Properties

Label 210.3.w.a.173.10
Level 210
Weight 3
Character 210.173
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 173.10
Character \(\chi\) \(=\) 210.173
Dual form 210.3.w.a.17.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(0.941591 + 2.84840i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.72423 + 4.19268i) q^{5} +(-2.32883 - 3.54635i) q^{6} +(-5.35730 + 4.50548i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-7.22681 + 5.36406i) q^{9} +O(q^{10})\) \(q+(-1.36603 + 0.366025i) q^{2} +(0.941591 + 2.84840i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.72423 + 4.19268i) q^{5} +(-2.32883 - 3.54635i) q^{6} +(-5.35730 + 4.50548i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-7.22681 + 5.36406i) q^{9} +(-5.25600 - 4.73017i) q^{10} +(-8.15539 + 4.70851i) q^{11} +(4.47929 + 3.99199i) q^{12} +(16.1515 - 16.1515i) q^{13} +(5.66909 - 8.11550i) q^{14} +(-9.37733 + 11.7075i) q^{15} +(2.00000 - 3.46410i) q^{16} +(9.03315 + 2.42042i) q^{17} +(7.90863 - 9.97265i) q^{18} +(-13.1762 + 22.8218i) q^{19} +(8.91119 + 4.53770i) q^{20} +(-17.8778 - 11.0174i) q^{21} +(9.41703 - 9.41703i) q^{22} +(-6.16910 - 23.0234i) q^{23} +(-7.57999 - 3.81363i) q^{24} +(-10.1571 + 22.8437i) q^{25} +(-16.1515 + 27.9753i) q^{26} +(-22.0837 - 15.5341i) q^{27} +(-4.77364 + 13.1610i) q^{28} -34.0152 q^{29} +(8.52443 - 19.4251i) q^{30} +(2.88724 - 1.66695i) q^{31} +(-1.46410 + 5.46410i) q^{32} +(-21.0908 - 18.7963i) q^{33} -13.2254 q^{34} +(-33.4846 - 10.1875i) q^{35} +(-7.15314 + 16.5176i) q^{36} +(12.3909 + 46.2436i) q^{37} +(9.64561 - 35.9979i) q^{38} +(61.2143 + 30.7980i) q^{39} +(-13.8338 - 2.93689i) q^{40} -3.31953 q^{41} +(28.4542 + 8.50638i) q^{42} +(28.9282 + 28.9282i) q^{43} +(-9.41703 + 16.3108i) q^{44} +(-42.1773 - 15.6867i) q^{45} +(16.8543 + 29.1925i) q^{46} +(-0.830153 - 3.09817i) q^{47} +(11.7503 + 2.43504i) q^{48} +(8.40136 - 48.2744i) q^{49} +(5.51351 - 34.9228i) q^{50} +(1.61118 + 28.0091i) q^{51} +(11.8238 - 44.1269i) q^{52} +(56.7679 + 15.2109i) q^{53} +(35.8528 + 13.1368i) q^{54} +(-41.9585 - 21.3658i) q^{55} +(1.70365 - 19.7256i) q^{56} +(-77.4122 - 16.0422i) q^{57} +(46.4657 - 12.4504i) q^{58} +(-33.5947 + 19.3959i) q^{59} +(-4.53451 + 29.6553i) q^{60} +(80.5416 + 46.5007i) q^{61} +(-3.33389 + 3.33389i) q^{62} +(14.5485 - 61.2971i) q^{63} -8.00000i q^{64} +(111.719 + 23.7177i) q^{65} +(35.6905 + 17.9565i) q^{66} +(3.66385 + 0.981726i) q^{67} +(18.0663 - 4.84085i) q^{68} +(59.7712 - 39.2507i) q^{69} +(49.4696 + 1.66015i) q^{70} -26.4798i q^{71} +(3.72550 - 25.1818i) q^{72} +(27.3096 + 7.31758i) q^{73} +(-33.8527 - 58.6345i) q^{74} +(-74.6318 - 7.42216i) q^{75} +52.7046i q^{76} +(22.4768 - 61.9688i) q^{77} +(-94.8931 - 19.6648i) q^{78} +(38.5758 + 22.2717i) q^{79} +(19.9723 - 1.05166i) q^{80} +(23.4536 - 77.5302i) q^{81} +(4.53456 - 1.21503i) q^{82} +(70.6898 + 70.6898i) q^{83} +(-41.9827 - 1.20496i) q^{84} +(14.4603 + 44.4669i) q^{85} +(-50.1051 - 28.9282i) q^{86} +(-32.0285 - 96.8892i) q^{87} +(6.89374 - 25.7278i) q^{88} +(118.139 + 68.2077i) q^{89} +(63.3570 + 5.99052i) q^{90} +(-13.7583 + 159.299i) q^{91} +(-33.7086 - 33.7086i) q^{92} +(7.46673 + 6.65443i) q^{93} +(2.26802 + 3.92833i) q^{94} +(-131.579 + 6.92843i) q^{95} +(-16.9426 + 0.974597i) q^{96} +(-118.552 - 118.552i) q^{97} +(6.19318 + 69.0192i) q^{98} +(33.6807 - 77.7736i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.683013 + 0.183013i
\(3\) 0.941591 + 2.84840i 0.313864 + 0.949468i
\(4\) 1.73205 1.00000i 0.433013 0.250000i
\(5\) 2.72423 + 4.19268i 0.544847 + 0.838536i
\(6\) −2.32883 3.54635i −0.388138 0.591058i
\(7\) −5.35730 + 4.50548i −0.765329 + 0.643640i
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) −7.22681 + 5.36406i −0.802979 + 0.596007i
\(10\) −5.25600 4.73017i −0.525600 0.473017i
\(11\) −8.15539 + 4.70851i −0.741399 + 0.428047i −0.822578 0.568653i \(-0.807465\pi\)
0.0811789 + 0.996700i \(0.474131\pi\)
\(12\) 4.47929 + 3.99199i 0.373274 + 0.332666i
\(13\) 16.1515 16.1515i 1.24243 1.24243i 0.283436 0.958991i \(-0.408526\pi\)
0.958991 0.283436i \(-0.0914742\pi\)
\(14\) 5.66909 8.11550i 0.404935 0.579679i
\(15\) −9.37733 + 11.7075i −0.625155 + 0.780500i
\(16\) 2.00000 3.46410i 0.125000 0.216506i
\(17\) 9.03315 + 2.42042i 0.531362 + 0.142378i 0.514517 0.857480i \(-0.327971\pi\)
0.0168447 + 0.999858i \(0.494638\pi\)
\(18\) 7.90863 9.97265i 0.439368 0.554036i
\(19\) −13.1762 + 22.8218i −0.693482 + 1.20115i 0.277208 + 0.960810i \(0.410591\pi\)
−0.970690 + 0.240336i \(0.922742\pi\)
\(20\) 8.91119 + 4.53770i 0.445559 + 0.226885i
\(21\) −17.8778 11.0174i −0.851324 0.524640i
\(22\) 9.41703 9.41703i 0.428047 0.428047i
\(23\) −6.16910 23.0234i −0.268222 1.00102i −0.960249 0.279146i \(-0.909949\pi\)
0.692027 0.721872i \(-0.256718\pi\)
\(24\) −7.57999 3.81363i −0.315833 0.158901i
\(25\) −10.1571 + 22.8437i −0.406284 + 0.913747i
\(26\) −16.1515 + 27.9753i −0.621213 + 1.07597i
\(27\) −22.0837 15.5341i −0.817916 0.575338i
\(28\) −4.77364 + 13.1610i −0.170487 + 0.470036i
\(29\) −34.0152 −1.17294 −0.586470 0.809971i \(-0.699483\pi\)
−0.586470 + 0.809971i \(0.699483\pi\)
\(30\) 8.52443 19.4251i 0.284148 0.647503i
