Properties

Label 210.3.w.a.173.3
Level 210
Weight 3
Character 210.173
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 173.3
Character \(\chi\) \(=\) 210.173
Dual form 210.3.w.a.17.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(-2.49614 - 1.66411i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.84166 + 1.24831i) q^{5} +(4.01890 + 1.35957i) q^{6} +(-0.400482 + 6.98853i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(3.46146 + 8.30773i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(-2.49614 - 1.66411i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.84166 + 1.24831i) q^{5} +(4.01890 + 1.35957i) q^{6} +(-0.400482 + 6.98853i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(3.46146 + 8.30773i) q^{9} +(6.15692 - 3.47740i) q^{10} +(4.21141 - 2.43146i) q^{11} +(-5.98756 - 0.386185i) q^{12} +(13.3745 - 13.3745i) q^{13} +(-2.01091 - 9.69310i) q^{14} +(14.1628 + 4.94111i) q^{15} +(2.00000 - 3.46410i) q^{16} +(-25.3015 - 6.77952i) q^{17} +(-7.76928 - 10.0816i) q^{18} +(6.44901 - 11.1700i) q^{19} +(-7.13770 + 7.00381i) q^{20} +(12.6294 - 16.7779i) q^{21} +(-4.86292 + 4.86292i) q^{22} +(-5.04836 - 18.8407i) q^{23} +(8.32051 - 1.66406i) q^{24} +(21.8834 - 12.0878i) q^{25} +(-13.3745 + 23.1653i) q^{26} +(5.18469 - 26.4975i) q^{27} +(6.29488 + 12.5050i) q^{28} +41.0872 q^{29} +(-21.1553 - 1.56573i) q^{30} +(28.4108 - 16.4030i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-14.5585 - 0.938992i) q^{33} +37.0440 q^{34} +(-6.78488 - 34.3361i) q^{35} +(14.3031 + 10.9279i) q^{36} +(16.1378 + 60.2271i) q^{37} +(-4.72101 + 17.6190i) q^{38} +(-55.6413 + 11.1280i) q^{39} +(7.18670 - 12.1800i) q^{40} +50.2823 q^{41} +(-11.1109 + 27.5418i) q^{42} +(-39.5246 - 39.5246i) q^{43} +(4.86292 - 8.42282i) q^{44} +(-27.1299 - 35.9022i) q^{45} +(13.7924 + 23.8891i) q^{46} +(-0.928232 - 3.46421i) q^{47} +(-10.7569 + 5.31867i) q^{48} +(-48.6792 - 5.59756i) q^{49} +(-25.4689 + 24.5222i) q^{50} +(51.8743 + 59.0272i) q^{51} +(9.79081 - 36.5398i) q^{52} +(55.8602 + 14.9677i) q^{53} +(2.61634 + 38.0940i) q^{54} +(-17.3550 + 17.0295i) q^{55} +(-13.1761 - 14.7780i) q^{56} +(-34.6858 + 17.1501i) q^{57} +(-56.1262 + 15.0390i) q^{58} +(41.0549 - 23.7030i) q^{59} +(29.4718 - 5.60457i) q^{60} +(-58.7846 - 33.9393i) q^{61} +(-32.8059 + 32.8059i) q^{62} +(-59.4451 + 20.8634i) q^{63} -8.00000i q^{64} +(-48.0593 + 81.4504i) q^{65} +(20.2310 - 4.04610i) q^{66} +(40.3060 + 10.7999i) q^{67} +(-50.6030 + 13.5590i) q^{68} +(-18.7517 + 55.4302i) q^{69} +(21.8362 + 44.4205i) q^{70} -30.7646i q^{71} +(-23.5384 - 9.69253i) q^{72} +(52.4330 + 14.0494i) q^{73} +(-44.0893 - 76.3649i) q^{74} +(-74.7397 - 6.24356i) q^{75} -25.7961i q^{76} +(15.3057 + 30.4053i) q^{77} +(71.9343 - 35.5672i) q^{78} +(-26.6943 - 15.4119i) q^{79} +(-5.35905 + 19.2686i) q^{80} +(-57.0366 + 57.5137i) q^{81} +(-68.6869 + 18.4046i) q^{82} +(-43.6505 - 43.6505i) q^{83} +(5.09677 - 41.6896i) q^{84} +(130.964 + 1.23996i) q^{85} +(68.4587 + 39.5246i) q^{86} +(-102.560 - 68.3737i) q^{87} +(-3.55990 + 13.2857i) q^{88} +(-54.3696 - 31.3903i) q^{89} +(50.2012 + 39.1132i) q^{90} +(88.1119 + 98.8244i) q^{91} +(-27.5847 - 27.5847i) q^{92} +(-98.2137 - 6.33457i) q^{93} +(2.53598 + 4.39244i) q^{94} +(-17.2803 + 62.1319i) q^{95} +(12.7475 - 11.2027i) q^{96} +(16.7634 + 16.7634i) q^{97} +(68.5459 - 10.1714i) q^{98} +(34.7775 + 26.5708i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) −2.49614 1.66411i −0.832048 0.554704i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.84166 + 1.24831i −0.968333 + 0.249663i
\(6\) 4.01890 + 1.35957i 0.669817 + 0.226595i
\(7\) −0.400482 + 6.98853i −0.0572117 + 0.998362i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 3.46146 + 8.30773i 0.384607 + 0.923081i
\(10\) 6.15692 3.47740i 0.615692 0.347740i
\(11\) 4.21141 2.43146i 0.382856 0.221042i −0.296204 0.955125i \(-0.595721\pi\)
0.679060 + 0.734083i \(0.262388\pi\)
\(12\) −5.98756 0.386185i −0.498963 0.0321821i
\(13\) 13.3745 13.3745i 1.02881 1.02881i 0.0292348 0.999573i \(-0.490693\pi\)
0.999573 0.0292348i \(-0.00930704\pi\)
\(14\) −2.01091 9.69310i −0.143637 0.692364i
\(15\) 14.1628 + 4.94111i 0.944188 + 0.329407i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) −25.3015 6.77952i −1.48832 0.398795i −0.579153 0.815219i \(-0.696617\pi\)
−0.909171 + 0.416424i \(0.863283\pi\)
\(18\) −7.76928 10.0816i −0.431627 0.560088i
\(19\) 6.44901 11.1700i 0.339422 0.587896i −0.644902 0.764265i \(-0.723102\pi\)
0.984324 + 0.176369i \(0.0564353\pi\)
\(20\) −7.13770 + 7.00381i −0.356885 + 0.350190i
\(21\) 12.6294 16.7779i 0.601398 0.798949i
\(22\) −4.86292 + 4.86292i −0.221042 + 0.221042i
\(23\) −5.04836 18.8407i −0.219494 0.819162i −0.984536 0.175182i \(-0.943949\pi\)
0.765042 0.643980i \(-0.222718\pi\)
\(24\) 8.32051 1.66406i 0.346688 0.0693359i
\(25\) 21.8834 12.0878i 0.875337 0.483513i
\(26\) −13.3745 + 23.1653i −0.514404 + 0.890973i
\(27\) 5.18469 26.4975i 0.192026 0.981390i
\(28\) 6.29488 + 12.5050i 0.224817 + 0.446606i
\(29\) 41.0872 1.41680 0.708400 0.705811i \(-0.249417\pi\)
0.708400 + 0.705811i \(0.249417\pi\)
\(30\) −21.1553 1.56573i −0.705178 0.0521909i
\(31\) 28.4108 16.4030i 0.916477 0.529128i 0.0339672 0.999423i \(-0.489186\pi\)
0.882509 + 0.470295i \(0.155852\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −14.5585 0.938992i −0.441167 0.0284543i
\(34\) 37.0440 1.08953
\(35\) −6.78488 34.3361i −0.193854 0.981030i
\(36\) 14.3031 + 10.9279i 0.397310 + 0.303554i
\(37\) 16.1378 + 60.2271i 0.436157 + 1.62776i 0.738283 + 0.674491i \(0.235637\pi\)
−0.302127 + 0.953268i \(0.597697\pi\)
\(38\) −4.72101 + 17.6190i −0.124237 + 0.463659i
\(39\) −55.6413 + 11.1280i −1.42670 + 0.285333i
\(40\) 7.18670 12.1800i 0.179668 0.304499i
\(41\) 50.2823 1.22640 0.613199 0.789929i \(-0.289883\pi\)
0.613199 + 0.789929i \(0.289883\pi\)
\(42\) −11.1109 + 27.5418i −0.264545 + 0.655756i
\(43\) −39.5246 39.5246i −0.919178 0.919178i 0.0777918 0.996970i \(-0.475213\pi\)
−0.996970 + 0.0777918i \(0.975213\pi\)
