Properties

Label 210.3.w.a.173.13
Level 210
Weight 3
Character 210.173
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 173.13
Character \(\chi\) \(=\) 210.173
Dual form 210.3.w.a.17.13

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(2.42903 - 1.76063i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.98956 - 0.322873i) q^{5} +(-2.67368 + 3.29415i) q^{6} +(-4.85698 + 5.04081i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.80035 - 8.55325i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(2.42903 - 1.76063i) q^{3} +(1.73205 - 1.00000i) q^{4} +(-4.98956 - 0.322873i) q^{5} +(-2.67368 + 3.29415i) q^{6} +(-4.85698 + 5.04081i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(2.80035 - 8.55325i) q^{9} +(6.93405 - 1.38525i) q^{10} +(-17.0019 + 9.81605i) q^{11} +(2.44657 - 5.47853i) q^{12} +(-7.73283 + 7.73283i) q^{13} +(4.78970 - 8.66365i) q^{14} +(-12.6883 + 8.00052i) q^{15} +(2.00000 - 3.46410i) q^{16} +(12.2729 + 3.28852i) q^{17} +(-0.694649 + 12.7090i) q^{18} +(0.306444 - 0.530777i) q^{19} +(-8.96505 + 4.43033i) q^{20} +(-2.92274 + 20.7956i) q^{21} +(19.6321 - 19.6321i) q^{22} +(3.26736 + 12.1940i) q^{23} +(-1.33679 + 8.37932i) q^{24} +(24.7915 + 3.22199i) q^{25} +(7.73283 - 13.3937i) q^{26} +(-8.25698 - 25.7065i) q^{27} +(-3.37173 + 13.5879i) q^{28} -29.8506 q^{29} +(14.4041 - 15.5731i) q^{30} +(-17.4831 + 10.0939i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-24.0156 + 53.7776i) q^{33} -17.9688 q^{34} +(25.8618 - 23.5832i) q^{35} +(-3.70289 - 17.6150i) q^{36} +(-3.54563 - 13.2325i) q^{37} +(-0.224333 + 0.837221i) q^{38} +(-5.16860 + 32.3979i) q^{39} +(10.6249 - 9.33338i) q^{40} -75.0186 q^{41} +(-3.61918 - 29.4771i) q^{42} +(-46.7727 - 46.7727i) q^{43} +(-19.6321 + 34.0038i) q^{44} +(-16.7342 + 41.7728i) q^{45} +(-8.92659 - 15.4613i) q^{46} +(13.4679 + 50.2630i) q^{47} +(-1.24095 - 11.9357i) q^{48} +(-1.81945 - 48.9662i) q^{49} +(-35.0452 + 4.67300i) q^{50} +(35.6011 - 13.6202i) q^{51} +(-5.66082 + 21.1265i) q^{52} +(64.3636 + 17.2462i) q^{53} +(20.6885 + 32.0934i) q^{54} +(88.0014 - 43.4884i) q^{55} +(-0.367649 - 19.7956i) q^{56} +(-0.190141 - 1.82881i) q^{57} +(40.7767 - 10.9261i) q^{58} +(64.0605 - 36.9854i) q^{59} +(-13.9762 + 26.5456i) q^{60} +(-19.2793 - 11.1309i) q^{61} +(20.1878 - 20.1878i) q^{62} +(29.5140 + 55.6590i) q^{63} -8.00000i q^{64} +(41.0802 - 36.0867i) q^{65} +(13.1220 - 82.2519i) q^{66} +(8.82719 + 2.36524i) q^{67} +(24.5458 - 6.57703i) q^{68} +(29.4056 + 23.8668i) q^{69} +(-26.6958 + 41.6814i) q^{70} -4.20881i q^{71} +(11.5058 + 22.7072i) q^{72} +(22.9693 + 6.15460i) q^{73} +(9.68684 + 16.7781i) q^{74} +(65.8920 - 35.8224i) q^{75} -1.22578i q^{76} +(33.0971 - 133.380i) q^{77} +(-4.79803 - 46.1482i) q^{78} +(-67.0631 - 38.7189i) q^{79} +(-11.0976 + 16.6386i) q^{80} +(-65.3160 - 47.9042i) q^{81} +(102.477 - 27.4587i) q^{82} +(41.1330 + 41.1330i) q^{83} +(15.7333 + 38.9418i) q^{84} +(-60.1747 - 20.3709i) q^{85} +(81.0127 + 46.7727i) q^{86} +(-72.5080 + 52.5559i) q^{87} +(14.3717 - 53.6359i) q^{88} +(-1.42979 - 0.825490i) q^{89} +(7.56938 - 63.1879i) q^{90} +(-1.42148 - 76.5379i) q^{91} +(17.8532 + 17.8532i) q^{92} +(-24.6954 + 55.2997i) q^{93} +(-36.7950 - 63.7309i) q^{94} +(-1.70040 + 2.54940i) q^{95} +(6.06393 + 15.8502i) q^{96} +(92.5224 + 92.5224i) q^{97} +(20.4083 + 66.2231i) q^{98} +(36.3478 + 172.910i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 2.42903 1.76063i 0.809676 0.586877i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) −4.98956 0.322873i −0.997913 0.0645746i
\(6\) −2.67368 + 3.29415i −0.445613 + 0.549026i
\(7\) −4.85698 + 5.04081i −0.693855 + 0.720115i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.80035 8.55325i 0.311150 0.950361i
\(10\) 6.93405 1.38525i 0.693405 0.138525i
\(11\) −17.0019 + 9.81605i −1.54563 + 0.892369i −0.547160 + 0.837028i \(0.684291\pi\)
−0.998468 + 0.0553407i \(0.982375\pi\)
\(12\) 2.44657 5.47853i 0.203881 0.456544i
\(13\) −7.73283 + 7.73283i −0.594833 + 0.594833i −0.938933 0.344100i \(-0.888184\pi\)
0.344100 + 0.938933i \(0.388184\pi\)
\(14\) 4.78970 8.66365i 0.342121 0.618832i
\(15\) −12.6883 + 8.00052i −0.845883 + 0.533368i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 12.2729 + 3.28852i 0.721936 + 0.193442i 0.601035 0.799223i \(-0.294755\pi\)
0.120901 + 0.992665i \(0.461422\pi\)
\(18\) −0.694649 + 12.7090i −0.0385916 + 0.706053i
\(19\) 0.306444 0.530777i 0.0161286 0.0279356i −0.857848 0.513903i \(-0.828199\pi\)
0.873977 + 0.485967i \(0.161533\pi\)
\(20\) −8.96505 + 4.43033i −0.448253 + 0.221517i
\(21\) −2.92274 + 20.7956i −0.139178 + 0.990267i
\(22\) 19.6321 19.6321i 0.892369 0.892369i
\(23\) 3.26736 + 12.1940i 0.142059 + 0.530172i 0.999869 + 0.0162043i \(0.00515821\pi\)
−0.857810 + 0.513968i \(0.828175\pi\)
\(24\) −1.33679 + 8.37932i −0.0556997 + 0.349138i
\(25\) 24.7915 + 3.22199i 0.991660 + 0.128880i
\(26\) 7.73283 13.3937i 0.297416 0.515140i
\(27\) −8.25698 25.7065i −0.305814 0.952091i
\(28\) −3.37173 + 13.5879i −0.120419 + 0.485283i
\(29\) −29.8506 −1.02933 −0.514666 0.857391i \(-0.672084\pi\)
−0.514666 + 0.857391i \(0.672084\pi\)
\(30\) 14.4041 15.5731i 0.480136 0.519104i
\(31\) −17.4831 + 10.0939i −0.563972 + 0.325610i −0.754738 0.656026i \(-0.772236\pi\)
0.190766 + 0.981636i \(0.438903\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −24.0156 + 53.7776i −0.727747 + 1.62962i
\(34\) −17.9688 −0.528494
\(35\) 25.8618 23.5832i 0.738908 0.673807i
\(36\) −3.70289 17.6150i −0.102858 0.489306i
\(37\) −3.54563 13.2325i −0.0958278 0.357634i 0.901316 0.433162i \(-0.142602\pi\)
−0.997144 + 0.0755282i \(0.975936\pi\)
\(38\) −0.224333 + 0.837221i −0.00590349 + 0.0220321i
\(39\) −5.16860 + 32.3979i −0.132528 + 0.830716i
\(40\) 10.6249 9.33338i 0.265622 0.233335i
\(41\) −75.0186 −1.82972 −0.914861 0.403768i \(-0.867700\pi\)
−0.914861 + 0.403768i \(0.867700\pi\)
\(42\) −3.61918 29.4771i −0.0861710 0.701837i
\(43\) −46.7727 46.7727i −1.08774 1.08774i −0.995761 0.0919759i \(-0.970682\pi\)
−0.0919759 0.995761i \(-0.529318\pi\)