\(31\) 2.88724 1.66695i 0.0931366 0.0537724i −0.452708 0.891659i \(-0.649542\pi\)
0.545845 + 0.837886i \(0.316209\pi\)
\(32\) −1.46410 + 5.46410i −0.0457532 + 0.170753i
\(33\) −21.0908 18.7963i −0.639115 0.569586i
\(34\) −13.2254 −0.388984
\(35\) −33.4846 10.1875i −0.956702 0.291071i
\(36\) −7.15314 + 16.5176i −0.198698 + 0.458823i
\(37\) 12.3909 + 46.2436i 0.334890 + 1.24983i 0.903988 + 0.427557i \(0.140626\pi\)
−0.569098 + 0.822270i \(0.692708\pi\)
\(38\) 9.64561 35.9979i 0.253832 0.947314i
\(39\) 61.2143 + 30.7980i 1.56960 + 0.789692i
\(40\) −13.8338 2.93689i −0.345846 0.0734223i
\(41\) −3.31953 −0.0809641 −0.0404820 0.999180i \(-0.512889\pi\)
−0.0404820 + 0.999180i \(0.512889\pi\)
\(42\) 28.4542 + 8.50638i 0.677481 + 0.202533i
\(43\) 28.9282 + 28.9282i 0.672749 + 0.672749i 0.958349 0.285600i \(-0.0921928\pi\)
−0.285600 + 0.958349i \(0.592193\pi\)
\(44\) −9.41703 + 16.3108i −0.214023 + 0.370699i
\(45\) −42.1773 15.6867i −0.937274 0.348594i
\(46\) 16.8543 + 29.1925i 0.366398 + 0.634620i
\(47\) −0.830153 3.09817i −0.0176628 0.0659186i 0.956532 0.291628i \(-0.0941968\pi\)
−0.974195 + 0.225709i \(0.927530\pi\)
\(48\) 11.7503 + 2.43504i 0.244799 + 0.0507300i
\(49\) 8.40136 48.2744i 0.171456 0.985192i
\(50\) 5.51351 34.9228i 0.110270 0.698456i
\(51\) 1.61118 + 28.0091i 0.0315919 + 0.549198i
\(52\) 11.8238 44.1269i 0.227380 0.848593i
\(53\) 56.7679 + 15.2109i 1.07109 + 0.286998i 0.750942 0.660368i \(-0.229600\pi\)
0.320151 + 0.947367i \(0.396266\pi\)
\(54\) 35.8528 + 13.1368i 0.663941 + 0.243274i
\(55\) −41.9585 21.3658i −0.762881 0.388470i
\(56\) 1.70365 19.7256i 0.0304223 0.352242i
\(57\) −77.4122 16.0422i −1.35811 0.281443i
\(58\) 46.4657 12.4504i 0.801133 0.214663i
\(59\) −33.5947 + 19.3959i −0.569402 + 0.328744i −0.756910 0.653519i \(-0.773292\pi\)
0.187508 + 0.982263i \(0.439959\pi\)
\(60\) −4.53451 + 29.6553i −0.0755751 + 0.494255i
\(61\) 80.5416 + 46.5007i 1.32035 + 0.762307i 0.983785 0.179352i \(-0.0574002\pi\)
0.336569 + 0.941659i \(0.390733\pi\)
\(62\) −3.33389 + 3.33389i −0.0537724 + 0.0537724i
\(63\) 14.5485 61.2971i 0.230929 0.972971i
\(64\) 8.00000i 0.125000i
\(65\) 111.719 + 23.7177i 1.71875 + 0.364887i
\(66\) 35.6905 + 17.9565i 0.540765 + 0.272068i
\(67\) 3.66385 + 0.981726i 0.0546844 + 0.0146526i 0.286058 0.958212i \(-0.407655\pi\)
−0.231373 + 0.972865i \(0.574322\pi\)
\(68\) 18.0663 4.84085i 0.265681 0.0711890i
\(69\) 59.7712 39.2507i 0.866249 0.568851i
\(70\) 49.4696 + 1.66015i 0.706709 + 0.0237165i
\(71\) 26.4798i 0.372956i −0.982459 0.186478i \(-0.940293\pi\)