\(44\) 4.86292 8.42282i 0.110521 0.191428i
\(45\) −27.1299 35.9022i −0.602886 0.797828i
\(46\) 13.7924 + 23.8891i 0.299834 + 0.519328i
\(47\) −0.928232 3.46421i −0.0197496 0.0737066i 0.955348 0.295484i \(-0.0954809\pi\)
−0.975097 + 0.221777i \(0.928814\pi\)
\(48\) −10.7569 + 5.31867i −0.224103 + 0.110806i
\(49\) −48.6792 5.59756i −0.993454 0.114236i
\(50\) −25.4689 + 24.5222i −0.509377 + 0.490443i
\(51\) 51.8743 + 59.0272i 1.01714 + 1.15740i
\(52\) 9.79081 36.5398i 0.188285 0.702688i
\(53\) 55.8602 + 14.9677i 1.05397 + 0.282409i 0.743890 0.668302i \(-0.232979\pi\)
0.310077 + 0.950712i \(0.399645\pi\)
\(54\) 2.61634 + 38.0940i 0.0484508 + 0.705445i
\(55\) −17.3550 + 17.0295i −0.315546 + 0.309627i
\(56\) −13.1761 14.7780i −0.235288 0.263893i
\(57\) −34.6858 + 17.1501i −0.608523 + 0.300879i
\(58\) −56.1262 + 15.0390i −0.967693 + 0.259292i
\(59\) 41.0549 23.7030i 0.695845 0.401747i −0.109953 0.993937i \(-0.535070\pi\)
0.805798 + 0.592190i \(0.201737\pi\)
\(60\) 29.4718 5.60457i 0.491197 0.0934095i
\(61\) −58.7846 33.9393i −0.963682 0.556382i −0.0663780 0.997795i \(-0.521144\pi\)
−0.897304 + 0.441412i \(0.854478\pi\)
\(62\) −32.8059 + 32.8059i −0.529128 + 0.529128i
\(63\) −59.4451 + 20.8634i −0.943573 + 0.331166i
\(64\) 8.00000i 0.125000i
\(65\) −48.0593 + 81.4504i −0.739373 + 1.25308i
\(66\) 20.2310 4.04610i 0.306530 0.0613045i
\(67\) 40.3060 + 10.7999i 0.601581 + 0.161193i 0.546741 0.837302i \(-0.315868\pi\)
0.0548406 + 0.998495i \(0.482535\pi\)
\(68\) −50.6030 + 13.5590i −0.744162 + 0.199398i
\(69\) −18.7517 + 55.4302i −0.271763 + 0.803336i
\(70\) 21.8362 + 44.4205i 0.311946 + 0.634579i
\(71\) 30.7646i 0.433304i −0.976249 0.216652i \(-0.930486\pi\)
0.976249 0.216652i \(-0.0695137\pi\)
\(72\) −23.5384 9.69253i −0.326922 0.134619i
\(73\) 52.4330 + 14.0494i 0.718261 + 0.192457i 0.599396 0.800453i \(-0.295408\pi\)
0.118865 + 0.992910i \(0.462074\pi\)
\(74\) −44.0893 76.3649i −0.595801 1.03196i
\(75\) −74.7397 6.24356i −0.996529 0.0832475i
\(76\) 25.7961i 0.339422i
\(77\) 15.3057 + 30.4053i 0.198776 + 0.394875i
\(78\) 71.9343 35.5672i 0.922235 0.455990i
\(79\) −26.6943 15.4119i −0.337902 0.195088i 0.321442 0.946929i \(-0.395833\pi\)
−0.659344 + 0.751842i \(0.729166\pi\)
\(80\) −5.35905 + 19.2686i −0.0669881 + 0.240858i
\(81\) −57.0366 + 57.5137i −0.704156 + 0.710046i
\(82\) −68.6869 + 18.4046i −0.837645 + 0.224446i
\(83\) −43.6505 43.6505i −0.525910 0.525910i 0.393440 0.919350i \(-0.371285\pi\)
−0.919350 + 0.393440i \(0.871285\pi\)
\(84\) 5.09677 41.6896i 0.0606759 0.496305i
\(85\) 130.964 + 1.23996i 1.54076 + 0.0145878i
\(86\) 68.4587 + 39.5246i 0.796031 + 0.459589i
\(87\) −102.560 68.3737i −1.17885 0.785905i
\(88\) −3.55990 + 13.2857i −0.0404534 + 0.150974i
\(89\) −54.3696 31.3903i −0.610894 0.352700i 0.162421 0.986722i \(-0.448070\pi\)
−0.773315 + 0.634022i \(0.781403\pi\)
\(90\) 50.2012 + 39.1132i 0.557791 + 0.434591i
\(91\) 88.1119 + 98.8244i 0.968262 + 1.08598i
\(92\) −27.5847 27.5847i −0.299834 0.299834i
\(93\) −98.2137 6.33457i −1.05606 0.0681137i
\(94\) 2.53598 + 4.39244i 0.0269785 + 0.0467281i
\(95\) −17.2803 + 62.1319i −0.181898 + 0.654020i
\(96\) 12.7475 11.2027i 0.132786 0.116695i
\(97\) 16.7634 + 16.7634i 0.172819 + 0.172819i 0.788217 0.615398i \(-0.211005\pi\)
−0.615398 + 0.788217i \(0.711005\pi\)
\(98\) 68.5459 10.1714i 0.699448 0.103790i
\(99\) 34.7775 + 26.5708i 0.351288 + 0.268392i
\(100\) 25.8154 42.8202i 0.258154 0.428202i
\(101\) 45.8307 + 79.3811i 0.453769 + 0.785951i 0.998617 0.0525839i \(-0.0167457\pi\)
−0.544847 + 0.838535i \(0.683412\pi\)
\(102\) −92.4670 61.6453i −0.906540 0.604366i
\(103\) −38.7970 144.792i −0.376670 1.40575i −0.850890 0.525344i \(-0.823937\pi\)
0.474220 0.880406i \(-0.342730\pi\)
\(104\) 53.4980i 0.514404i
\(105\) −40.2031 + 96.9985i −0.382886 + 0.923796i
\(106\) −81.7850 −0.771557
\(107\) 109.905 29.4490i 1.02715 0.275224i 0.294372 0.955691i \(-0.404890\pi\)
0.732779 + 0.680467i \(0.238223\pi\)
\(108\) −17.5174 51.0798i −0.162198 0.472961i
\(109\) 35.4189 20.4491i 0.324944 0.187606i −0.328650 0.944452i \(-0.606594\pi\)
0.653594 + 0.756845i \(0.273260\pi\)
\(110\) 17.4742 29.6151i 0.158856 0.269228i
\(111\) 59.9424 177.190i 0.540021 1.59631i
\(112\) 23.4080 + 15.3644i 0.209000 + 0.137182i
\(113\) 89.3288 89.3288i 0.790520 0.790520i −0.191059 0.981579i \(-0.561192\pi\)
0.981579 + 0.191059i \(0.0611921\pi\)
\(114\) 41.1044 36.1233i 0.360565 0.316871i
\(115\) 47.9616 + 84.9185i 0.417057 + 0.738422i
\(116\) 71.1651 41.0872i 0.613493 0.354200i
\(117\) 157.407 + 64.8164i 1.34536 + 0.553986i
\(118\) −47.4061 + 47.4061i −0.401747 + 0.401747i
\(119\) 57.5117 174.105i 0.483291 1.46307i
\(120\) −38.2079 + 18.4434i −0.318399 + 0.153695i
\(121\) −48.6760 + 84.3093i −0.402281 + 0.696771i
\(122\) 92.7240 + 24.8453i 0.760032 + 0.203650i
\(123\) −125.512 83.6754i −1.02042 0.680288i
\(124\) 32.8059 56.8215i 0.264564 0.458238i
\(125\) −90.8629 + 85.8425i −0.726903 + 0.686740i
\(126\) 73.5669 50.2584i 0.583865 0.398876i
\(127\) 43.3151 43.3151i 0.341064 0.341064i −0.515703 0.856767i \(-0.672469\pi\)
0.856767 + 0.515703i \(0.172469\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) 32.8857 + 164.433i 0.254928 + 1.27467i
\(130\) 35.8373 128.854i 0.275671 0.991186i
\(131\) −49.0812 + 85.0111i −0.374665 + 0.648939i −0.990277 0.139110i \(-0.955576\pi\)
0.615612 + 0.788050i \(0.288909\pi\)
\(132\) −26.1551 + 12.9321i −0.198144 + 0.0979706i
\(133\) 75.4794 + 49.5425i 0.567514 + 0.372500i
\(134\) −59.0120 −0.440388
\(135\) 7.97464 + 134.764i 0.0590714 + 0.998254i
\(136\) 64.1620 37.0440i 0.471780 0.272382i
\(137\) −19.5210 + 72.8533i −0.142489 + 0.531776i 0.857365 + 0.514708i \(0.172100\pi\)
−0.999854 + 0.0170677i \(0.994567\pi\)
\(138\) 5.32640 82.5826i 0.0385971 0.598425i
\(139\) −84.6039 −0.608661 −0.304331 0.952567i \(-0.598433\pi\)
−0.304331 + 0.952567i \(0.598433\pi\)
\(140\) −46.0878 52.6869i −0.329199 0.376335i
\(141\) −3.44783 + 10.1918i −0.0244527 + 0.0722826i
\(142\) 11.2606 + 42.0252i 0.0793002 + 0.295952i