\(44\) −19.6321 + 34.0038i −0.446184 + 0.772814i
\(45\) −16.7342 + 41.7728i −0.371870 + 0.928285i
\(46\) −8.92659 15.4613i −0.194056 0.336116i
\(47\) 13.4679 + 50.2630i 0.286552 + 1.06942i 0.947698 + 0.319168i \(0.103403\pi\)
−0.661147 + 0.750257i \(0.729930\pi\)
\(48\) −1.24095 11.9357i −0.0258531 0.248660i
\(49\) −1.81945 48.9662i −0.0371317 0.999310i
\(50\) −35.0452 + 4.67300i −0.700903 + 0.0934600i
\(51\) 35.6011 13.6202i 0.698061 0.267062i
\(52\) −5.66082 + 21.1265i −0.108862 + 0.406278i
\(53\) 64.3636 + 17.2462i 1.21441 + 0.325400i 0.808490 0.588510i \(-0.200285\pi\)
0.405918 + 0.913909i \(0.366952\pi\)
\(54\) 20.6885 + 32.0934i 0.383120 + 0.594323i
\(55\) 88.0014 43.4884i 1.60003 0.790698i
\(56\) −0.367649 19.7956i −0.00656516 0.353492i
\(57\) −0.190141 1.82881i −0.00333580 0.0320843i
\(58\) 40.7767 10.9261i 0.703047 0.188381i
\(59\) 64.0605 36.9854i 1.08577 0.626871i 0.153324 0.988176i \(-0.451002\pi\)
0.932448 + 0.361305i \(0.117669\pi\)
\(60\) −13.9762 + 26.5456i −0.232936 + 0.442426i
\(61\) −19.2793 11.1309i −0.316055 0.182474i 0.333578 0.942723i \(-0.391744\pi\)
−0.649633 + 0.760248i \(0.725077\pi\)
\(62\) 20.1878 20.1878i 0.325610 0.325610i
\(63\) 29.5140 + 55.6590i 0.468476 + 0.883476i
\(64\) 8.00000i 0.125000i
\(65\) 41.0802 36.0867i 0.632003 0.555180i
\(66\) 13.1220 82.2519i 0.198819 1.24624i
\(67\) 8.82719 + 2.36524i 0.131749 + 0.0353021i 0.324091 0.946026i \(-0.394942\pi\)
−0.192342 + 0.981328i \(0.561608\pi\)
\(68\) 24.5458 6.57703i 0.360968 0.0967210i
\(69\) 29.4056 + 23.8668i 0.426168 + 0.345896i
\(70\) −26.6958 + 41.6814i −0.381368 + 0.595448i
\(71\) 4.20881i 0.0592790i −0.999561 0.0296395i \(-0.990564\pi\)
0.999561 0.0296395i \(-0.00943592\pi\)
\(72\) 11.5058 + 22.7072i 0.159803 + 0.315378i
\(73\) 22.9693 + 6.15460i 0.314648 + 0.0843096i 0.412687 0.910873i \(-0.364590\pi\)
−0.0980391 + 0.995183i \(0.531257\pi\)
\(74\) 9.68684 + 16.7781i 0.130903 + 0.226731i
\(75\) 65.8920 35.8224i 0.878560 0.477632i
\(76\) 1.22578i 0.0161286i
\(77\) 33.0971 133.380i 0.429833 1.73220i
\(78\) −4.79803 46.1482i −0.0615132 0.591644i
\(79\) −67.0631 38.7189i −0.848900 0.490113i 0.0113794 0.999935i \(-0.496378\pi\)
−0.860280 + 0.509822i \(0.829711\pi\)
\(80\) −11.0976 + 16.6386i −0.138720 + 0.207983i
\(81\) −65.3160 47.9042i −0.806371 0.591410i
\(82\) 102.477 27.4587i 1.24972 0.334863i
\(83\) 41.1330 + 41.1330i 0.495579 + 0.495579i 0.910059 0.414480i \(-0.136036\pi\)
−0.414480 + 0.910059i \(0.636036\pi\)
\(84\) 15.7333 + 38.9418i 0.187301 + 0.463593i
\(85\) −60.1747 20.3709i −0.707938 0.239657i
\(86\) 81.0127 + 46.7727i 0.942008 + 0.543869i
\(87\) −72.5080 + 52.5559i −0.833425 + 0.604091i
\(88\) 14.3717 53.6359i 0.163315 0.609499i
\(89\) −1.42979 0.825490i −0.0160651 0.00927517i 0.491946 0.870626i \(-0.336286\pi\)
−0.508011 + 0.861351i \(0.669619\pi\)
\(90\) 7.56938 63.1879i 0.0841042 0.702087i
\(91\) −1.42148 76.5379i −0.0156207 0.841076i
\(92\) 17.8532 + 17.8532i 0.194056 + 0.194056i
\(93\) −24.6954 + 55.2997i −0.265542 + 0.594621i
\(94\) −36.7950 63.7309i −0.391437 0.677988i
\(95\) −1.70040 + 2.54940i −0.0178989 + 0.0268358i
\(96\) 6.06393 + 15.8502i 0.0631659 + 0.165106i
\(97\) 92.5224 + 92.5224i 0.953839 + 0.953839i 0.998981 0.0451414i \(-0.0143738\pi\)
−0.0451414 + 0.998981i \(0.514374\pi\)
\(98\) 20.4083 + 66.2231i 0.208248 + 0.675746i
\(99\) 36.3478 + 172.910i 0.367149 + 1.74656i
\(100\) 46.1621 19.2109i 0.461621 0.192109i
\(101\) −51.1520 88.5979i −0.506456 0.877207i −0.999972 0.00747054i \(-0.997622\pi\)
0.493516 0.869737i \(-0.335711\pi\)
\(102\) −43.6467 + 31.6364i −0.427909 + 0.310161i
\(103\) 37.9157 + 141.503i 0.368114 + 1.37382i 0.863150 + 0.504947i \(0.168488\pi\)
−0.495036 + 0.868872i \(0.664845\pi\)
\(104\) 30.9313i 0.297416i
\(105\) 21.2976 102.817i 0.202834 0.979213i
\(106\) −94.2349 −0.889009
\(107\) −58.5462 + 15.6874i −0.547160 + 0.146611i −0.521801 0.853067i \(-0.674740\pi\)
−0.0253594 + 0.999678i \(0.508073\pi\)
\(108\) −40.0080 36.2679i −0.370444 0.335814i
\(109\) 24.8552 14.3502i 0.228029 0.131653i −0.381633 0.924314i \(-0.624638\pi\)
0.609663 + 0.792661i \(0.291305\pi\)
\(110\) −104.294 + 91.6170i −0.948130 + 0.832882i
\(111\) −31.9099 25.8995i −0.287477 0.233329i
\(112\) 7.74790 + 26.9067i 0.0691777 + 0.240238i
\(113\) 14.6106 14.6106i 0.129297 0.129297i −0.639497 0.768794i \(-0.720857\pi\)
0.768794 + 0.639497i \(0.220857\pi\)
\(114\) 0.929127 + 2.42860i 0.00815023 + 0.0213035i
\(115\) −12.3656 61.8975i −0.107527 0.538239i
\(116\) −51.7028 + 29.8506i −0.445714 + 0.257333i
\(117\) 44.4861 + 87.7954i 0.380223 + 0.750388i
\(118\) −73.9707 + 73.9707i −0.626871 + 0.626871i
\(119\) −76.1861 + 45.8931i −0.640219 + 0.385656i
\(120\) 9.37547 41.3775i 0.0781289 0.344813i
\(121\) 132.210 228.994i 1.09264 1.89251i
\(122\) 30.4103 + 8.14841i 0.249265 + 0.0667902i
\(123\) −182.222 + 132.080i −1.48148 + 1.07382i
\(124\) −20.1878 + 34.9663i −0.162805 + 0.281986i
\(125\) −122.659 24.0808i −0.981268 0.192647i
\(126\) −60.6895 65.2287i −0.481662 0.517688i
\(127\) −8.36779 + 8.36779i −0.0658881 + 0.0658881i −0.739283 0.673395i \(-0.764835\pi\)
0.673395 + 0.739283i \(0.264835\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) −195.962 31.2627i −1.51908 0.242347i
\(130\) −42.9079 + 64.3318i −0.330061 + 0.494860i
\(131\) −84.5571 + 146.457i −0.645474 + 1.11799i 0.338718 + 0.940888i \(0.390007\pi\)
−0.984192 + 0.177105i \(0.943327\pi\)
\(132\) 12.1812 + 117.161i 0.0922821 + 0.887584i
\(133\) 1.18715 + 4.12270i 0.00892593 + 0.0309977i
\(134\) −12.9239 −0.0964471
\(135\) 32.8988 + 130.930i 0.243695 + 0.969852i
\(136\) −31.1228 + 17.9688i −0.228844 + 0.132123i
\(137\) 64.7708 241.728i 0.472780 1.76444i −0.156933 0.987609i \(-0.550161\pi\)
0.629713 0.776828i \(-0.283173\pi\)
\(138\) −48.9046 21.8395i −0.354381 0.158257i
\(139\) −229.593 −1.65175 −0.825875 0.563853i \(-0.809318\pi\)
−0.825875 + 0.563853i \(0.809318\pi\)
\(140\) 21.2107 66.7091i 0.151505 0.476494i
\(141\) 121.209 + 98.3781i 0.859635 + 0.697717i
\(142\) 1.54053 + 5.74934i 0.0108488 + 0.0404883i