0.982459 0.186478i \(-0.0597072\pi\)
\(72\) 3.72550 25.1818i 0.0517430 0.349747i
\(73\) 27.3096 + 7.31758i 0.374104 + 0.100241i 0.440972 0.897521i \(-0.354634\pi\)
−0.0668679 + 0.997762i \(0.521301\pi\)
\(74\) −33.8527 58.6345i −0.457468 0.792358i
\(75\) −74.6318 7.42216i −0.995091 0.0989621i
\(76\) 52.7046i 0.693482i
\(77\) 22.4768 61.9688i 0.291906 0.804790i
\(78\) −94.8931 19.6648i −1.21658 0.252113i
\(79\) 38.5758 + 22.2717i 0.488301 + 0.281921i 0.723869 0.689937i \(-0.242362\pi\)
−0.235568 + 0.971858i \(0.575695\pi\)
\(80\) 19.9723 1.05166i 0.249654 0.0131458i
\(81\) 23.4536 77.5302i 0.289551 0.957163i
\(82\) 4.53456 1.21503i 0.0552995 0.0148175i
\(83\) 70.6898 + 70.6898i 0.851684 + 0.851684i 0.990341 0.138656i \(-0.0442783\pi\)
−0.138656 + 0.990341i \(0.544278\pi\)
\(84\) −41.9827 1.20496i −0.499794 0.0143448i
\(85\) 14.4603 + 44.4669i 0.170122 + 0.523140i
\(86\) −50.1051 28.9282i −0.582618 0.336375i
\(87\) −32.0285 96.8892i −0.368143 1.11367i
\(88\) 6.89374 25.7278i 0.0783380 0.292361i
\(89\) 118.139 + 68.2077i 1.32741 + 0.766378i 0.984898 0.173136i \(-0.0553901\pi\)
0.342509 + 0.939515i \(0.388723\pi\)
\(90\) 63.3570 + 5.99052i 0.703967 + 0.0665613i
\(91\) −13.7583 + 159.299i −0.151190 + 1.75054i
\(92\) −33.7086 33.7086i −0.366398 0.366398i
\(93\) 7.46673 + 6.65443i 0.0802874 + 0.0715530i
\(94\) 2.26802 + 3.92833i 0.0241279 + 0.0417907i
\(95\) −131.579 + 6.92843i −1.38504 + 0.0729309i
\(96\) −16.9426 + 0.974597i −0.176485 + 0.0101521i
\(97\) −118.552 118.552i −1.22219 1.22219i −0.966853 0.255332i \(-0.917815\pi\)
−0.255332 0.966853i \(-0.582185\pi\)
\(98\) 6.19318 + 69.0192i 0.0631958 + 0.704277i
\(99\) 33.6807 77.7736i 0.340209 0.785592i
\(100\) 5.25104 + 49.7235i 0.0525104 + 0.497235i
\(101\) −18.5919 32.2022i −0.184078 0.318833i 0.759187 0.650872i \(-0.225597\pi\)
−0.943266 + 0.332039i \(0.892263\pi\)
\(102\) −12.4530 37.6714i −0.122088 0.369328i
\(103\) 8.29623 + 30.9619i 0.0805459 + 0.300601i 0.994434 0.105366i \(-0.0336014\pi\)
−0.913888 + 0.405967i \(0.866935\pi\)
\(104\) 64.6062i 0.621213i
\(105\) −2.51071 104.970i −0.0239115 0.999714i
\(106\) −83.1140 −0.784094
\(107\) 172.109 46.1165i 1.60850 0.430995i 0.660902 0.750472i \(-0.270174\pi\)
0.947594 + 0.319477i \(0.103507\pi\)
\(108\) −53.7843 4.82217i −0.498002 0.0446497i
\(109\) 8.16589 4.71458i 0.0749165 0.0432530i −0.462074 0.886841i \(-0.652894\pi\)
0.536990 + 0.843588i \(0.319561\pi\)
\(110\) 65.1368 + 13.8284i 0.592152 + 0.125713i
\(111\) −120.053 + 78.8369i −1.08156 + 0.710243i
\(112\) 4.89283 + 27.5692i 0.0436859 + 0.246153i