\(143\) 23.8060 88.8450i 0.166475 0.621294i
\(144\) 35.7017 + 4.62461i 0.247929 + 0.0321153i
\(145\) −198.930 + 51.2897i −1.37193 + 0.353722i
\(146\) −76.7673 −0.525803
\(147\) 112.195 + 94.9800i 0.763234 + 0.646123i
\(148\) 88.1785 + 88.1785i 0.595801 + 0.595801i
\(149\) −5.31113 + 9.19914i −0.0356452 + 0.0617392i −0.883298 0.468813i \(-0.844682\pi\)
0.847652 + 0.530552i \(0.178015\pi\)
\(150\) 104.382 18.8278i 0.695877 0.125518i
\(151\) −106.623 184.676i −0.706110 1.22302i −0.966289 0.257458i \(-0.917115\pi\)
0.260179 0.965560i \(-0.416218\pi\)
\(152\) 9.44201 + 35.2381i 0.0621185 + 0.231829i
\(153\) −31.2577 233.665i −0.204299 1.52722i
\(154\) −32.0372 35.9322i −0.208034 0.233326i
\(155\) −117.079 + 114.883i −0.755351 + 0.741182i
\(156\) −85.2456 + 74.9156i −0.546446 + 0.480228i
\(157\) 3.85205 14.3760i 0.0245354 0.0915672i −0.952572 0.304312i \(-0.901574\pi\)
0.977108 + 0.212745i \(0.0682402\pi\)
\(158\) 42.1062 + 11.2823i 0.266495 + 0.0714071i
\(159\) −114.527 130.319i −0.720297 0.819618i
\(160\) 0.267782 28.2830i 0.00167364 0.176769i
\(161\) 133.691 27.7353i 0.830378 0.172269i
\(162\) 56.8620 99.4420i 0.351000 0.613840i
\(163\) 137.975 36.9704i 0.846474 0.226812i 0.190586 0.981670i \(-0.438961\pi\)
0.655888 + 0.754858i \(0.272294\pi\)
\(164\) 87.0915 50.2823i 0.531046 0.306599i
\(165\) 71.6595 13.6273i 0.434300 0.0825896i
\(166\) 75.6049 + 43.6505i 0.455451 + 0.262955i
\(167\) 155.302 155.302i 0.929954 0.929954i −0.0677484 0.997702i \(-0.521582\pi\)
0.997702 + 0.0677484i \(0.0215815\pi\)
\(168\) 8.29713 + 58.8146i 0.0493877 + 0.350087i
\(169\) 188.754i 1.11689i
\(170\) −179.354 + 46.2424i −1.05503 + 0.272014i
\(171\) 115.120 + 14.9121i 0.673219 + 0.0872051i
\(172\) −107.983 28.9340i −0.627810 0.168221i
\(173\) 9.31283 2.49537i 0.0538314 0.0144241i −0.231803 0.972763i \(-0.574462\pi\)
0.285634 + 0.958339i \(0.407796\pi\)
\(174\) 165.125 + 55.8609i 0.948997 + 0.321039i
\(175\) 75.7122 + 157.774i 0.432641 + 0.901566i
\(176\) 19.4517i 0.110521i
\(177\) −141.923 9.15375i −0.801827 0.0517161i
\(178\) 85.7599 + 22.9793i 0.481797 + 0.129097i
\(179\) 88.5445 + 153.364i 0.494662 + 0.856780i 0.999981 0.00615276i \(-0.00195850\pi\)
−0.505319 + 0.862933i \(0.668625\pi\)
\(180\) −82.8925 35.0546i −0.460514 0.194748i
\(181\) 156.164i 0.862785i −0.902164 0.431392i \(-0.858022\pi\)
0.902164 0.431392i \(-0.141978\pi\)
\(182\) −156.535 102.745i −0.860084 0.564535i
\(183\) 90.2560 + 182.542i 0.493202 + 0.997495i
\(184\) 47.7782 + 27.5847i 0.259664 + 0.149917i
\(185\) −153.316 271.454i −0.828735 1.46732i
\(186\) 136.481 27.2955i 0.733769 0.146750i
\(187\) −123.039 + 32.9682i −0.657963 + 0.176301i
\(188\) −5.07195 5.07195i −0.0269785 0.0269785i
\(189\) 183.103 + 46.8452i 0.968796 + 0.247858i
\(190\) 0.863466 91.1987i 0.00454456 0.479993i
\(191\) −169.386 97.7951i −0.886839 0.512016i −0.0139315 0.999903i \(-0.504435\pi\)
−0.872907 + 0.487886i \(0.837768\pi\)
\(192\) −13.3129 + 19.9691i −0.0693380 + 0.104006i
\(193\) −43.3945 + 161.950i −0.224842 + 0.839121i 0.757626 + 0.652689i \(0.226359\pi\)
−0.982468 + 0.186432i \(0.940308\pi\)
\(194\) −29.0351 16.7634i −0.149666 0.0864094i
\(195\) 255.505 123.336i 1.31028 0.632491i
\(196\) −89.9125 + 38.9840i −0.458737 + 0.198898i
\(197\) −133.654 133.654i −0.678445 0.678445i 0.281203 0.959648i \(-0.409267\pi\)
−0.959648 + 0.281203i \(0.909267\pi\)
\(198\) −57.2326 23.5670i −0.289053 0.119025i
\(199\) −9.32884 16.1580i −0.0468786 0.0811961i 0.841634 0.540048i \(-0.181594\pi\)
−0.888513 + 0.458852i \(0.848261\pi\)
\(200\) −19.5912 + 67.9425i −0.0979561 + 0.339713i
\(201\) −82.6371 94.0319i −0.411130 0.467820i
\(202\) −91.6614 91.6614i −0.453769 0.453769i
\(203\) −16.4547 + 287.139i −0.0810575 + 1.41448i
\(204\) 148.876 + 50.3638i 0.729785 + 0.246881i
\(205\) −243.450 + 62.7680i −1.18756 + 0.306185i
\(206\) 105.995 + 183.589i 0.514540 + 0.891210i
\(207\) 139.049 107.157i 0.671734 0.517665i
\(208\) −19.5816 73.0796i −0.0941424 0.351344i
\(209\) 62.7220i 0.300105i
\(210\) 19.4145 147.218i 0.0924498 0.701037i
\(211\) −103.762 −0.491763 −0.245881 0.969300i \(-0.579077\pi\)
−0.245881 + 0.969300i \(0.579077\pi\)
\(212\) 111.720 29.9354i 0.526983 0.141205i
\(213\) −51.1958 + 76.7928i −0.240356 + 0.360530i
\(214\) −139.354 + 80.4561i −0.651187 + 0.375963i
\(215\) 240.704 + 142.026i 1.11955 + 0.660586i
\(216\) 42.6257 + 63.3644i 0.197341 + 0.293354i
\(217\) 103.255 + 205.119i 0.475828 + 0.945248i
\(218\) −40.8982 + 40.8982i −0.187606 + 0.187606i
\(219\) −107.501 122.324i −0.490870 0.558556i
\(220\) −13.0303 + 46.8509i −0.0592287 + 0.212959i
\(221\) −429.067 + 247.722i −1.94148 + 1.12091i
\(222\) −17.0266 + 263.987i −0.0766964 + 1.18913i
\(223\) −207.251 + 207.251i −0.929375 + 0.929375i −0.997665 0.0682903i \(-0.978246\pi\)
0.0682903 + 0.997665i \(0.478246\pi\)
\(224\) −37.5997 12.4202i −0.167856 0.0554473i
\(225\) 176.171 + 139.960i 0.782982 + 0.622045i
\(226\) −89.3288 + 154.722i −0.395260 + 0.684610i
\(227\) −132.012 35.3725i −0.581550 0.155826i −0.0439617 0.999033i \(-0.513998\pi\)
−0.537589 + 0.843207i \(0.680665\pi\)
\(228\) −42.9275 + 64.3906i −0.188279 + 0.282415i
\(229\) −31.2046 + 54.0479i −0.136264 + 0.236017i −0.926080 0.377328i \(-0.876843\pi\)
0.789815 + 0.613345i \(0.210176\pi\)
\(230\) −96.5990 98.4457i −0.419996 0.428025i
\(231\) 12.3926 101.367i 0.0536476 0.438816i
\(232\) −82.1744 + 82.1744i −0.354200 + 0.354200i
\(233\) 61.6527 + 230.091i 0.264604 + 0.987515i 0.962492 + 0.271309i \(0.0874565\pi\)
−0.697888 + 0.716207i \(0.745877\pi\)
\(234\) −238.746 30.9259i −1.02028 0.132162i
\(235\) 8.81861 + 15.6138i 0.0375260 + 0.0664418i
\(236\) 47.4061 82.1098i 0.200873 0.347923i
\(237\) 40.9855 + 82.8926i 0.172935 + 0.349758i
\(238\) −14.8354 + 258.883i −0.0623337 + 1.08774i
\(239\) −112.005 −0.468641 −0.234321 0.972159i \(-0.575287\pi\)
−0.234321 + 0.972159i \(0.575287\pi\)
\(240\) 45.4421 39.1792i 0.189342 0.163247i
\(241\) −49.3895 + 28.5150i −0.204936 + 0.118320i −0.598956 0.800782i \(-0.704417\pi\)