\(143\) 55.5670 207.379i 0.388580 1.45020i
\(144\) −24.0286 26.8072i −0.166865 0.186161i
\(145\) 148.942 + 9.63796i 1.02718 + 0.0664687i
\(146\) −33.6294 −0.230338
\(147\) −90.6310 115.737i −0.616537 0.787326i
\(148\) −19.3737 19.3737i −0.130903 0.130903i
\(149\) 42.3960 73.4319i 0.284537 0.492832i −0.687960 0.725749i \(-0.741494\pi\)
0.972497 + 0.232917i \(0.0748269\pi\)
\(150\) −76.8982 + 73.0524i −0.512655 + 0.487016i
\(151\) 139.651 + 241.882i 0.924838 + 1.60187i 0.791821 + 0.610753i \(0.209133\pi\)
0.133017 + 0.991114i \(0.457533\pi\)
\(152\) 0.448665 + 1.67444i 0.00295174 + 0.0110161i
\(153\) 62.4960 95.7642i 0.408470 0.625910i
\(154\) 3.60886 + 194.314i 0.0234342 + 1.26178i
\(155\) 90.4923 44.7193i 0.583821 0.288512i
\(156\) 23.4456 + 61.2834i 0.150293 + 0.392843i
\(157\) −66.9415 + 249.829i −0.426379 + 1.59127i 0.334515 + 0.942390i \(0.391428\pi\)
−0.760894 + 0.648877i \(0.775239\pi\)
\(158\) 105.782 + 28.3442i 0.669507 + 0.179394i
\(159\) 186.705 71.4292i 1.17425 0.449240i
\(160\) 9.06944 26.7908i 0.0566840 0.167442i
\(161\) −77.3369 42.7557i −0.480353 0.265563i
\(162\) 106.758 + 41.5311i 0.658997 + 0.256365i
\(163\) 18.3932 4.92845i 0.112842 0.0302359i −0.201956 0.979395i \(-0.564730\pi\)
0.314798 + 0.949159i \(0.398063\pi\)
\(164\) −129.936 + 75.0186i −0.792293 + 0.457431i
\(165\) 137.191 260.573i 0.831460 1.57923i
\(166\) −71.2445 41.1330i −0.429184 0.247789i
\(167\) −72.3691 + 72.3691i −0.433348 + 0.433348i −0.889766 0.456418i \(-0.849132\pi\)
0.456418 + 0.889766i \(0.349132\pi\)
\(168\) −35.7457 47.4367i −0.212772 0.282361i
\(169\) 49.4067i 0.292348i
\(170\) 89.6564 + 5.80164i 0.527391 + 0.0341273i
\(171\) −3.68171 4.10745i −0.0215305 0.0240202i
\(172\) −127.785 34.2400i −0.742938 0.199070i
\(173\) −160.959 + 43.1289i −0.930401 + 0.249300i −0.692026 0.721873i \(-0.743282\pi\)
−0.238375 + 0.971173i \(0.576615\pi\)
\(174\) 79.8109 98.3325i 0.458684 0.565129i
\(175\) −136.653 + 109.320i −0.780876 + 0.624686i
\(176\) 78.5284i 0.446184i
\(177\) 90.4872 202.625i 0.511227 1.14478i
\(178\) 2.25528 + 0.604300i 0.0126701 + 0.00339495i
\(179\) 35.9900 + 62.3366i 0.201062 + 0.348249i 0.948871 0.315665i \(-0.102228\pi\)
−0.747809 + 0.663914i \(0.768894\pi\)
\(180\) 12.7884 + 89.0868i 0.0710467 + 0.494927i
\(181\) 134.777i 0.744624i 0.928108 + 0.372312i \(0.121435\pi\)
−0.928108 + 0.372312i \(0.878565\pi\)
\(182\) 29.9566 + 104.032i 0.164597 + 0.571607i
\(183\) −66.4275 + 6.90647i −0.362992 + 0.0377403i
\(184\) −30.9226 17.8532i −0.168058 0.0970282i
\(185\) 13.4187 + 67.1690i 0.0725337 + 0.363076i
\(186\) 13.4934 84.5800i 0.0725454 0.454731i
\(187\) −240.943 + 64.5605i −1.28847 + 0.345243i
\(188\) 73.5901 + 73.5901i 0.391437 + 0.391437i
\(189\) 169.685 + 83.2340i 0.897806 + 0.440392i
\(190\) 1.38964 4.10493i 0.00731388 0.0216049i
\(191\) 161.123 + 93.0244i 0.843575 + 0.487038i 0.858478 0.512850i \(-0.171410\pi\)
−0.0149025 + 0.999889i \(0.504744\pi\)
\(192\) −14.0851 19.4322i −0.0733596 0.101209i
\(193\) 34.2952 127.992i 0.177696 0.663169i −0.818381 0.574676i \(-0.805128\pi\)
0.996077 0.0884931i \(-0.0282051\pi\)
\(194\) −160.253 92.5224i −0.826049 0.476920i
\(195\) 36.2495 159.983i 0.185895 0.820424i
\(196\) −52.1176 82.9925i −0.265906 0.423431i
\(197\) −193.225 193.225i −0.980838 0.980838i 0.0189815 0.999820i \(-0.493958\pi\)
−0.999820 + 0.0189815i \(0.993958\pi\)
\(198\) −112.941 222.895i −0.570411 1.12573i
\(199\) 65.1380 + 112.822i 0.327326 + 0.566946i 0.981980 0.188983i \(-0.0605190\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(200\) −56.0270 + 43.1390i −0.280135 + 0.215695i
\(201\) 25.6058 9.79620i 0.127392 0.0487373i
\(202\) 102.304 + 102.304i 0.506456 + 0.506456i
\(203\) 144.984 150.471i 0.714206 0.741237i
\(204\) 48.0427 59.1919i 0.235504 0.290156i
\(205\) 374.310 + 24.2215i 1.82590 + 0.118154i
\(206\) −103.588 179.419i −0.502853 0.870967i
\(207\) 113.448 + 6.20085i 0.548056 + 0.0299558i
\(208\) 11.3216 + 42.2530i 0.0544310 + 0.203139i
\(209\) 12.0323i 0.0575707i
\(210\) 8.54077 + 148.247i 0.0406703 + 0.705936i
\(211\) 134.658 0.638191 0.319095 0.947723i \(-0.396621\pi\)
0.319095 + 0.947723i \(0.396621\pi\)
\(212\) 128.727 34.4924i 0.607204 0.162700i
\(213\) −7.41016 10.2233i −0.0347895 0.0479968i
\(214\) 74.2336 42.8588i 0.346886 0.200275i
\(215\) 218.274 + 248.477i 1.01523 + 1.15571i
\(216\) 67.9269 + 34.8990i 0.314476 + 0.161569i
\(217\) 34.0339 137.155i 0.156838 0.632051i
\(218\) −28.7003 + 28.7003i −0.131653 + 0.131653i
\(219\) 66.6290 25.4907i 0.304242 0.116396i
\(220\) 108.935 163.326i 0.495157 0.742389i
\(221\) −120.334 + 69.4748i −0.544497 + 0.314365i
\(222\) 53.0696 + 23.6995i 0.239052 + 0.106755i
\(223\) −247.996 + 247.996i −1.11209 + 1.11209i −0.119223 + 0.992867i \(0.538040\pi\)
−0.992867 + 0.119223i \(0.961960\pi\)
\(224\) −20.4324 33.9193i −0.0912159 0.151425i
\(225\) 96.9835 203.025i 0.431038 0.902334i
\(226\) −14.6106 + 25.3063i −0.0646486 + 0.111975i
\(227\) −71.7681 19.2302i −0.316159 0.0847146i 0.0972500 0.995260i \(-0.468995\pi\)
−0.413409 + 0.910545i \(0.635662\pi\)
\(228\) −2.15814 2.97744i −0.00946552 0.0130590i
\(229\) 34.0586 58.9912i 0.148727 0.257603i −0.782030 0.623241i \(-0.785816\pi\)
0.930757 + 0.365637i \(0.119149\pi\)
\(230\) 39.5478 + 80.0274i 0.171947 + 0.347945i
\(231\) −154.439 382.255i −0.668566 1.65478i
\(232\) 59.7012 59.7012i 0.257333 0.257333i
\(233\) 67.0823 + 250.355i 0.287907 + 1.07448i 0.946689 + 0.322150i \(0.104405\pi\)
−0.658782 + 0.752334i \(0.728928\pi\)
\(234\) −92.9045 103.648i −0.397028 0.442939i
\(235\) −50.9705 255.139i −0.216896 1.08570i
\(236\) 73.9707 128.121i 0.313435 0.542886i
\(237\) −231.068 + 24.0241i −0.974970 + 0.101368i
\(238\) 87.2741 90.5772i 0.366698 0.380576i
\(239\) 33.1697 0.138785 0.0693927 0.997589i \(-0.477894\pi\)
0.0693927 + 0.997589i \(0.477894\pi\)
\(240\) 2.33810 + 59.9544i 0.00974207 + 0.249810i
\(241\) −246.276 + 142.188i −1.02189 + 0.589990i −0.914652 0.404243i \(-0.867535\pi\)
−0.107242 + 0.994233i \(0.534202\pi\)
\(242\) −96.7843 + 361.204i −0.399935 + 1.49258i
