + 0.160957i
\(696\) 130.286 + 143.577i 0.187192 + 0.206289i
\(697\) −250.629 + 935.360i −0.359582 + 1.34198i
\(698\) −30.0933 112.310i −0.0431135 0.160902i
\(699\) −269.507 + 58.3751i −0.385561 + 0.0835123i
\(700\) −35.8999 348.154i −0.0512855 0.497363i
\(701\) 306.359i 0.437032i 0.975833 + 0.218516i \(0.0701216\pi\)
−0.975833 + 0.218516i \(0.929878\pi\)
\(702\) −178.473 + 225.697i −0.254235 + 0.321506i
\(703\) 86.9348 324.445i 0.123663 0.461515i
\(704\) −63.5558 110.082i −0.0902781 0.156366i
\(705\) −309.915 241.008i −0.439596 0.341856i
\(706\) 593.567i 0.840746i
\(707\) 153.652 + 533.333i 0.217330 + 0.754360i
\(708\) −40.1553 + 62.3600i −0.0567165 + 0.0880792i
\(709\) −188.596 108.886i −0.266003 0.153577i 0.361067 0.932540i \(-0.382413\pi\)
−0.627070 + 0.778963i \(0.715746\pi\)
\(710\) −201.220 141.379i −0.283409 0.199125i
\(711\) −342.902 245.106i −0.482281 0.344734i
\(712\) −98.2873 366.813i −0.138044 0.515187i
\(713\) −1192.68 + 1192.68i −1.67276 + 1.67276i
\(714\) 500.161 + 150.122i 0.700506 + 0.210254i
\(715\) 252.131 + 542.977i 0.352631 + 0.759408i
\(716\) −184.835 106.714i −0.258149 0.149043i
\(717\) 231.678 + 11.2441i 0.323122 + 0.0156821i
\(718\) −606.812 162.595i −0.845142 0.226455i
\(719\) −204.988 118.350i −0.285101 0.164603i 0.350629 0.936514i \(-0.385968\pi\)
−0.635731 + 0.771911i \(0.719301\pi\)
\(720\) 179.481 13.6550i 0.249280 0.0189653i
\(721\) 349.511 6.53775i 0.484759 0.00906762i
\(722\) −234.449 + 234.449i −0.324722 + 0.324722i
\(723\) 1148.15 590.612i 1.58803 0.816891i
\(724\) −16.9570 29.3704i −0.0234212 0.0405668i
\(725\) −101.001 + 562.219i −0.139311 + 0.775474i
\(726\) −531.097 170.298i −0.731539 0.234570i
\(727\) 173.946 173.946i 0.239266 0.239266i −0.577280 0.816546i \(-0.695886\pi\)
0.816546 + 0.577280i \(0.195886\pi\)
\(728\) −35.9129 + 144.809i −0.0493309 + 0.198914i
\(729\) 698.357 + 209.137i 0.957966 + 0.286882i
\(730\) −266.793 318.993i −0.365470 0.436976i
\(731\) −177.203 306.925i −0.242412 0.419870i
\(732\) 100.740 + 4.88921i 0.137623 + 0.00667925i
\(733\) 872.111 233.681i 1.18978 0.318801i 0.390983 0.920398i \(-0.372135\pi\)
0.798800 + 0.601597i \(0.205469\pi\)
\(734\) 789.128i 1.07511i
\(735\) −118.430 725.396i −0.161130 0.986933i
\(736\) −229.007 −0.311150
\(737\) −441.778 1648.74i −0.599428 2.23710i
\(738\) 115.001 + 691.450i 0.155827 + 0.936924i
\(739\) 340.163 196.393i 0.460302 0.265756i −0.251869 0.967761i \(-0.581045\pi\)
0.712171 + 0.702006i \(0.247712\pi\)
\(740\) 297.405 + 26.5018i 0.401898 + 0.0358132i
\(741\) −248.549 + 53.8356i −0.335424 + 0.0726527i
\(742\) 587.475 + 145.694i 0.791745 + 0.196353i
\(743\) 219.726 + 219.726i 0.295729 + 0.295729i 0.839338 0.543610i \(-0.182943\pi\)
−0.543610 + 0.839338i \(0.682943\pi\)
\(744\) 336.651 + 107.948i 0.452488 + 0.145091i
\(745\) −618.485 + 108.030i −0.830181 + 0.145007i
\(746\) 376.694 217.484i 0.504951 0.291534i
\(747\) 743.968 612.035i 0.995941 0.819324i
\(748\) 395.109 + 395.109i 0.528220 + 0.528220i
\(749\) −24.1708 1292.18i −0.0322707 1.72521i
\(750\) 354.481 + 394.453i 0.472641 + 0.525938i
\(751\) 189.018 327.389i 0.251688 0.435937i −0.712302 0.701873i \(-0.752347\pi\)
0.963991 + 0.265936i \(0.0856808\pi\)
\(752\) 27.0964 101.125i 0.0360325 0.134475i
\(753\) −53.7286 2.60761i −0.0713528 0.00346297i
\(754\) 121.748 210.874i 0.161470 0.279674i
\(755\) 319.850 874.401i 0.423642 1.15815i
\(756\) 374.560 50.8817i 0.495449 0.0673039i
\(757\) −396.630 396.630i −0.523950 0.523950i 0.394812 0.918762i \(-0.370810\pi\)
−0.918762 + 0.394812i \(0.870810\pi\)
\(758\) −10.0992 + 2.70608i −0.0133235 + 0.00357003i
\(759\) −1429.04 + 1296.75i −1.88280 + 1.70850i
\(760\) 130.173 + 91.4607i 0.171281 + 0.120343i
\(761\) −668.395 + 1157.69i −0.878312