\(113\) 89.8897 89.8897i 0.795485 0.795485i −0.186895 0.982380i \(-0.559843\pi\)
0.982380 + 0.186895i \(0.0598425\pi\)
\(114\) 111.619 6.42072i 0.979113 0.0563221i
\(115\) 79.7237 88.5862i 0.693249 0.770315i
\(116\) −58.9161 + 34.0152i −0.507898 + 0.293235i
\(117\) −30.0863 + 203.362i −0.257148 + 1.73814i
\(118\) 38.7918 38.7918i 0.328744 0.328744i
\(119\) −59.2985 + 27.7317i −0.498306 + 0.233039i
\(120\) −4.66035 42.1697i −0.0388363 0.351414i
\(121\) −16.1598 + 27.9896i −0.133552 + 0.231319i
\(122\) −127.042 34.0409i −1.04133 0.279024i
\(123\) −3.12564 9.45535i −0.0254117 0.0768728i
\(124\) 3.33389 5.77447i 0.0268862 0.0465683i
\(125\) −123.446 + 19.6460i −0.987572 + 0.157168i
\(126\) 2.56263 + 89.0586i 0.0203383 + 0.706814i
\(127\) −25.5424 + 25.5424i −0.201122 + 0.201122i −0.800480 0.599359i \(-0.795422\pi\)
0.599359 + 0.800480i \(0.295422\pi\)
\(128\) 2.92820 + 10.9282i 0.0228766 + 0.0853766i
\(129\) −55.1607 + 109.638i −0.427602 + 0.849906i
\(130\) −161.292 + 8.49299i −1.24071 + 0.0653307i
\(131\) −73.8696 + 127.946i −0.563890 + 0.976686i 0.433262 + 0.901268i \(0.357363\pi\)
−0.997152 + 0.0754183i \(0.975971\pi\)
\(132\) −55.3267 11.4654i −0.419141 0.0868593i
\(133\) −32.2343 181.628i −0.242363 1.36562i
\(134\) −5.36425 −0.0400317
\(135\) 4.96838 134.909i 0.0368028 0.999323i
\(136\) −22.9071 + 13.2254i −0.168435 + 0.0972459i
\(137\) −55.4124 + 206.802i −0.404470 + 1.50950i 0.400561 + 0.916270i \(0.368815\pi\)
−0.805031 + 0.593233i \(0.797851\pi\)
\(138\) −67.2822 + 75.4953i −0.487552 + 0.547067i
\(139\) 14.1012 0.101447 0.0507237 0.998713i \(-0.483847\pi\)
0.0507237 + 0.998713i \(0.483847\pi\)
\(140\) −68.1844 + 15.8393i −0.487032 + 0.113138i
\(141\) 8.04318 5.28182i 0.0570439 0.0374597i
\(142\) 9.69230 + 36.1721i 0.0682556 + 0.254733i
\(143\) −55.6723 + 207.772i −0.389317 + 1.45295i
\(144\) 4.12804 + 35.7625i 0.0286669 + 0.248351i
\(145\) −92.6655 142.615i −0.639072 0.983552i
\(146\) −39.9840 −0.273863
\(147\) 145.416 21.5243i 0.989222 0.146424i
\(148\) 67.7053 + 67.7053i 0.457468 + 0.457468i
\(149\) 49.5021 85.7402i 0.332229 0.575437i −0.650720 0.759318i \(-0.725533\pi\)
0.982949 + 0.183881i \(0.0588660\pi\)
\(150\) 104.666 17.1783i 0.697771 0.114522i
\(151\) 82.2460 + 142.454i 0.544675 + 0.943406i 0.998627 + 0.0523793i \(0.0166805\pi\)
−0.453952 + 0.891026i \(0.649986\pi\)
\(152\) −19.2912 71.9958i −0.126916 0.473657i
\(153\) −78.2642 + 30.9624i −0.511531 + 0.202369i
\(154\) −8.02166 + 92.8781i −0.0520887 + 0.603104i
\(155\) 14.8545 + 7.56410i 0.0958353 + 0.0488006i