\(243\) −242.996 1.36326i −0.999984 0.00561011i
\(244\) −44.5237 −0.182474
\(245\) −6.73158 + 244.908i −0.0274759 + 0.999622i
\(246\) 200.576 247.123i 0.815348 1.00456i
\(247\) 1.73473 + 6.47408i 0.00702318 + 0.0262109i
\(248\) 14.7785 55.1541i 0.0595907 0.222395i
\(249\) 172.333 + 27.4932i 0.692102 + 0.110414i
\(250\) 176.369 12.0011i 0.705475 0.0480043i
\(251\) 134.588 0.536205 0.268103 0.963390i \(-0.413603\pi\)
0.268103 + 0.963390i \(0.413603\pi\)
\(252\) 106.779 + 66.8902i 0.423725 + 0.265437i
\(253\) −175.248 175.248i −0.692679 0.692679i
\(254\) 8.36779 14.4934i 0.0329441 0.0570608i
\(255\) −182.032 + 56.4641i −0.713849 + 0.221428i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −32.7685 122.294i −0.127504 0.475852i 0.872412 0.488770i \(-0.162554\pi\)
−0.999917 + 0.0129187i \(0.995888\pi\)
\(258\) 279.132 29.0213i 1.08191 0.112486i
\(259\) 83.9234 + 46.3970i 0.324028 + 0.179139i
\(260\) 35.0662 103.584i 0.134870 0.398401i
\(261\) −83.5923 + 255.320i −0.320277 + 0.978236i
\(262\) 61.9001 231.014i 0.236260 0.881733i
\(263\) 77.5522 + 20.7801i 0.294875 + 0.0790116i 0.403224 0.915101i \(-0.367890\pi\)
−0.108348 + 0.994113i \(0.534556\pi\)
\(264\) −59.5238 155.586i −0.225469 0.589343i
\(265\) −315.578 106.832i −1.19086 0.403141i
\(266\) −3.13069 5.19718i −0.0117695 0.0195383i
\(267\) −4.92638 + 0.512196i −0.0184509 + 0.00191834i
\(268\) 17.6544 4.73048i 0.0658746 0.0176510i
\(269\) 160.113 92.4410i 0.595214 0.343647i −0.171943 0.985107i \(-0.555004\pi\)
0.767156 + 0.641460i \(0.221671\pi\)
\(270\) −92.8643 166.812i −0.343942 0.617822i
\(271\) −166.881 96.3488i −0.615797 0.355531i 0.159434 0.987209i \(-0.449033\pi\)
−0.775231 + 0.631678i \(0.782367\pi\)
\(272\) 35.9376 35.9376i 0.132123 0.132123i
\(273\) −138.208 183.410i −0.506256 0.671831i
\(274\) 353.914i 1.29166i
\(275\) −453.130 + 188.575i −1.64775 + 0.685726i
\(276\) 74.7988 + 11.9330i 0.271010 + 0.0432355i
\(277\) −422.843 113.301i −1.52651 0.409027i −0.604631 0.796505i \(-0.706680\pi\)
−0.921879 + 0.387478i \(0.873346\pi\)
\(278\) 313.630 84.0370i 1.12817 0.302291i
\(279\) 37.3766 + 177.804i 0.133966 + 0.637291i
\(280\) −4.55705 + 98.8900i −0.0162752 + 0.353179i
\(281\) 221.523i 0.788340i 0.919038 + 0.394170i \(0.128968\pi\)
−0.919038 + 0.394170i \(0.871032\pi\)
\(282\) −201.583 90.0216i −0.714833 0.319226i
\(283\) 383.117 + 102.656i 1.35377 + 0.362741i 0.861525 0.507715i \(-0.169510\pi\)
0.492245 + 0.870457i \(0.336177\pi\)
\(284\) −4.20881 7.28987i −0.0148197 0.0256685i
\(285\) 0.358248 + 9.18634i 0.00125701 + 0.0322328i
\(286\) 303.623i 1.06162i
\(287\) 364.364 378.154i 1.26956 1.31761i
\(288\) 42.6358 + 27.8242i 0.148041 + 0.0966119i
\(289\) −110.471 63.7807i −0.382254 0.220694i
\(290\) −206.986 + 41.3507i −0.713744 + 0.142589i
\(291\) 387.637 + 61.8417i 1.33209 + 0.212514i
\(292\) 45.9386 12.3092i 0.157324 0.0421548i
\(293\) 156.018 + 156.018i 0.532484 + 0.532484i 0.921311 0.388827i \(-0.127120\pi\)
−0.388827 + 0.921311i \(0.627120\pi\)
\(294\) 166.167 + 124.926i 0.565193 + 0.424919i
\(295\) −331.576 + 163.857i −1.12399 + 0.555449i
\(296\) 33.5562 + 19.3737i 0.113366 + 0.0654516i
\(297\) 392.720 + 356.008i 1.32229 + 1.19868i
\(298\) −31.0360 + 115.828i −0.104148 + 0.388684i
\(299\) −119.560 69.0278i −0.399865 0.230862i
\(300\) 78.3059 127.938i 0.261020 0.426461i
\(301\) 462.946 8.59796i 1.53803 0.0285647i
\(302\) −279.301 279.301i −0.924838 0.924838i
\(303\) −280.238 125.147i −0.924878 0.413026i
\(304\) −1.22578 2.12311i −0.00403216 0.00698390i
\(305\) 92.6016 + 61.7633i 0.303612 + 0.202503i
\(306\) −50.3190 + 153.691i −0.164441 + 0.502260i
\(307\) −47.9690 47.9690i −0.156251 0.156251i 0.624652 0.780903i \(-0.285241\pi\)
−0.780903 + 0.624652i \(0.785241\pi\)
\(308\) −76.0538 264.118i −0.246928 0.857525i
\(309\) 341.234 + 276.960i 1.10432 + 0.896311i
\(310\) −107.246 + 94.2102i −0.345956 + 0.303904i
\(311\) 217.116 + 376.057i 0.698124 + 1.20919i 0.969116 + 0.246604i \(0.0793147\pi\)
−0.270993 + 0.962581i \(0.587352\pi\)
\(312\) −54.4586 75.1330i −0.174547 0.240811i
\(313\) −65.8692 245.827i −0.210445 0.785390i −0.987721 0.156230i \(-0.950066\pi\)
0.777276 0.629160i \(-0.216601\pi\)
\(314\) 365.775i 1.16489i
\(315\) −129.291 287.243i −0.410448 0.911884i
\(316\) −154.876 −0.490113
\(317\) −121.640 + 32.5934i −0.383723 + 0.102818i −0.445523 0.895270i \(-0.646982\pi\)
0.0618007 + 0.998089i \(0.480316\pi\)
\(318\) −228.899 + 165.913i −0.719809 + 0.521739i
\(319\) 507.517 293.015i 1.59096 0.918543i
\(320\) −2.58298 + 39.9165i −0.00807183 + 0.124739i
\(321\) −114.591 + 141.183i −0.356980 + 0.439824i
\(322\) 121.294 + 30.0981i 0.376689 + 0.0934723i
\(323\) 5.50643 5.50643i 0.0170478 0.0170478i
\(324\) −161.035 17.6565i −0.497021 0.0544955i
\(325\) −216.624 + 166.793i −0.666534 + 0.513210i
\(326\) −23.3217 + 13.4648i −0.0715389 + 0.0413030i
\(327\) 35.1086 78.6178i 0.107366 0.240421i
\(328\) 150.037 150.037i 0.457431 0.457431i
\(329\) −318.779 176.237i −0.968934 0.535675i
\(330\) −92.0301 + 406.164i −0.278879 + 1.23080i
\(331\) −147.637 + 255.715i −0.446034 + 0.772554i −0.998124 0.0612308i \(-0.980497\pi\)
0.552089 + 0.833785i \(0.313831\pi\)
\(332\) 112.378 + 30.1115i 0.338487 + 0.0906972i
\(333\) −123.110 6.72895i −0.369698 0.0202071i
\(334\) 72.3691 125.347i 0.216674 0.375290i
\(335\) −43.2802 14.6516i −0.129195 0.0437360i
\(336\) 66.1926 + 51.7159i 0.197002 + 0.153916i
\(337\) 348.075 348.075i 1.03286 1.03286i 0.0334221 0.999441i \(-0.489359\pi\)
0.999441 0.0334221i \(-0.0106406\pi\)
\(338\) −18.0841 67.4908i −0.0535033 0.199677i
\(339\) 9.76566 61.2134i 0.0288073 0.180570i
\(340\) −124.596 + 24.8913i −0.366460 + 0.0732098i
\(341\) 198.164 343.231i 0.581127 1.00654i
\(342\) 6.53274 + 4.26329i 0.0191016 + 0.0124657i
\(343\) 255.666 + 228.656i 0.745383 + 0.666637i
\(344\) 187.091 0.543869
\(345\) −139.015 128.579i −0.402942 0.372694i
\(346\) 204.088 117.830i 0.589851 0.340550i
\(347\) −148.840 + 555.480i −0.428935 + 1.60081i 0.326242 + 0.945286i \(0.394217\pi\)