0.394020 + 0.919102i \(0.371084\pi\)
\(242\) 35.6333 132.985i 0.147245 0.549526i
\(243\) 238.081 48.6471i 0.979756 0.200194i
\(244\) −135.757 −0.556382
\(245\) 242.676 33.6654i 0.990514 0.137410i
\(246\) 202.080 + 68.3622i 0.821462 + 0.277895i
\(247\) −63.1411 235.646i −0.255632 0.954031i
\(248\) −24.0156 + 89.6275i −0.0968371 + 0.361401i
\(249\) 36.3185 + 181.597i 0.145858 + 0.729306i
\(250\) 92.7004 150.521i 0.370802 0.602085i
\(251\) 78.0529 0.310968 0.155484 0.987838i \(-0.450306\pi\)
0.155484 + 0.987838i \(0.450306\pi\)
\(252\) −82.0985 + 95.5816i −0.325788 + 0.379292i
\(253\) −67.0711 67.0711i −0.265103 0.265103i
\(254\) −43.3151 + 75.0240i −0.170532 + 0.295370i
\(255\) −324.842 221.035i −1.27389 0.866802i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −51.7312 193.064i −0.201289 0.751220i −0.990549 0.137161i \(-0.956202\pi\)
0.789260 0.614059i \(-0.210464\pi\)
\(258\) −105.109 212.582i −0.407400 0.823962i
\(259\) −427.362 + 88.6597i −1.65005 + 0.342315i
\(260\) −1.79073 + 189.135i −0.00688741 + 0.727444i
\(261\) 142.222 + 341.341i 0.544911 + 1.30782i
\(262\) 35.9299 134.092i 0.137137 0.511802i
\(263\) 206.919 + 55.4438i 0.786765 + 0.210813i 0.629765 0.776786i \(-0.283151\pi\)
0.157000 + 0.987599i \(0.449818\pi\)
\(264\) 30.9950 27.2390i 0.117405 0.103178i
\(265\) −289.141 2.73757i −1.09110 0.0103305i
\(266\) −121.241 40.0490i −0.455792 0.150560i
\(267\) 83.4773 + 168.832i 0.312649 + 0.632329i
\(268\) 80.6119 21.5999i 0.300791 0.0805966i
\(269\) 234.338 135.295i 0.871146 0.502956i 0.00341699 0.999994i \(-0.498912\pi\)
0.867729 + 0.497038i \(0.165579\pi\)
\(270\) −60.2207 181.172i −0.223040 0.671009i
\(271\) 202.450 + 116.885i 0.747048 + 0.431308i 0.824626 0.565678i \(-0.191385\pi\)
−0.0775784 + 0.996986i \(0.524719\pi\)
\(272\) −74.0879 + 74.0879i −0.272382 + 0.272382i
\(273\) −55.4850 393.308i −0.203242 1.44069i
\(274\) 106.665i 0.389287i
\(275\) 62.7691 104.115i 0.228251 0.378602i
\(276\) 22.9513 + 114.760i 0.0831570 + 0.415795i
\(277\) 38.2508 + 10.2493i 0.138089 + 0.0370009i 0.327202 0.944955i \(-0.393894\pi\)
−0.189112 + 0.981955i \(0.560561\pi\)
\(278\) 115.571 30.9672i 0.415723 0.111393i
\(279\) 234.614 + 179.251i 0.840911 + 0.642476i
\(280\) 82.2419 + 55.1024i 0.293721 + 0.196794i
\(281\) 324.293i 1.15407i −0.816720 0.577034i \(-0.804210\pi\)
0.816720 0.577034i \(-0.195790\pi\)
\(282\) 0.979355 15.1843i 0.00347289 0.0538451i
\(283\) 100.622 + 26.9616i 0.355555 + 0.0952707i 0.432175 0.901790i \(-0.357746\pi\)
−0.0766202 + 0.997060i \(0.524413\pi\)
\(284\) −30.7646 53.2858i −0.108326 0.187626i
\(285\) 146.528 126.334i 0.514135 0.443276i
\(286\) 130.078i 0.454819i
\(287\) −20.1371 + 351.399i −0.0701642 + 1.22439i
\(288\) −50.4622 + 6.75041i −0.175216 + 0.0234389i
\(289\) 343.923 + 198.564i 1.19004 + 0.687072i
\(290\) 252.971 142.877i 0.872313 0.492678i
\(291\) −13.9477 69.7401i −0.0479302 0.239657i
\(292\) 104.866 28.0988i 0.359130 0.0962287i
\(293\) 155.222 + 155.222i 0.529767 + 0.529767i 0.920503 0.390736i \(-0.127780\pi\)
−0.390736 + 0.920503i \(0.627780\pi\)
\(294\) −188.027 88.6788i −0.639547 0.301628i
\(295\) −169.185 + 166.012i −0.573509 + 0.562751i
\(296\) −152.730 88.1785i −0.515979 0.297900i
\(297\) −42.5928 124.198i −0.143410 0.418176i
\(298\) 3.88802 14.5103i 0.0130470 0.0486922i
\(299\) −319.504 184.466i −1.06858 0.616943i
\(300\) −135.696 + 63.9255i −0.452322 + 0.213085i
\(301\) 292.048 260.390i 0.970260 0.865085i
\(302\) 213.245 + 213.245i 0.706110 + 0.706110i
\(303\) 17.6991 274.414i 0.0584129 0.905657i
\(304\) −25.7961 44.6801i −0.0848554 0.146974i
\(305\) 326.982 + 90.9412i 1.07207 + 0.298168i
\(306\) 128.226 + 307.751i 0.419040 + 1.00572i
\(307\) 12.5079 + 12.5079i 0.0407422 + 0.0407422i 0.727184 0.686442i \(-0.240829\pi\)
−0.686442 + 0.727184i \(0.740829\pi\)
\(308\) 56.9157 + 37.3579i 0.184791 + 0.121292i
\(309\) −144.108 + 425.985i −0.466369 + 1.37859i
\(310\) 117.883 199.787i 0.380269 0.644475i
\(311\) −256.759 444.719i −0.825591 1.42996i −0.901467 0.432848i \(-0.857509\pi\)
0.0758765 0.997117i \(-0.475825\pi\)
\(312\) 89.0267 133.539i 0.285342 0.428008i
\(313\) −120.241 448.747i −0.384158 1.43370i −0.839490 0.543375i \(-0.817146\pi\)
0.455333 0.890321i \(-0.349520\pi\)
\(314\) 21.0480i 0.0670318i
\(315\) 261.769 175.220i 0.831013 0.556253i
\(316\) −61.6477 −0.195088
\(317\) 368.670 98.7847i 1.16300 0.311624i 0.374834 0.927092i \(-0.377700\pi\)
0.788162 + 0.615468i \(0.211033\pi\)
\(318\) 204.147 + 136.100i 0.641972 + 0.427986i
\(319\) 173.035 99.9019i 0.542430 0.313172i
\(320\) 9.98650 + 38.7333i 0.0312078 + 0.121042i
\(321\) −323.345 109.386i −1.00731 0.340765i
\(322\) −172.473 + 86.8213i −0.535631 + 0.269631i
\(323\) −238.897 + 238.897i −0.739619 + 0.739619i
\(324\) −41.2766 + 156.653i −0.127397 + 0.483498i
\(325\) 131.011 454.348i 0.403112 1.39799i
\(326\) −174.946 + 101.005i −0.536643 + 0.309831i
\(327\) −122.440 7.89712i −0.374435 0.0241502i
\(328\) −100.565 + 100.565i −0.306599 + 0.306599i
\(329\) 24.5815 5.09963i 0.0747158 0.0155004i
\(330\) −92.9008 + 44.8444i −0.281518 + 0.135892i
\(331\) 1.24808 2.16173i 0.00377062 0.00653091i −0.864134 0.503262i \(-0.832133\pi\)
0.867905 + 0.496731i \(0.165466\pi\)
\(332\) −119.255 31.9544i −0.359203 0.0962482i
\(333\) −444.490 + 342.542i −1.33480 + 1.02865i
\(334\) −155.302 + 268.992i −0.464977 + 0.805364i
\(335\) −208.630 1.97530i −0.622775 0.00589641i
\(336\) −32.8617 77.3053i −0.0978028 0.230075i
\(337\) −42.5517 + 42.5517i −0.126266 + 0.126266i −0.767416 0.641150i \(-0.778458\pi\)
0.641150 + 0.767416i \(0.278458\pi\)
\(338\) 69.0889 + 257.843i 0.204405 + 0.762849i
\(339\) −371.630 + 74.3242i −1.09625 + 0.219246i
\(340\) 228.077 128.817i 0.670814 0.378872i
\(341\) 79.7663 138.159i 0.233919 0.405159i
\(342\) −162.716 + 21.7667i −0.475777 + 0.0636454i
\(343\) 58.6139 337.955i 0.170886 0.985291i
\(344\) 158.099 0.459589
\(345\) 21.5951 291.782i 0.0625945 0.845746i
\(346\) −11.8082 + 6.81746i −0.0341277 + 0.0197037i