\(156\) 136.824 7.87062i 0.877079 0.0504527i
\(157\) −18.0786 + 67.4702i −0.115150 + 0.429746i −0.999298 0.0374608i \(-0.988073\pi\)
0.884148 + 0.467207i \(0.154740\pi\)
\(158\) −60.8475 16.3040i −0.385111 0.103190i
\(159\) 10.1253 + 176.020i 0.0636813 + 1.10705i
\(160\) −26.8978 + 8.74698i −0.168111 + 0.0546686i
\(161\) 136.781 + 95.5486i 0.849572 + 0.593469i
\(162\) −3.66024 + 114.493i −0.0225941 + 0.706746i
\(163\) −149.425 + 40.0383i −0.916719 + 0.245634i −0.686182 0.727430i \(-0.740715\pi\)
−0.230536 + 0.973064i \(0.574048\pi\)
\(164\) −5.74959 + 3.31953i −0.0350585 + 0.0202410i
\(165\) 21.3508 139.633i 0.129399 0.846258i
\(166\) −122.438 70.6898i −0.737580 0.425842i
\(167\) 55.1776 55.1776i 0.330405 0.330405i −0.522336 0.852740i \(-0.674939\pi\)
0.852740 + 0.522336i \(0.174939\pi\)
\(168\) 57.7905 13.7207i 0.343991 0.0816710i
\(169\) 352.745i 2.08725i
\(170\) −36.0292 55.4500i −0.211936 0.326177i
\(171\) −27.1958 235.606i −0.159040 1.37781i
\(172\) 79.0334 + 21.1769i 0.459496 + 0.123122i
\(173\) 128.947 34.5513i 0.745359 0.199718i 0.133901 0.990995i \(-0.457250\pi\)
0.611459 + 0.791276i \(0.290583\pi\)
\(174\) 79.2156 + 120.630i 0.455262 + 0.693275i
\(175\) −48.5069 168.143i −0.277182 0.960817i
\(176\) 37.6681i 0.214023i
\(177\) −86.8799 77.4283i −0.490847 0.437448i
\(178\) −186.347 49.9315i −1.04689 0.280514i
\(179\) −127.018 220.002i −0.709598 1.22906i −0.965006 0.262226i \(-0.915543\pi\)
0.255409 0.966833i \(-0.417790\pi\)
\(180\) −88.7400 + 15.0071i −0.493000 + 0.0833727i
\(181\) 307.420i 1.69846i −0.528027 0.849228i \(-0.677068\pi\)
0.528027 0.849228i \(-0.322932\pi\)
\(182\) −39.5134 222.643i −0.217106 1.22331i
\(183\) −56.6156 + 273.200i −0.309375 + 1.49289i
\(184\) 58.3850 + 33.7086i 0.317310 + 0.183199i
\(185\) −160.129 + 177.930i −0.865561 + 0.961781i
\(186\) −12.6354 6.35711i −0.0679324 0.0341780i
\(187\) −85.0654 + 22.7932i −0.454895 + 0.121889i
\(188\) −4.53604 4.53604i −0.0241279 0.0241279i
\(189\) 188.298 16.2767i 0.996285 0.0861202i
\(190\) 177.205 57.6258i 0.932656 0.303293i
\(191\) −124.117 71.6590i −0.649828 0.375178i 0.138563 0.990354i \(-0.455752\pi\)
−0.788390 + 0.615176i \(0.789085\pi\)
\(192\) 22.7872 7.53273i 0.118684 0.0392330i
\(193\) 73.6622 274.911i 0.381670 1.42441i −0.461681 0.887046i \(-0.652753\pi\)
0.843350 0.537364i \(-0.180580\pi\)
\(194\) 205.338 + 118.552i 1.05844 + 0.611093i
\(195\) 37.6360 + 340.553i 0.193005 + 1.74642i
\(196\) −33.7228 92.0151i −0.172055 0.469465i
\(197\) 126.936 + 126.936i 0.644345 + 0.644345i 0.951621 0.307276i \(-0.0994173\pi\)