−0.755177 + 0.655521i \(0.772449\pi\)
\(348\) −73.0316 + 163.538i −0.209861 + 0.469935i
\(349\) −106.667 −0.305637 −0.152818 0.988254i \(-0.548835\pi\)
−0.152818 + 0.988254i \(0.548835\pi\)
\(350\) 146.658 199.353i 0.419023 0.569579i
\(351\) 262.633 + 134.934i 0.748243 + 0.384427i
\(352\) −28.7434 107.272i −0.0816574 0.304750i
\(353\) 6.93139 25.8683i 0.0196357 0.0732813i −0.955413 0.295273i \(-0.904589\pi\)
0.975048 + 0.221992i \(0.0712559\pi\)
\(354\) −49.4418 + 309.912i −0.139666 + 0.875458i
\(355\) −1.35891 + 21.0001i −0.00382792 + 0.0591553i
\(356\) −3.30196 −0.00927517
\(357\) −104.257 + 245.611i −0.292037 + 0.687986i
\(358\) −71.9801 71.9801i −0.201062 0.201062i
\(359\) 182.112 315.427i 0.507275 0.878625i −0.492690 0.870205i \(-0.663986\pi\)
0.999965 0.00842047i \(-0.00268035\pi\)
\(360\) −50.0773 117.014i −0.139104 0.325039i
\(361\) 180.312 + 312.310i 0.499480 + 0.865124i
\(362\) −49.3318 184.109i −0.136276 0.508588i
\(363\) −82.0329 789.006i −0.225986 2.17357i
\(364\) −79.0000 131.146i −0.217033 0.360291i
\(365\) −112.620 38.1249i −0.308547 0.104452i
\(366\) 88.2137 33.7486i 0.241021 0.0922092i
\(367\) −56.7738 + 211.883i −0.154697 + 0.577337i 0.844434 + 0.535659i \(0.179937\pi\)
−0.999131 + 0.0416774i \(0.986730\pi\)
\(368\) 48.7758 + 13.0694i 0.132543 + 0.0355148i
\(369\) −210.079 + 641.653i −0.569319 + 1.73890i
\(370\) −42.9159 86.8430i −0.115989 0.234711i
\(371\) −399.548 + 240.680i −1.07695 + 0.648734i
\(372\) 12.5260 + 120.477i 0.0336721 + 0.323864i
\(373\) 372.463 99.8013i 0.998561 0.267564i 0.277719 0.960662i \(-0.410422\pi\)
0.720843 + 0.693099i \(0.243755\pi\)
\(374\) 305.504 176.383i 0.816854 0.471611i
\(375\) −340.338 + 157.463i −0.907569 + 0.419902i
\(376\) −127.462 73.5901i −0.338994 0.195718i
\(377\) 230.830 230.830i 0.612280 0.612280i
\(378\) −262.260 51.5907i −0.693810 0.136483i
\(379\) 381.328i 1.00614i −0.864245 0.503071i \(-0.832203\pi\)
0.864245 0.503071i \(-0.167797\pi\)
\(380\) −0.395770 + 6.11609i −0.00104150 + 0.0160950i
\(381\) −5.59300 + 35.0582i −0.0146798 + 0.0920163i
\(382\) −254.147 68.0986i −0.665307 0.178268i
\(383\) −595.841 + 159.655i −1.55572 + 0.416854i −0.931305 0.364240i \(-0.881329\pi\)
−0.624414 + 0.781093i \(0.714662\pi\)
\(384\) 26.3532 + 21.3894i 0.0686282 + 0.0557016i
\(385\) −208.205 + 654.820i −0.540792 + 1.70083i
\(386\) 187.393i 0.485473i
\(387\) −531.039 + 269.078i −1.37219 + 0.695293i
\(388\) 252.776 + 67.7311i 0.651484 + 0.174565i
\(389\) −362.523 627.909i −0.931937 1.61416i −0.780008 0.625770i \(-0.784785\pi\)
−0.151929 0.988391i \(-0.548549\pi\)
\(390\) 9.04005 + 231.809i 0.0231796 + 0.594381i
\(391\) 160.400i 0.410230i
\(392\) 101.571 + 94.2935i 0.259111 + 0.240545i
\(393\) 52.4655 + 504.622i 0.133500 + 1.28403i
\(394\) 334.676 + 193.225i 0.849431 + 0.490419i
\(395\) 322.114 + 214.843i 0.815480 + 0.543907i
\(396\) 235.866 + 263.141i 0.595621 + 0.664497i
\(397\) 79.9252 21.4159i 0.201323 0.0539443i −0.156748 0.987639i \(-0.550101\pi\)
0.358071 + 0.933694i \(0.383434\pi\)
\(398\) −130.276 130.276i −0.327326 0.327326i
\(399\) 10.1422 + 7.92401i 0.0254190 + 0.0198597i
\(400\) 60.7443 79.4363i 0.151861 0.198591i
\(401\) −471.040 271.955i −1.17466 0.678193i −0.219890 0.975525i \(-0.570570\pi\)
−0.954774 + 0.297332i \(0.903903\pi\)
\(402\) −31.3925 + 22.7542i −0.0780909 + 0.0566026i
\(403\) 57.1398 213.248i 0.141786 0.529153i
\(404\) −177.196 102.304i −0.438604 0.253228i
\(405\) 310.432 + 260.110i 0.766498 + 0.642247i
\(406\) −142.975 + 258.615i −0.352156 + 0.636983i
\(407\) 190.173 + 190.173i 0.467256 + 0.467256i
\(408\) −43.9619 + 98.4425i −0.107750 + 0.241281i
\(409\) −186.164 322.446i −0.455170 0.788377i 0.543528 0.839391i \(-0.317088\pi\)
−0.998698 + 0.0510136i \(0.983755\pi\)
\(410\) −520.183 + 103.920i −1.26874 + 0.253463i
\(411\) −268.264 701.201i −0.652710 1.70609i
\(412\) 207.175 + 207.175i 0.502853 + 0.502853i
\(413\) −124.705 + 502.554i −0.301949 + 1.21684i
\(414\) −157.242 + 33.0542i −0.379812 + 0.0798411i
\(415\) −191.955 218.517i −0.462543 0.526546i
\(416\) −30.9313 53.5746i −0.0743541 0.128785i
\(417\) −557.688 + 404.229i −1.33738 + 0.969374i
\(418\) −4.40412 16.4364i −0.0105362 0.0393215i
\(419\) 289.110i 0.690000i 0.938603 + 0.345000i \(0.112121\pi\)
−0.938603 + 0.345000i \(0.887879\pi\)
\(420\) −65.9289 199.382i −0.156974 0.474720i
\(421\) −680.094 −1.61543 −0.807713 0.589576i \(-0.799295\pi\)
−0.807713 + 0.589576i \(0.799295\pi\)
\(422\) −183.947 + 49.2883i −0.435892 + 0.116797i
\(423\) 467.627 + 25.5597i 1.10550 + 0.0604247i
\(424\) −163.220 + 94.2349i −0.384952 + 0.222252i
\(425\) 293.668 + 121.070i 0.690984 + 0.284872i
\(426\) 13.8645 + 11.2530i 0.0325457 + 0.0264155i
\(427\) 149.748 43.1207i 0.350699 0.100985i
\(428\) −85.7175 + 85.7175i −0.200275 + 0.200275i
\(429\) −230.144 601.562i −0.536466 1.40224i
\(430\) −389.116 259.532i −0.904922 0.603563i
\(431\) 432.391 249.641i 1.00323 0.579214i 0.0940260 0.995570i \(-0.470026\pi\)
0.909202 + 0.416356i \(0.136693\pi\)
\(432\) −105.564 22.8099i −0.244361 0.0528008i
\(433\) −62.7615 + 62.7615i −0.144946 + 0.144946i −0.775856 0.630910i \(-0.782682\pi\)
0.630910 + 0.775856i \(0.282682\pi\)
\(434\) 3.71101 + 199.814i 0.00855071 + 0.460402i
\(435\) 378.752 238.820i 0.870695 0.549012i
\(436\) 28.7003 49.7104i 0.0658264 0.114015i
\(437\) 7.47353 + 2.00253i 0.0171019 + 0.00458244i
\(438\) −81.6867 + 59.2089i −0.186499 + 0.135180i
\(439\) 6.32464 10.9546i 0.0144069 0.0249535i −0.858732 0.512425i \(-0.828747\pi\)
0.873139 + 0.487471i \(0.162081\pi\)
\(440\) −89.0261 + 262.980i −0.202332 + 0.597681i
\(441\) −423.915 121.560i −0.961259 0.275647i
\(442\) 138.950 138.950i 0.314365 0.314365i
\(443\) −21.4772 80.1541i −0.0484813 0.180935i 0.937439 0.348149i \(-0.113190\pi\)
−0.985921 + 0.167214i \(0.946523\pi\)
\(444\) −81.1691 12.9493i −0.182813 0.0291651i
\(445\) 6.86750 + 4.58047i 0.0154326 + 0.0102932i
\(446\) 247.996 429.542i 0.556045 0.963099i
\(447\) −26.3056 253.012i −0.0588493 0.566022i
\(448\) 40.3264 + 38.8559i 0.0900144 + 0.0867318i