\(347\) 79.5200 296.773i 0.229164 0.855253i −0.751529 0.659700i \(-0.770683\pi\)
0.980693 0.195553i \(-0.0626500\pi\)
\(348\) −246.012 15.8672i −0.706931 0.0455955i
\(349\) 299.276 0.857526 0.428763 0.903417i \(-0.358950\pi\)
0.428763 + 0.903417i \(0.358950\pi\)
\(350\) −161.174 187.811i −0.460498 0.536602i
\(351\) −285.048 423.734i −0.812104 1.20722i
\(352\) 7.11981 + 26.5715i 0.0202267 + 0.0754872i
\(353\) −136.317 + 508.741i −0.386166 + 1.44119i 0.450154 + 0.892951i \(0.351369\pi\)
−0.836320 + 0.548242i \(0.815297\pi\)
\(354\) 197.221 39.4433i 0.557123 0.111422i
\(355\) 38.4038 + 148.952i 0.108180 + 0.419583i
\(356\) −125.561 −0.352700
\(357\) −433.288 + 338.886i −1.21369 + 0.949260i
\(358\) −177.089 177.089i −0.494662 0.494662i
\(359\) 21.3535 36.9854i 0.0594805 0.103023i −0.834752 0.550626i \(-0.814389\pi\)
0.894232 + 0.447603i \(0.147722\pi\)
\(360\) 126.064 + 17.5448i 0.350178 + 0.0487354i
\(361\) 97.3204 + 168.564i 0.269586 + 0.466936i
\(362\) 57.1600 + 213.324i 0.157901 + 0.589293i
\(363\) 261.803 129.446i 0.721219 0.356600i
\(364\) 251.439 + 83.0569i 0.690765 + 0.228178i
\(365\) −271.401 2.56962i −0.743565 0.00704004i
\(366\) −190.107 216.321i −0.519418 0.591040i
\(367\) −160.689 + 599.699i −0.437844 + 1.63406i 0.296323 + 0.955088i \(0.404240\pi\)
−0.734167 + 0.678969i \(0.762427\pi\)
\(368\) −75.3629 20.1934i −0.204790 0.0548734i
\(369\) 174.050 + 417.731i 0.471680 + 1.13206i
\(370\) 308.793 + 314.696i 0.834575 + 0.850529i
\(371\) −126.973 + 384.387i −0.342246 + 1.03608i
\(372\) −176.446 + 87.2419i −0.474317 + 0.234521i
\(373\) 596.218 159.756i 1.59844 0.428301i 0.653869 0.756607i \(-0.273145\pi\)
0.944571 + 0.328307i \(0.106478\pi\)
\(374\) 156.007 90.0709i 0.417132 0.240831i
\(375\) 369.658 63.0692i 0.985756 0.168185i
\(376\) 8.78488 + 5.07195i 0.0233641 + 0.0134892i
\(377\) 549.521 549.521i 1.45761 1.45761i
\(378\) −267.269 + 3.02845i −0.707061 + 0.00801177i
\(379\) 310.044i 0.818057i −0.912522 0.409029i \(-0.865868\pi\)
0.912522 0.409029i \(-0.134132\pi\)
\(380\) 32.2015 + 124.896i 0.0847409 + 0.328673i
\(381\) −180.202 + 36.0395i −0.472971 + 0.0945918i
\(382\) 267.181 + 71.5910i 0.699428 + 0.187411i
\(383\) 193.781 51.9235i 0.505956 0.135570i 0.00319298 0.999995i \(-0.498984\pi\)
0.502763 + 0.864425i \(0.332317\pi\)
\(384\) 10.8765 32.1512i 0.0283243 0.0837271i
\(385\) −112.061 128.106i −0.291067 0.332743i
\(386\) 237.112i 0.614279i
\(387\) 191.547 465.173i 0.494953 1.20200i
\(388\) 45.7985 + 12.2717i 0.118037 + 0.0316280i
\(389\) −186.399 322.853i −0.479176 0.829956i 0.520539 0.853838i \(-0.325731\pi\)
−0.999715 + 0.0238813i \(0.992398\pi\)
\(390\) −303.883 + 262.001i −0.779187 + 0.671798i
\(391\) 510.924i 1.30671i
\(392\) 108.554 86.1633i 0.276922 0.219804i
\(393\) 263.982 130.523i 0.671709 0.332120i
\(394\) 231.495 + 133.654i 0.587551 + 0.339223i
\(395\) 148.484 + 41.2966i 0.375908 + 0.104548i
\(396\) 86.8073 + 11.2445i 0.219210 + 0.0283953i
\(397\) 275.003 73.6867i 0.692702 0.185609i 0.104742 0.994499i \(-0.466598\pi\)
0.587959 + 0.808890i \(0.299932\pi\)
\(398\) 18.6577 + 18.6577i 0.0468786 + 0.0468786i
\(399\) −105.963 249.271i −0.265571 0.624740i
\(400\) 1.89342 99.9821i 0.00473355 0.249955i
\(401\) −338.657 195.524i −0.844532 0.487591i 0.0142702 0.999898i \(-0.495458\pi\)
−0.858802 + 0.512307i \(0.828791\pi\)
\(402\) 147.302 + 98.2026i 0.366424 + 0.244285i
\(403\) 160.598 599.361i 0.398507 1.48725i
\(404\) 158.762 + 91.6614i 0.392976 + 0.226885i
\(405\) 204.357 349.662i 0.504585 0.863362i
\(406\) −82.6228 398.262i −0.203504 0.980942i
\(407\) 214.403 + 214.403i 0.526788 + 0.526788i
\(408\) −221.803 14.3058i −0.543635 0.0350633i
\(409\) 258.676 + 448.041i 0.632461 + 1.09545i 0.987047 + 0.160431i \(0.0512883\pi\)
−0.354586 + 0.935023i \(0.615378\pi\)
\(410\) 309.584 174.852i 0.755083 0.426467i
\(411\) 169.963 149.367i 0.413536 0.363424i
\(412\) −211.991 211.991i −0.514540 0.514540i
\(413\) 149.208 + 296.406i 0.361278 + 0.717690i
\(414\) −150.722 + 197.274i −0.364063 + 0.476508i
\(415\) 265.831 + 156.852i 0.640556 + 0.377956i
\(416\) 53.4980 + 92.6612i 0.128601 + 0.222743i
\(417\) 211.183 + 140.790i 0.506435 + 0.337627i
\(418\) 22.9579 + 85.6799i 0.0549231 + 0.204976i
\(419\) 748.983i 1.78755i 0.448517 + 0.893774i \(0.351952\pi\)
−0.448517 + 0.893774i \(0.648048\pi\)
\(420\) 27.3648 + 208.209i 0.0651543 + 0.495737i
\(421\) −761.887 −1.80971 −0.904854 0.425722i \(-0.860020\pi\)
−0.904854 + 0.425722i \(0.860020\pi\)
\(422\) 141.741 37.9795i 0.335880 0.0899989i
\(423\) 25.5667 19.7027i 0.0604413 0.0465785i
\(424\) −141.656 + 81.7850i −0.334094 + 0.192889i
\(425\) −635.633 + 157.481i −1.49561 + 0.370543i
\(426\) 41.8266 123.640i 0.0981844 0.290235i
\(427\) 260.728 397.226i 0.610605 0.930272i
\(428\) 160.912 160.912i 0.375963 0.375963i
\(429\) −207.271 + 182.154i −0.483150 + 0.424602i
\(430\) −380.793 105.907i −0.885565 0.246296i
\(431\) −452.105 + 261.023i −1.04897 + 0.605622i −0.922360 0.386331i \(-0.873742\pi\)
−0.126608 + 0.991953i \(0.540409\pi\)
\(432\) −81.4207 70.9554i −0.188474 0.164249i
\(433\) −506.772 + 506.772i −1.17037 + 1.17037i −0.188254 + 0.982120i \(0.560283\pi\)
−0.982120 + 0.188254i \(0.939717\pi\)
\(434\) −216.127 242.404i −0.497989 0.558534i
\(435\) 581.911 + 203.016i 1.33773 + 0.466704i
\(436\) 40.8982 70.8377i 0.0938032 0.162472i
\(437\) −243.008 65.1138i −0.556083 0.149002i
\(438\) 191.622 + 127.749i 0.437494 + 0.291665i
\(439\) 280.958 486.634i 0.639996 1.10851i −0.345437 0.938442i \(-0.612269\pi\)
0.985433 0.170063i \(-0.0543973\pi\)
\(440\) 0.651102 68.7690i 0.00147978 0.156293i
\(441\) −121.998 423.789i −0.276640 0.960974i
\(442\) 495.444 495.444i 1.12091 1.12091i
\(443\) −130.727 487.881i −0.295096 1.10131i −0.941141 0.338013i \(-0.890245\pi\)
0.646046 0.763299i \(-0.276422\pi\)
\(444\) −73.3672 366.845i −0.165242 0.826228i
\(445\) 302.424 + 84.1110i 0.679605 + 0.189014i
\(446\) 207.251 358.969i 0.464688 0.804863i
\(447\) 28.5657 14.1241i 0.0639055 0.0315975i
\(448\) 55.9083 + 3.20385i 0.124795 + 0.00715146i