\(449\) −554.557 −1.23509 −0.617547 0.786534i \(-0.711874\pi\)
−0.617547 + 0.786534i \(0.711874\pi\)
\(450\) −58.1695 + 312.836i −0.129266 + 0.695191i
\(451\) 1275.46 736.387i 2.82807 1.63279i
\(452\) 10.6957 39.9168i 0.0236630 0.0883116i
\(453\) 765.080 + 341.665i 1.68892 + 0.754227i
\(454\) 105.076 0.231445
\(455\) −17.6194 + 382.350i −0.0387241 + 0.840329i
\(456\) 4.03789 + 3.27733i 0.00885503 + 0.00718713i
\(457\) 130.979 + 488.822i 0.286607 + 1.06963i 0.947657 + 0.319290i \(0.103445\pi\)
−0.661050 + 0.750342i \(0.729889\pi\)
\(458\) −24.9326 + 93.0497i −0.0544380 + 0.203165i
\(459\) −16.8010 342.646i −0.0366035 0.746506i
\(460\) −83.3153 94.8440i −0.181120 0.206183i
\(461\) 364.645 0.790987 0.395494 0.918469i \(-0.370573\pi\)
0.395494 + 0.918469i \(0.370573\pi\)
\(462\) 350.882 + 465.641i 0.759485 + 1.00788i
\(463\) −568.862 568.862i −1.22864 1.22864i −0.964477 0.264166i \(-0.914903\pi\)
−0.264166 0.964477i \(-0.585097\pi\)
\(464\) −59.7012 + 103.406i −0.128666 + 0.222857i
\(465\) 141.074 267.948i 0.303385 0.576232i
\(466\) −183.272 317.437i −0.393288 0.681195i
\(467\) −14.8228 55.3194i −0.0317405 0.118457i 0.948238 0.317561i \(-0.102864\pi\)
−0.979978 + 0.199104i \(0.936197\pi\)
\(468\) 164.848 + 107.580i 0.352239 + 0.229872i
\(469\) −54.7962 + 33.0082i −0.116836 + 0.0703800i
\(470\) 163.014 + 329.870i 0.346839 + 0.701850i
\(471\) 277.254 + 724.701i 0.588650 + 1.53864i
\(472\) −54.1503 + 202.092i −0.114725 + 0.428161i
\(473\) 1254.35 + 336.102i 2.65190 + 0.710574i
\(474\) 306.851 117.394i 0.647365 0.247667i
\(475\) 9.30737 12.1714i 0.0195945 0.0256240i
\(476\) −86.0650 + 155.675i −0.180809 + 0.327049i
\(477\) 327.752 502.223i 0.687111 1.05288i
\(478\) −45.3107 + 12.1410i −0.0947922 + 0.0253995i
\(479\) −129.731 + 74.9002i −0.270837 + 0.156368i −0.629268 0.777188i \(-0.716645\pi\)
0.358431 + 0.933556i \(0.383312\pi\)
\(480\) −25.1387 81.0435i −0.0523724 0.168841i
\(481\) 129.742 + 74.9067i 0.269734 + 0.155731i
\(482\) 284.375 284.375i 0.589990 0.589990i
\(483\) −263.130 + 32.3070i −0.544784 + 0.0668881i
\(484\) 528.839i 1.09264i
\(485\) −431.773 491.519i −0.890255 1.01344i
\(486\) 332.438 87.0805i 0.684029 0.179178i
\(487\) 105.168 + 28.1798i 0.215952 + 0.0578641i 0.365173 0.930940i \(-0.381010\pi\)
−0.149221 + 0.988804i \(0.547677\pi\)
\(488\) 60.8205 16.2968i 0.124632 0.0333951i
\(489\) 36.0005 44.3550i 0.0736206 0.0907056i
\(490\) −80.4469 337.014i −0.164177 0.687783i
\(491\) 156.181i 0.318087i 0.987272 + 0.159043i \(0.0508410\pi\)
−0.987272 + 0.159043i \(0.949159\pi\)
\(492\) −183.538 + 410.992i −0.373045 + 0.835349i
\(493\) −366.354 98.1642i −0.743111 0.199116i
\(494\) −4.73936 8.20881i −0.00959384 0.0166170i
\(495\) −125.532 874.481i −0.253599 1.76663i
\(496\) 80.7512i 0.162805i
\(497\) 21.2158 + 20.4421i 0.0426877 + 0.0411310i
\(498\) −245.475 + 25.5220i −0.492922 + 0.0512491i
\(499\) 601.874 + 347.492i 1.20616 + 0.696377i 0.961918 0.273337i \(-0.0881274\pi\)
0.244242 + 0.969714i \(0.421461\pi\)
\(500\) −236.532 + 80.9493i −0.473063 + 0.161899i
\(501\) −48.3712 + 303.202i −0.0965494 + 0.605193i
\(502\) −183.850 + 49.2625i −0.366235 + 0.0981324i
\(503\) −159.128 159.128i −0.316358 0.316358i 0.531009 0.847366i \(-0.321813\pi\)
−0.847366 + 0.531009i \(0.821813\pi\)
\(504\) −170.346 52.2900i −0.337988 0.103750i
\(505\) 226.620 + 458.581i 0.448753 + 0.908080i
\(506\) 303.538 + 175.248i 0.599878 + 0.346340i
\(507\) 86.9870 + 120.010i 0.171572 + 0.236707i
\(508\) −6.12565 + 22.8612i −0.0120584 + 0.0450024i
\(509\) 303.860 + 175.434i 0.596974 + 0.344663i 0.767850 0.640629i \(-0.221326\pi\)
−0.170876 + 0.985293i \(0.554660\pi\)
\(510\) 227.992 143.760i 0.447044 0.281881i
\(511\) −142.586 + 85.8909i −0.279032 + 0.168084i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) −16.1747 3.49498i −0.0315296 0.00681283i
\(514\) 89.5253 + 155.062i 0.174174 + 0.301678i
\(515\) −143.495 718.282i −0.278632 1.39472i
\(516\) −370.678 + 141.813i −0.718369 + 0.274832i
\(517\) −722.364 722.364i −1.39722 1.39722i
\(518\) −131.624 32.6614i −0.254100 0.0630530i
\(519\) −315.041 + 388.152i −0.607015 + 0.747884i
\(520\) −9.98689 + 154.334i −0.0192056 + 0.296796i
\(521\) −27.9815 48.4653i −0.0537072 0.0930237i 0.837922 0.545790i \(-0.183770\pi\)
−0.891629 + 0.452767i \(0.850437\pi\)
\(522\) 20.7357 379.370i 0.0397236 0.726763i
\(523\) −226.661 845.912i −0.433387 1.61742i −0.744897 0.667180i \(-0.767501\pi\)
0.311510 0.950243i \(-0.399165\pi\)
\(524\) 338.228i 0.645474i
\(525\) −139.463 + 506.138i −0.265643 + 0.964072i
\(526\) −113.544 −0.215864
\(527\) −247.763 + 66.3879i −0.470138 + 0.125973i
\(528\) 138.260 + 190.748i 0.261855 + 0.361265i
\(529\) 320.111 184.816i 0.605124 0.349368i
\(530\) 470.191 + 30.4259i 0.887153 + 0.0574074i
\(531\) −136.953 651.498i −0.257915 1.22693i
\(532\) 6.17890 + 5.95357i 0.0116145 + 0.0111909i
\(533\) 580.106 580.106i 1.08838 1.08838i
\(534\) 6.54209 2.50285i 0.0122511 0.00468699i
\(535\) 297.185 59.3703i 0.555486 0.110973i
\(536\) −22.3849 + 12.9239i −0.0417628 + 0.0241118i
\(537\) 197.173 + 88.0521i 0.367174 + 0.163970i
\(538\) −184.882 + 184.882i −0.343647 + 0.343647i
\(539\) 511.589 + 814.659i 0.949145 + 1.51143i
\(540\) 187.912 + 193.879i 0.347986 + 0.359035i
\(541\) 325.449 563.694i 0.601569 1.04195i −0.391014 0.920385i \(-0.627876\pi\)
0.992584 0.121564i \(-0.0387909\pi\)
\(542\) 263.230 + 70.5322i 0.485664 + 0.130133i
\(543\) 237.293 + 327.377i 0.437003 + 0.602904i
\(544\) −35.9376 + 62.2457i −0.0660617 + 0.114422i
\(545\) −128.650 + 63.5759i −0.236055 + 0.116653i
\(546\) 255.928 + 199.955i 0.468733 + 0.366218i
\(547\) 155.700 155.700i 0.284644 0.284644i −0.550314 0.834958i \(-0.685492\pi\)
0.834958 + 0.550314i \(0.185492\pi\)
\(548\) −129.542 483.456i −0.236390 0.882219i
\(549\) −149.195 + 133.730i −0.271757 + 0.243589i
\(550\) 549.964 423.455i 0.999935 0.769918i
\(551\) −9.14754 + 15.8440i −0.0166017 + 0.0287550i
\(552\) −106.545 + 11.0775i −0.193016 + 0.0200679i
\(553\) 520.899 149.995i 0.941951 0.271239i
\(554\) 619.086 1.11748