\(449\) 111.200 0.247661 0.123830 0.992303i \(-0.460482\pi\)
0.123830 + 0.992303i \(0.460482\pi\)
\(450\) −291.883 126.706i −0.648629 0.281569i
\(451\) 211.759 122.259i 0.469533 0.271085i
\(452\) 65.3932 244.051i 0.144675 0.539935i
\(453\) −41.1760 + 638.409i −0.0908963 + 1.40929i
\(454\) 193.279 0.425724
\(455\) −549.972 368.483i −1.20873 0.809853i
\(456\) 35.0715 103.672i 0.0769112 0.227350i
\(457\) −75.8846 283.205i −0.166049 0.619705i −0.997904 0.0647113i \(-0.979387\pi\)
0.831855 0.554994i \(-0.187279\pi\)
\(458\) 22.8433 85.2525i 0.0498763 0.186141i
\(459\) −310.821 + 635.277i −0.677170 + 1.38405i
\(460\) 167.990 + 99.1217i 0.365196 + 0.215482i
\(461\) 249.905 0.542092 0.271046 0.962566i \(-0.412630\pi\)
0.271046 + 0.962566i \(0.412630\pi\)
\(462\) 20.1741 + 143.005i 0.0436670 + 0.309535i
\(463\) 38.5398 + 38.5398i 0.0832394 + 0.0832394i 0.747501 0.664261i \(-0.231254\pi\)
−0.664261 + 0.747501i \(0.731254\pi\)
\(464\) 82.1744 142.330i 0.177100 0.306746i
\(465\) 483.425 91.9316i 1.03962 0.197702i
\(466\) −168.438 291.744i −0.361456 0.626060i
\(467\) 189.900 + 708.715i 0.406638 + 1.51759i 0.801016 + 0.598644i \(0.204293\pi\)
−0.394378 + 0.918948i \(0.629040\pi\)
\(468\) 337.453 45.1416i 0.721054 0.0964565i
\(469\) −91.6176 + 277.354i −0.195347 + 0.591374i
\(470\) −17.7615 18.1010i −0.0377904 0.0385128i
\(471\) −33.5386 + 29.4744i −0.0712073 + 0.0625784i
\(472\) −34.7037 + 129.516i −0.0735247 + 0.274398i
\(473\) −262.557 70.3520i −0.555089 0.148736i
\(474\) −86.3280 98.2317i −0.182127 0.207240i
\(475\) 6.10535 322.393i 0.0128534 0.678722i
\(476\) −74.4922 359.071i −0.156496 0.754351i
\(477\) 69.0103 + 515.882i 0.144676 + 1.08151i
\(478\) 153.002 40.9968i 0.320088 0.0857673i
\(479\) −58.6930 + 33.8864i −0.122532 + 0.0707441i −0.560013 0.828484i \(-0.689204\pi\)
0.437481 + 0.899228i \(0.355871\pi\)
\(480\) −47.7345 + 70.1528i −0.0994469 + 0.146152i
\(481\) 1021.34 + 589.672i 2.12337 + 1.22593i
\(482\) 57.0301 57.0301i 0.118320 0.118320i
\(483\) −379.866 153.245i −0.786472 0.317278i
\(484\) 194.704i 0.402281i
\(485\) −102.089 60.2369i −0.210493 0.124200i
\(486\) −307.418 + 153.597i −0.632548 + 0.316043i
\(487\) −384.662 103.070i −0.789859 0.211642i −0.158732 0.987322i \(-0.550741\pi\)
−0.631127 + 0.775679i \(0.717407\pi\)
\(488\) 185.448 49.6906i 0.380016 0.101825i
\(489\) −405.929 137.323i −0.830121 0.280824i
\(490\) −319.179 + 134.813i −0.651386 + 0.275129i
\(491\) 359.608i 0.732400i 0.930536 + 0.366200i \(0.119341\pi\)
−0.930536 + 0.366200i \(0.880659\pi\)
\(492\) −301.068 19.4182i −0.611927 0.0394680i
\(493\) −1039.57 278.551i −2.10866 0.565013i
\(494\) 172.505 + 298.787i 0.349200 + 0.604831i
\(495\) −201.550 85.2339i −0.407171 0.172190i
\(496\) 131.224i 0.264564i
\(497\) 214.999 + 12.3207i 0.432594 + 0.0247900i
\(498\) −116.081 234.773i −0.233095 0.471432i
\(499\) 443.265 + 255.919i 0.888307 + 0.512864i 0.873388 0.487025i \(-0.161918\pi\)
0.0149186 + 0.999889i \(0.495251\pi\)
\(500\) −71.5365 + 239.546i −0.143073 + 0.479093i
\(501\) −646.097 + 129.216i −1.28962 + 0.257917i
\(502\) −106.622 + 28.5693i −0.212395 + 0.0569110i
\(503\) 159.644 + 159.644i 0.317383 + 0.317383i 0.847761 0.530378i \(-0.177950\pi\)
−0.530378 + 0.847761i \(0.677950\pi\)
\(504\) 77.1633 160.617i 0.153102 0.318685i
\(505\) −320.989 327.126i −0.635622 0.647773i
\(506\) 116.171 + 67.0711i 0.229586 + 0.132552i
\(507\) −314.108 + 471.158i −0.619543 + 0.929305i
\(508\) 31.7089 118.339i 0.0624190 0.232951i
\(509\) −506.116 292.206i −0.994334 0.574079i −0.0877670 0.996141i \(-0.527973\pi\)
−0.906567 + 0.422062i \(0.861306\pi\)
\(510\) 524.647 + 183.038i 1.02872 + 0.358899i
\(511\) −119.183 + 360.804i −0.233235 + 0.706074i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −262.542 228.796i −0.511777 0.445996i
\(514\) 141.332 + 244.795i 0.274966 + 0.476254i
\(515\) 368.588 + 652.605i 0.715705 + 1.26719i
\(516\) 221.392 + 251.920i 0.429055 + 0.488217i
\(517\) −12.3323 12.3323i −0.0238535 0.0238535i
\(518\) 551.335 277.537i 1.06435 0.535785i
\(519\) −27.3987 9.26881i −0.0527914 0.0178590i
\(520\) −66.7822 259.019i −0.128427 0.498114i
\(521\) 412.424 + 714.339i 0.791600 + 1.37109i 0.924976 + 0.380026i \(0.124085\pi\)
−0.133375 + 0.991066i \(0.542582\pi\)
\(522\) −319.218 414.224i −0.611529 0.793533i
\(523\) 200.803 + 749.406i 0.383944 + 1.43290i 0.839825 + 0.542858i \(0.182658\pi\)
−0.455880 + 0.890041i \(0.650676\pi\)
\(524\) 196.325i 0.374665i
\(525\) 73.5652 519.820i 0.140124 0.990134i
\(526\) −302.951 −0.575952
\(527\) −830.039 + 222.408i −1.57503 + 0.422027i
\(528\) −32.3698 + 48.5542i −0.0613064 + 0.0919586i
\(529\) 128.641 74.2706i 0.243177 0.140398i
\(530\) 395.976 102.093i 0.747124 0.192629i
\(531\) 339.028 + 259.026i 0.638471 + 0.487807i
\(532\) 180.277 + 10.3308i 0.338866 + 0.0194189i
\(533\) 672.500 672.500i 1.26173 1.26173i
\(534\) −175.829 200.074i −0.329267 0.374670i
\(535\) −495.362 + 279.778i −0.925911 + 0.522950i
\(536\) −102.212 + 59.0120i −0.190694 + 0.110097i
\(537\) 34.1945 530.165i 0.0636770 0.987273i
\(538\) −270.590 + 270.590i −0.502956 + 0.502956i
\(539\) −218.618 + 94.7879i −0.405600 + 0.175859i
\(540\) 148.577 + 225.444i 0.275142 + 0.417489i
\(541\) 385.549 667.791i 0.712660 1.23436i −0.251195 0.967937i \(-0.580823\pi\)
0.963855 0.266427i \(-0.0858432\pi\)
\(542\) −319.335 85.5654i −0.589178 0.157870i
\(543\) −259.875 + 389.808i −0.478590 + 0.717878i
\(544\) 74.0879 128.324i 0.136191 0.235890i
\(545\) −145.959 + 143.221i −0.267815 + 0.262792i
\(546\) 219.755 + 516.960i 0.402481 + 0.946812i
\(547\) 451.313 451.313i 0.825069 0.825069i −0.161761 0.986830i \(-0.551717\pi\)
0.986830 + 0.161761i \(0.0517174\pi\)
\(548\) 39.0420 + 145.707i 0.0712445 + 0.265888i
\(549\) 78.4780 605.846i 0.142947 1.10354i
\(550\) −47.6352 + 165.199i −0.0866095 + 0.300363i
\(551\) 264.972 458.945i 0.480893 0.832931i
\(552\) −73.3570 148.364i −0.132893 0.268775i
\(553\) 118.397 180.382i 0.214100 0.326187i
\(554\) −56.0030 −0.101088
\(555\) −69.0318 + 932.724i −0.124382 + 1.68058i
\(556\) −146.538 + 84.6039i −0.263558 + 0.152165i
\(557\) 228.129 851.390i 0.409568 1.52853i −0.385905 0.922538i \(-0.626111\pi\)
0.795473 0.605989i \(-0.207222\pi\)
\(558\) −386.099 158.986i −0.691934 0.284922i
\(559\) −1057.24 −1.89131
\(560\) −132.513 45.1686i −0.236631 0.0806583i
\(561\) 361.986 + 122.458i 0.645251 + 0.218284i
\(562\) 118.699 + 442.992i 0.211209 + 0.788243i
\(563\) −268.513 + 1002.11i −0.476933 + 1.77994i 0.136990 + 0.990572i \(0.456257\pi\)
−0.613923 + 0.789366i \(0.710410\pi\)
\(564\) 4.22002 + 21.1006i 0.00748231 + 0.0374125i
\(565\) −320.990 + 544.010i −0.568123 + 0.962850i
\(566\) −147.321 −0.260284
\(567\) −379.094 421.635i −0.668597 0.743625i
\(568\) 61.5292 + 61.5292i 0.108326 + 0.108326i
\(569\) −310.277 + 537.415i −0.545302 + 0.944491i 0.453286 + 0.891365i \(0.350252\pi\)
−0.998588 + 0.0531258i \(0.983082\pi\)
\(570\) −153.920 + 226.208i −0.270036 + 0.396856i
\(571\) 294.339 + 509.811i 0.515480 + 0.892838i 0.999839 + 0.0179685i \(0.00571985\pi\)
−0.484358 + 0.874870i \(0.660947\pi\)
\(572\) −47.6119 177.690i −0.0832376 0.310647i
\(573\) 260.070 + 525.988i 0.453874 + 0.917955i
\(574\) −101.113 487.391i −0.176156 0.849114i
\(575\) −338.219 351.276i −0.588206 0.610915i
\(576\) 66.4618 27.6917i 0.115385 0.0480758i
\(577\) −64.7801 + 241.763i −0.112271 + 0.418999i −0.999068 0.0431585i \(-0.986258\pi\)
0.886798 + 0.462158i \(0.152925\pi\)
\(578\) −542.487 145.359i −0.938558 0.251486i
\(579\) 377.822 332.038i 0.652543 0.573468i
\(580\) −293.268 + 287.767i −0.505635 + 0.496150i
\(581\) 322.534 287.572i 0.555137 0.494960i
\(582\) 44.5795 + 90.1616i 0.0765972 + 0.154917i
\(583\) 271.644 72.7867i 0.465941 0.124849i
\(584\) −132.965 + 76.7673i −0.227680 + 0.131451i
\(585\) −843.023 117.326i −1.44106 0.200557i
\(586\) −268.852 155.222i −0.458791 0.264883i
\(587\) −404.063 + 404.063i −0.688352 + 0.688352i −0.961868 0.273516i \(-0.911813\pi\)
0.273516 + 0.961868i \(0.411813\pi\)
\(588\) 289.308 + 52.3149i 0.492021 + 0.0889709i
\(589\) 423.132i 0.718390i
\(590\) 170.347 288.702i 0.288723 0.489325i
\(591\) 111.204 + 556.033i 0.188162 + 0.940835i
\(592\) 240.908 + 64.5512i 0.406940 + 0.109039i
\(593\) −578.702 + 155.063i −0.975888 + 0.261488i −0.711312 0.702876i \(-0.751899\pi\)
−0.264576 + 0.964365i \(0.585232\pi\)
\(594\) 103.643 + 154.068i 0.174482 + 0.259374i
\(595\) −61.1143 + 914.752i −0.102713 + 1.53740i
\(596\) 21.2445i 0.0356452i
\(597\) −3.60265 + 55.8570i −0.00603460 + 0.0935628i
\(598\) 503.970 + 135.038i 0.842760 + 0.225817i
\(599\) 181.060 + 313.605i 0.302271 + 0.523548i 0.976650 0.214837i \(-0.0689220\pi\)
−0.674379 + 0.738385i \(0.735589\pi\)
\(600\) 161.966 136.992i 0.269944 0.228320i
\(601\) 184.720i 0.307354i 0.988121 + 0.153677i \(0.0491115\pi\)
−0.988121 + 0.153677i \(0.950889\pi\)
\(602\) −303.636 + 462.597i −0.504378 + 0.768434i
\(603\) 49.7944 + 372.234i 0.0825778 + 0.617304i
\(604\) −369.352 213.245i −0.611509 0.353055i
\(605\) 130.429 468.960i 0.215584 0.775141i
\(606\) 76.2651 + 381.335i 0.125850 + 0.629265i
\(607\) −58.3935 + 15.6465i −0.0962002 + 0.0257768i −0.306598 0.951839i \(-0.599191\pi\)
0.210398 + 0.977616i \(0.432524\pi\)
\(608\) 51.5921 + 51.5921i 0.0848554 + 0.0848554i
\(609\) 518.905 689.358i 0.852061 1.13195i
\(610\) −479.953 4.54417i −0.786808 0.00744946i
\(611\) −58.7467 33.9174i −0.0961484 0.0555113i
\(612\) −287.805 373.462i −0.470269 0.610232i
\(613\) −212.984 + 794.867i −0.347445 + 1.29668i 0.542284 + 0.840195i \(0.317560\pi\)
−0.889729 + 0.456488i \(0.849107\pi\)
\(614\) −21.6642 12.5079i −0.0352838 0.0203711i
\(615\) 712.139 + 248.450i 1.15795 + 0.403984i
\(616\) −91.4222 30.1992i −0.148413 0.0490247i
\(617\) 675.877 + 675.877i 1.09542 + 1.09542i 0.994938 + 0.100486i \(0.0320397\pi\)
0.100486 + 0.994938i \(0.467960\pi\)
\(618\) 40.9338 634.653i 0.0662359 1.02695i
\(619\) −146.229 253.276i −0.236234 0.409169i 0.723397 0.690433i \(-0.242580\pi\)
−0.959631 + 0.281263i \(0.909247\pi\)
\(620\) −87.9043 + 316.063i −0.141781 + 0.509779i
\(621\) −525.407 + 36.0856i −0.846066 + 0.0581088i
\(622\) 513.517 + 513.517i 0.825591 + 0.825591i
\(623\) 241.146 367.392i 0.387072 0.589715i
\(624\) −72.7342 + 215.003i −0.116561 + 0.344556i
\(625\) 332.769 529.046i 0.532431 0.846474i
\(626\) 328.505 + 568.988i 0.524769 + 0.908927i
\(627\) −104.377 + 156.563i −0.166470 + 0.249702i
\(628\) −7.70410 28.7521i −0.0122677 0.0457836i
\(629\) 1633.24i 2.59657i
\(630\) −293.448 + 335.169i −0.465791 + 0.532014i
\(631\) 93.3919 0.148006 0.0740031 0.997258i \(-0.476423\pi\)
0.0740031 + 0.997258i \(0.476423\pi\)
\(632\) 84.2124 22.5646i 0.133247 0.0357035i
\(633\) 259.005 + 172.672i 0.409170 + 0.272783i
\(634\) −467.454 + 269.885i −0.737310 + 0.425686i
\(635\) −155.646 + 263.788i −0.245113 + 0.415414i
\(636\) −328.686 111.192i −0.516802 0.174831i
\(637\) −725.925 + 576.196i −1.13960 + 0.904546i
\(638\) −199.804 + 199.804i −0.313172 + 0.313172i
\(639\) 255.584 106.490i 0.399975 0.166652i
\(640\) −27.8192 49.2554i −0.0434675 0.0769615i
\(641\) 675.541 390.024i 1.05389 0.608462i 0.130152 0.991494i \(-0.458454\pi\)
0.923735 + 0.383032i \(0.125120\pi\)
\(642\) 481.736 + 31.0709i 0.750367 + 0.0483971i
\(643\) 563.561 563.561i 0.876455 0.876455i −0.116711 0.993166i \(-0.537235\pi\)
0.993166 + 0.116711i \(0.0372350\pi\)
\(644\) 203.824 181.730i 0.316497 0.282189i
\(645\) −364.485 755.076i −0.565093 1.17066i
\(646\) 238.897 413.782i 0.369810 0.640529i
\(647\) −1197.10 320.761i −1.85022 0.495766i −0.850672 0.525696i \(-0.823805\pi\)
−0.999552 + 0.0299300i \(0.990472\pi\)
\(648\) −0.954183 229.101i −0.00147250 0.353550i
\(649\) 115.266 199.647i 0.177605 0.307622i
\(650\) −12.6618 + 668.605i −0.0194797 + 1.02862i
\(651\) 83.6022 683.833i 0.128421 1.05043i
\(652\) 202.010 202.010i 0.309831 0.309831i
\(653\) −120.711 450.501i −0.184856 0.689894i −0.994661 0.103194i \(-0.967094\pi\)
0.809805 0.586700i \(-0.199573\pi\)
\(654\) 170.147 34.0285i 0.260163 0.0520314i
\(655\) 131.514 472.864i 0.200785 0.721929i