\(555\) 150.854 + 139.530i 0.271810 + 0.251405i
\(556\) −397.667 + 229.593i −0.715229 + 0.412938i
\(557\) 68.9573 257.352i 0.123801 0.462033i −0.875993 0.482324i \(-0.839793\pi\)
0.999794 + 0.0202914i \(0.00645939\pi\)
\(558\) −116.138 229.204i −0.208133 0.410760i
\(559\) 723.371 1.29404
\(560\) −29.9712 136.754i −0.0535200 0.244204i
\(561\) −471.590 + 581.031i −0.840624 + 1.03571i
\(562\) −81.0832 302.607i −0.144276 0.538446i
\(563\) 109.570 408.921i 0.194618 0.726324i −0.797747 0.602992i \(-0.793975\pi\)
0.992365 0.123332i \(-0.0393581\pi\)
\(564\) 308.317 + 49.1874i 0.546662 + 0.0872116i
\(565\) −77.6178 + 68.1831i −0.137377 + 0.120678i
\(566\) −560.922 −0.991028
\(567\) 558.715 96.5755i 0.985388 0.170327i
\(568\) 8.41761 + 8.41761i 0.0148197 + 0.0148197i
\(569\) −102.317 + 177.219i −0.179819 + 0.311456i −0.941819 0.336122i \(-0.890885\pi\)
0.761999 + 0.647578i \(0.224218\pi\)
\(570\) −3.85181 12.4176i −0.00675756 0.0217853i
\(571\) −10.0374 17.3853i −0.0175786 0.0304471i 0.857102 0.515146i \(-0.172262\pi\)
−0.874681 + 0.484699i \(0.838929\pi\)
\(572\) −111.134 414.757i −0.194290 0.725100i
\(573\) 555.154 57.7193i 0.968855 0.100732i
\(574\) −359.317 + 649.935i −0.625987 + 1.13229i
\(575\) 41.7140 + 312.834i 0.0725460 + 0.544059i
\(576\) −68.4260 22.4028i −0.118795 0.0388938i
\(577\) −71.5200 + 266.916i −0.123952 + 0.462593i −0.999800 0.0199925i \(-0.993636\pi\)
0.875849 + 0.482586i \(0.160302\pi\)
\(578\) 174.252 + 46.6907i 0.301474 + 0.0807798i
\(579\) −142.042 371.276i −0.245323 0.641237i
\(580\) 267.612 132.248i 0.461401 0.228014i
\(581\) −407.126 + 7.56126i −0.700734 + 0.0130142i
\(582\) −552.158 + 57.4078i −0.948725 + 0.0986389i
\(583\) −1263.59 + 338.579i −2.16740 + 0.580753i
\(584\) −58.2478 + 33.6294i −0.0997393 + 0.0575845i
\(585\) −193.620 452.424i −0.330974 0.773375i
\(586\) −270.231 156.018i −0.461144 0.266242i
\(587\) −384.403 + 384.403i −0.654860 + 0.654860i −0.954159 0.299299i \(-0.903247\pi\)
0.299299 + 0.954159i \(0.403247\pi\)
\(588\) −272.714 109.831i −0.463800 0.186788i
\(589\) 12.3729i 0.0210065i
\(590\) 392.965 345.199i 0.666042 0.585082i
\(591\) −809.548 129.151i −1.36979 0.218530i
\(592\) −52.9299 14.1825i −0.0894086 0.0239570i
\(593\) 82.9396 22.2236i 0.139864 0.0374766i −0.188208 0.982129i \(-0.560268\pi\)
0.328072 + 0.944653i \(0.393601\pi\)
\(594\) −666.774 342.570i −1.12252 0.576718i
\(595\) 394.953 204.388i 0.663786 0.343509i
\(596\) 169.584i 0.284537i
\(597\) 356.860 + 159.365i 0.597756 + 0.266942i
\(598\) 188.588 + 50.5319i 0.315364 + 0.0845015i
\(599\) −261.754 453.371i −0.436985 0.756880i 0.560470 0.828175i \(-0.310620\pi\)
−0.997455 + 0.0712942i \(0.977287\pi\)
\(600\) −60.1392 + 203.429i −0.100232 + 0.339048i
\(601\) 135.446i 0.225368i −0.993631 0.112684i \(-0.964055\pi\)
0.993631 0.112684i \(-0.0359448\pi\)
\(602\) −629.249 + 181.195i −1.04526 + 0.300989i
\(603\) 44.9497 68.8776i 0.0745435 0.114225i
\(604\) 483.764 + 279.301i 0.800934 + 0.462419i
\(605\) −733.606 + 1099.89i −1.21257 + 1.81801i
\(606\) 428.619 + 68.3797i 0.707292 + 0.112838i
\(607\) 490.637 131.466i 0.808298 0.216583i 0.169074 0.985603i \(-0.445922\pi\)
0.639224 + 0.769021i \(0.279256\pi\)
\(608\) 2.45155 + 2.45155i 0.00403216 + 0.00403216i
\(609\) 87.2457 620.762i 0.143261 1.01931i
\(610\) −149.103 50.4757i −0.244431 0.0827470i
\(611\) −492.820 284.530i −0.806580 0.465679i
\(612\) 12.4820 228.364i 0.0203954 0.373144i
\(613\) −182.131 + 679.722i −0.297114 + 1.10885i 0.642410 + 0.766361i \(0.277935\pi\)
−0.939524 + 0.342484i \(0.888732\pi\)
\(614\) 83.0848 + 47.9690i 0.135317 + 0.0781254i
\(615\) 951.855 600.188i 1.54773 0.975915i
\(616\) 200.565 + 332.954i 0.325593 + 0.540509i
\(617\) 61.9920 + 61.9920i 0.100473 + 0.100473i 0.755557 0.655083i \(-0.227366\pi\)
−0.655083 + 0.755557i \(0.727366\pi\)
\(618\) −567.508 253.434i −0.918298 0.410088i
\(619\) −55.8546 96.7431i −0.0902337 0.156289i 0.817376 0.576105i \(-0.195428\pi\)
−0.907609 + 0.419816i \(0.862095\pi\)
\(620\) 112.018 167.948i 0.180674 0.270885i
\(621\) 286.485 184.677i 0.461328 0.297387i
\(622\) −434.233 434.233i −0.698124 0.698124i
\(623\) 11.1056 3.19791i 0.0178260 0.00513308i
\(624\) 101.892 + 82.7004i 0.163289 + 0.132533i
\(625\) 604.238 + 159.756i 0.966780 + 0.255610i
\(626\) 179.958 + 311.696i 0.287473 + 0.497917i
\(627\) 21.1844 + 29.2268i 0.0337869 + 0.0466136i
\(628\) 133.883 + 499.658i 0.213189 + 0.795634i
\(629\) 174.061i 0.276726i
\(630\) 281.753 + 345.058i 0.447228 + 0.547711i
\(631\) −231.667 −0.367143 −0.183571 0.983006i \(-0.558766\pi\)
−0.183571 + 0.983006i \(0.558766\pi\)
\(632\) 211.564 56.6884i 0.334753 0.0896969i
\(633\) 327.089 237.083i 0.516728 0.374539i
\(634\) 154.233 89.0467i 0.243270 0.140452i
\(635\) 44.4534 39.0499i 0.0700053 0.0614959i
\(636\) 251.954 310.424i 0.396154 0.488088i
\(637\) 392.717 + 364.578i 0.616510 + 0.572336i
\(638\) −586.031 + 586.031i −0.918543 + 0.918543i
\(639\) −35.9990 11.7862i −0.0563364 0.0184447i
\(640\) −11.0820 55.4724i −0.0173157 0.0866756i
\(641\) 471.706 272.339i 0.735890 0.424866i −0.0846830 0.996408i \(-0.526988\pi\)
0.820573 + 0.571542i \(0.193654\pi\)
\(642\) 104.857 234.803i 0.163329 0.365737i
\(643\) −521.820 + 521.820i −0.811539 + 0.811539i −0.984865 0.173326i \(-0.944549\pi\)
0.173326 + 0.984865i \(0.444549\pi\)
\(644\) −176.707 + 3.28185i −0.274390 + 0.00509604i
\(645\) 967.670 + 219.258i 1.50026 + 0.339935i
\(646\) −5.50643 + 9.53741i −0.00852388 + 0.0147638i
\(647\) 258.810 + 69.3479i 0.400016 + 0.107184i 0.453218 0.891400i \(-0.350276\pi\)
−0.0532020 + 0.998584i \(0.516943\pi\)
\(648\) 226.441 34.8236i 0.349445 0.0537401i
\(649\) −726.101 + 1257.64i −1.11880 + 1.93782i
\(650\) 234.863 307.134i 0.361327 0.472513i
\(651\) −158.810 393.074i −0.243948 0.603801i
\(652\) 26.9296 26.9296i 0.0413030 0.0413030i
\(653\) −22.9450 85.6319i −0.0351378 0.131136i 0.946129 0.323790i \(-0.104957\pi\)
−0.981267 + 0.192654i \(0.938291\pi\)
\(654\) −19.1832 + 120.245i −0.0293321 + 0.183860i
\(655\) 469.190 703.456i 0.716320 1.07398i