\(656\) 100.565 174.183i 0.153300 0.265523i
\(657\) 64.7763 + 484.231i 0.0985941 + 0.737033i
\(658\) −31.7123 + 15.9637i −0.0481951 + 0.0242609i
\(659\) −127.507 −0.193485 −0.0967424 0.995309i \(-0.530842\pi\)
−0.0967424 + 0.995309i \(0.530842\pi\)
\(660\) 110.491 95.2627i 0.167410 0.144337i
\(661\) 313.149 180.796i 0.473750 0.273520i −0.244058 0.969761i \(-0.578479\pi\)
0.717808 + 0.696241i \(0.245145\pi\)
\(662\) −0.913655 + 3.40981i −0.00138014 + 0.00515076i
\(663\) 1483.25 + 95.6665i 2.23718 + 0.144293i
\(664\) 174.602 0.262955
\(665\) −427.290 145.647i −0.642542 0.219017i
\(666\) 481.805 630.615i 0.723431 0.946870i
\(667\) −207.423 774.113i −0.310979 1.16059i
\(668\) 113.689 424.294i 0.170193 0.635170i
\(669\) 862.216 172.439i 1.28881 0.257756i
\(670\) 285.716 73.6654i 0.426442 0.109948i
\(671\) −330.088 −0.491935
\(672\) 73.1857 + 93.5727i 0.108907 + 0.139245i
\(673\) −487.993 487.993i −0.725101 0.725101i 0.244539 0.969640i \(-0.421363\pi\)
−0.969640 + 0.244539i \(0.921363\pi\)
\(674\) 42.5517 73.7017i 0.0631331 0.109350i
\(675\) −206.838 642.528i −0.306427 0.951894i
\(676\) −188.754 326.932i −0.279222 0.483627i
\(677\) 109.671 + 409.298i 0.161996 + 0.604576i 0.998404 + 0.0564694i \(0.0179843\pi\)
−0.836409 + 0.548106i \(0.815349\pi\)
\(678\) 480.452 237.555i 0.708631 0.350376i
\(679\) −123.865 + 110.438i −0.182423 + 0.162649i
\(680\) −264.409 + 259.449i −0.388836 + 0.381542i
\(681\) 270.657 + 307.977i 0.397440 + 0.452243i
\(682\) −58.3930 + 217.926i −0.0856202 + 0.319539i
\(683\) −419.380 112.373i −0.614027 0.164528i −0.0616158 0.998100i \(-0.519625\pi\)
−0.552411 + 0.833572i \(0.686292\pi\)
\(684\) 214.307 89.2920i 0.313314 0.130544i
\(685\) 3.57036 377.099i 0.00521221 0.550510i
\(686\) 43.6320 + 483.109i 0.0636035 + 0.704240i
\(687\) 167.833 82.9833i 0.244298 0.120791i
\(688\) −215.967 + 57.8681i −0.313905 + 0.0841106i
\(689\) 947.288 546.917i 1.37487 0.793784i
\(690\) 77.3003 + 406.486i 0.112029 + 0.589111i
\(691\) −781.153 450.999i −1.13047 0.652676i −0.186415 0.982471i \(-0.559687\pi\)
−0.944052 + 0.329795i \(0.893020\pi\)
\(692\) 13.6349 13.6349i 0.0197037 0.0197037i
\(693\) −199.619 + 232.403i −0.288051 + 0.335357i
\(694\) 434.505i 0.626088i
\(695\) 409.624 105.612i 0.589387 0.151960i
\(696\) 341.867 68.3716i 0.491188 0.0982351i
\(697\) −1272.22 340.890i −1.82528 0.489081i
\(698\) −408.819 + 109.543i −0.585701 + 0.156938i
\(699\) 229.003 676.937i 0.327616 0.968437i
\(700\) 288.912 + 197.560i 0.412731 + 0.282229i
\(701\) 367.006i 0.523546i −0.965129 0.261773i \(-0.915693\pi\)
0.965129 0.261773i \(-0.0843072\pi\)
\(702\) 544.481 + 474.496i 0.775613 + 0.675920i
\(703\) 776.810 + 208.146i 1.10499 + 0.296082i
\(704\) −19.4517 33.6913i −0.0276302 0.0478569i
\(705\) 3.97065 53.6495i 0.00563213 0.0760985i
\(706\) 744.849i 1.05503i
\(707\) −573.112 + 288.499i −0.810625 + 0.408060i
\(708\) −254.972 + 126.069i −0.360130 + 0.178063i
\(709\) 391.615 + 226.099i 0.552349 + 0.318899i 0.750069 0.661360i \(-0.230020\pi\)
−0.197720 + 0.980259i \(0.563354\pi\)
\(710\) −106.981 189.415i −0.150677 0.266782i
\(711\) 35.6371 275.116i 0.0501225 0.386943i
\(712\) 171.520 45.9586i 0.240899 0.0645486i
\(713\) −452.471 452.471i −0.634602 0.634602i
\(714\) 467.842 621.521i 0.655241 0.870478i
\(715\) −4.35408 + 459.875i −0.00608962 + 0.643182i
\(716\) 306.727 + 177.089i 0.428390 + 0.247331i
\(717\) 279.581 + 186.389i 0.389932 + 0.259957i
\(718\) −15.6319 + 58.3389i −0.0217714 + 0.0812519i
\(719\) 683.443 + 394.586i 0.950546 + 0.548798i 0.893251 0.449559i \(-0.148419\pi\)
0.0572956 + 0.998357i \(0.481752\pi\)
\(720\) −178.629 + 22.1761i −0.248095 + 0.0308002i
\(721\) 1027.42 213.147i 1.42500 0.295627i
\(722\) −194.641 194.641i −0.269586 0.269586i
\(723\) 170.735 + 11.0121i 0.236149 + 0.0152311i
\(724\) −156.164 270.484i −0.215696 0.373597i
\(725\) 899.129 496.655i 1.24018 0.685041i
\(726\) −310.248 + 272.653i −0.427339 + 0.375555i
\(727\) 261.618 + 261.618i 0.359859 + 0.359859i 0.863761 0.503902i \(-0.168103\pi\)
−0.503902 + 0.863761i \(0.668103\pi\)
\(728\) −373.872 21.4250i −0.513561 0.0294299i
\(729\) −675.238 274.763i −0.926252 0.376904i
\(730\) 371.682 95.8296i 0.509153 0.131273i
\(731\) 732.075 + 1267.99i 1.00147 + 1.73460i
\(732\) 338.870 + 225.915i 0.462937 + 0.308628i
\(733\) −50.1170 187.039i −0.0683725 0.255170i 0.923276 0.384136i \(-0.125501\pi\)
−0.991649 + 0.128967i \(0.958834\pi\)
\(734\) 878.020i 1.19621i
\(735\) −661.777 319.807i −0.900377 0.435111i
\(736\) 110.339 0.149917
\(737\) 196.005 52.5193i 0.265949 0.0712609i
\(738\) −390.657 506.925i −0.529346 0.686890i
\(739\) 693.344 400.303i 0.938220 0.541681i 0.0488179 0.998808i \(-0.484455\pi\)
0.889402 + 0.457126i \(0.151121\pi\)
\(740\) −537.005 316.857i −0.725683 0.428185i
\(741\) −234.532 + 693.279i −0.316507 + 0.935599i
\(742\) 32.7534 571.558i 0.0441421 0.770293i
\(743\) 671.297 671.297i 0.903495 0.903495i −0.0922418 0.995737i \(-0.529403\pi\)
0.995737 + 0.0922418i \(0.0294033\pi\)
\(744\) 209.097 183.758i 0.281044 0.246987i
\(745\) 14.2313 51.1691i 0.0191024 0.0686834i
\(746\) −755.975 + 436.462i −1.01337 + 0.585070i
\(747\) 211.542 513.731i 0.283189 0.687725i
\(748\) −180.142 + 180.142i −0.240831 + 0.240831i
\(749\) 161.790 + 779.870i 0.216008 + 1.04121i
\(750\) −481.878 + 221.458i −0.642504 + 0.295278i
\(751\) −399.490 + 691.937i −0.531944 + 0.921354i 0.467360 + 0.884067i \(0.345205\pi\)
−0.999305 + 0.0372875i \(0.988128\pi\)
\(752\) −13.8568 3.71293i −0.0184266 0.00493741i
\(753\) −194.831 129.889i −0.258740 0.172495i
\(754\) −549.521 + 951.798i −0.728807 + 1.26233i
\(755\) 746.764 + 761.040i 0.989091 + 1.00800i
\(756\) 363.988 101.964i 0.481466 0.134873i
\(757\) −449.959 + 449.959i −0.594398 + 0.594398i −0.938816 0.344418i \(-0.888076\pi\)
0.344418 + 0.938816i \(0.388076\pi\)
\(758\) 113.484 + 423.528i 0.149715 + 0.558743i
\(759\) 55.8052 + 279.033i 0.0735247 + 0.367633i
\(760\) −89.7032 158.824i −0.118030 0.208979i
\(761\) 92.6942 160.551i 0.121806