\(656\) −150.037 + 259.872i −0.228715 + 0.396147i
\(657\) 116.964 179.227i 0.178027 0.272796i
\(658\) 499.968 + 124.063i 0.759830 + 0.188546i
\(659\) 80.5689 0.122259 0.0611297 0.998130i \(-0.480530\pi\)
0.0611297 + 0.998130i \(0.480530\pi\)
\(660\) −22.9509 588.516i −0.0347741 0.891691i
\(661\) 697.809 402.880i 1.05569 0.609501i 0.131450 0.991323i \(-0.458037\pi\)
0.924236 + 0.381822i \(0.124703\pi\)
\(662\) 108.078 403.353i 0.163260 0.609294i
\(663\) −169.975 + 380.620i −0.256372 + 0.574087i
\(664\) −164.532 −0.247789
\(665\) −4.59225 20.9538i −0.00690564 0.0315094i
\(666\) 170.634 35.8693i 0.256207 0.0538578i
\(667\) −97.5327 363.997i −0.146226 0.545723i
\(668\) −52.9778 + 197.716i −0.0793081 + 0.295982i
\(669\) −165.760 + 1039.02i −0.247772 + 1.55309i
\(670\) 64.4847 + 4.17278i 0.0962458 + 0.00622803i
\(671\) 437.047 0.651337
\(672\) −109.350 46.4171i −0.162723 0.0690730i
\(673\) 231.974 + 231.974i 0.344687 + 0.344687i 0.858126 0.513439i \(-0.171629\pi\)
−0.513439 + 0.858126i \(0.671629\pi\)
\(674\) −348.075 + 602.884i −0.516432 + 0.894486i
\(675\) −121.877 663.906i −0.180558 0.983564i
\(676\) 49.4067 + 85.5750i 0.0730869 + 0.126590i
\(677\) 108.064 + 403.300i 0.159622 + 0.595717i 0.998665 + 0.0516521i \(0.0164487\pi\)
−0.839043 + 0.544065i \(0.816885\pi\)
\(678\) 9.06550 + 87.1935i 0.0133709 + 0.128604i
\(679\) −915.767 + 17.0079i −1.34870 + 0.0250484i
\(680\) 161.091 79.6077i 0.236899 0.117070i
\(681\) −208.184 + 79.6465i −0.305703 + 0.116955i
\(682\) −145.066 + 541.395i −0.212707 + 0.793835i
\(683\) −830.156 222.440i −1.21546 0.325680i −0.406555 0.913626i \(-0.633270\pi\)
−0.808900 + 0.587946i \(0.799937\pi\)
\(684\) −10.4844 3.43261i −0.0153280 0.00501843i
\(685\) −401.226 + 1185.20i −0.585731 + 1.73023i
\(686\) −432.941 218.770i −0.631109 0.318907i
\(687\) −21.1325 203.256i −0.0307605 0.295860i
\(688\) −255.571 + 68.4800i −0.371469 + 0.0995349i
\(689\) −631.075 + 364.351i −0.915929 + 0.528812i
\(690\) 236.961 + 124.760i 0.343422 + 0.180811i
\(691\) −242.414 139.958i −0.350816 0.202544i 0.314229 0.949347i \(-0.398254\pi\)
−0.665045 + 0.746804i \(0.731587\pi\)
\(692\) −235.661 + 235.661i −0.340550 + 0.340550i
\(693\) −1048.15 656.598i −1.51248 0.947472i
\(694\) 813.279i 1.17187i
\(695\) 1145.57 + 74.1295i 1.64830 + 0.106661i
\(696\) 39.9041 250.128i 0.0573335 0.359379i
\(697\) −920.697 246.700i −1.32094 0.353945i
\(698\) 145.710 39.0429i 0.208754 0.0559354i
\(699\) 603.727 + 490.011i 0.863701 + 0.701018i
\(700\) −127.370 + 326.001i −0.181958 + 0.465716i
\(701\) 1078.49i 1.53850i 0.638949 + 0.769249i \(0.279370\pi\)
−0.638949 + 0.769249i \(0.720630\pi\)
\(702\) −408.153 88.1926i −0.581415 0.125631i
\(703\) −8.11002 2.17307i −0.0115363 0.00309114i
\(704\) 78.5284 + 136.015i 0.111546 + 0.193203i
\(705\) −573.014 529.999i −0.812786 0.751772i
\(706\) 37.8738i 0.0536456i
\(707\) 695.049 + 172.471i 0.983097 + 0.243948i
\(708\) −45.8970 441.445i −0.0648263 0.623510i
\(709\) −379.565 219.142i −0.535353 0.309086i 0.207841 0.978163i \(-0.433356\pi\)
−0.743193 + 0.669077i \(0.766690\pi\)
\(710\) −5.83027 29.1841i −0.00821165 0.0411043i
\(711\) −518.973 + 465.181i −0.729920 + 0.654263i
\(712\) 4.51056 1.20860i 0.00633506 0.00169747i
\(713\) −180.208 180.208i −0.252746 0.252746i
\(714\) 52.5181 373.672i 0.0735548 0.523350i
\(715\) −344.212 + 1016.79i −0.481415 + 1.42208i
\(716\) 124.673 + 71.9801i 0.174124 + 0.100531i
\(717\) 80.5702 58.3996i 0.112371 0.0814500i
\(718\) −133.315 + 497.538i −0.185675 + 0.692950i
\(719\) 139.253 + 80.3980i 0.193677 + 0.111819i 0.593703 0.804685i \(-0.297666\pi\)
−0.400026 + 0.916504i \(0.630999\pi\)
\(720\) 111.237 + 141.514i 0.154496 + 0.196548i
\(721\) −897.447 496.154i −1.24473 0.688147i
\(722\) −360.624 360.624i −0.499480 0.499480i
\(723\) −347.872 + 778.980i −0.481151 + 1.07743i
\(724\) 134.777 + 233.441i 0.186156 + 0.322432i
\(725\) −740.042 96.1785i −1.02075 0.132660i
\(726\) 400.855 + 1047.78i 0.552142 + 1.44322i
\(727\) 694.902 + 694.902i 0.955848 + 0.955848i 0.999066 0.0432176i \(-0.0137609\pi\)
−0.0432176 + 0.999066i \(0.513761\pi\)
\(728\) 155.919 + 150.233i 0.214174 + 0.206364i
\(729\) −592.645 + 424.515i −0.812956 + 0.582326i
\(730\) 167.796 + 10.8580i 0.229857 + 0.0148740i
\(731\) −420.224 727.850i −0.574862 0.995690i
\(732\) −108.149 + 78.3899i −0.147745 + 0.107090i
\(733\) −39.1333 146.048i −0.0533879 0.199246i 0.934081 0.357062i \(-0.116222\pi\)
−0.987469 + 0.157816i \(0.949555\pi\)
\(734\) 310.218i 0.422640i
\(735\) 414.841 + 606.739i 0.564409 + 0.825495i
\(736\) −71.4128 −0.0970282
\(737\) −173.296 + 46.4346i −0.235138 + 0.0630049i
\(738\) 52.1116 953.408i 0.0706120 1.29188i
\(739\) −1272.70 + 734.796i −1.72220 + 0.994311i −0.807843 + 0.589398i \(0.799365\pi\)
−0.914355 + 0.404913i \(0.867302\pi\)
\(740\) 90.4110 + 102.921i 0.122177 + 0.139083i
\(741\) 15.6122 + 12.6715i 0.0210691 + 0.0171006i
\(742\) 457.697 475.020i 0.616843 0.640189i
\(743\) 51.7779 51.7779i 0.0696876 0.0696876i −0.671404 0.741092i \(-0.734308\pi\)
0.741092 + 0.671404i \(0.234308\pi\)
\(744\) −61.2086 159.990i −0.0822697 0.215041i
\(745\) −235.247 + 352.705i −0.315767 + 0.473429i
\(746\) −472.265 + 272.662i −0.633062 + 0.365499i
\(747\) 467.008 236.634i 0.625178 0.316779i
\(748\) −352.765 + 352.765i −0.471611 + 0.471611i
\(749\) 205.281 371.313i 0.274073 0.495745i
\(750\) 407.275 339.672i 0.543034 0.452895i
\(751\) −180.515 + 312.661i −0.240366 + 0.416327i −0.960819 0.277178i \(-0.910601\pi\)
0.720452 + 0.693505i \(0.243934\pi\)
\(752\) 201.052 + 53.8717i 0.267356 + 0.0716379i
\(753\) 326.917 236.959i 0.434153 0.314687i
\(754\) −230.830 + 399.809i −0.306140 + 0.530250i
\(755\) −618.698 1251.97i −0.819468 1.65824i
\(756\) 377.138 25.5197i 0.498859 0.0337563i
\(757\) −43.6499 + 43.6499i −0.0576617 + 0.0576617i −0.735350 0.677688i \(-0.762982\pi\)
0.677688 + 0.735350i \(0.262982\pi\)
\(758\) 139.576 + 520.904i 0.184137 + 0.687208i
\(759\) −734.229 117.135i −0.967364 0.154328i
\(760\) −1.69801 8.49959i −0.00223423 0.0111837i
\(761\) 15.0192 26.0141i