−0.307276 + 0.951621i \(0.599417\pi\)
\(198\) −17.5416 + 118.569i −0.0885937 + 0.598832i
\(199\) 43.5943 + 75.5075i 0.219067 + 0.379435i 0.954523 0.298137i \(-0.0963654\pi\)
−0.735456 + 0.677572i \(0.763032\pi\)
\(200\) −25.3731 66.0016i −0.126866 0.330008i
\(201\) 0.653498 + 11.3605i 0.00325123 + 0.0565200i
\(202\) 37.1839 + 37.1839i 0.184078 + 0.184078i
\(203\) 182.230 153.255i 0.897684 0.754950i
\(204\) 30.7998 + 46.9020i 0.150979 + 0.229912i
\(205\) −9.04316 13.9177i −0.0441130 0.0678913i
\(206\) −22.6657 39.2582i −0.110028 0.190574i
\(207\) 168.082 + 133.294i 0.811990 + 0.643934i
\(208\) −23.6475 88.2537i −0.113690 0.424297i
\(209\) 248.160i 1.18737i
\(210\) 41.8514 + 142.473i 0.199292 + 0.678441i
\(211\) 285.530 1.35322 0.676612 0.736340i \(-0.263448\pi\)
0.676612 + 0.736340i \(0.263448\pi\)
\(212\) 113.536 30.4218i 0.535546 0.143499i
\(213\) 75.4253 24.9332i 0.354109 0.117057i
\(214\) −218.226 + 125.993i −1.01975 + 0.588750i
\(215\) −42.4795 + 200.094i −0.197579 + 0.930669i
\(216\) 75.2357 13.0992i 0.348313 0.0606444i
\(217\) −7.95740 + 21.9387i −0.0366701 + 0.101100i
\(218\) −9.42916 + 9.42916i −0.0432530 + 0.0432530i
\(219\) 4.87103 + 84.6789i 0.0222422 + 0.386661i
\(220\) −94.0400 + 4.95177i −0.427455 + 0.0225080i
\(221\) 184.993 106.806i 0.837072 0.483284i
\(222\) 135.139 151.636i 0.608736 0.683044i
\(223\) −92.5468 + 92.5468i −0.415008 + 0.415008i −0.883479 0.468471i \(-0.844805\pi\)
0.468471 + 0.883479i \(0.344805\pi\)
\(224\) −16.7747 35.8693i −0.0748873 0.160131i
\(225\) −49.1314 219.570i −0.218362 0.975868i
\(226\) −89.8897 + 155.694i −0.397742 + 0.688910i
\(227\) −20.2708 5.43155i −0.0892988 0.0239275i 0.213893 0.976857i \(-0.431386\pi\)
−0.303192 + 0.952930i \(0.598052\pi\)
\(228\) −150.124 + 49.6262i −0.658439 + 0.217659i
\(229\) −148.758 + 257.656i −0.649596 + 1.12513i 0.333623 + 0.942707i \(0.391729\pi\)
−0.983219 + 0.182427i \(0.941605\pi\)
\(230\) −76.4798 + 150.192i −0.332521 + 0.653008i
\(231\) 197.676 + 5.67359i 0.855741 + 0.0245610i
\(232\) 68.0305 68.0305i 0.293235 0.293235i
\(233\) −4.96446 18.5276i −0.0213067 0.0795176i 0.954454 0.298358i \(-0.0964391\pi\)
−0.975761 + 0.218841i \(0.929772\pi\)
\(234\) −33.3371 288.810i −0.142466 1.23423i
\(235\) 10.7281 11.9207i 0.0456515 0.0507264i
\(236\) −38.7918 + 67.1894i −0.164372 + 0.284701i
\(237\) −27.1163 + 130.850i −0.114415 + 0.552111i
\(238\) 70.8527 59.5869i 0.297700 0.250365i
\(239\) −138.243 −0.578425 −0.289212 0.957265i \(-0.593393\pi\)
−0.289212 + 0.957265i \(0.593393\pi\)
\(240\) 21.8013 + 55.8990i 0.0908389 + 0.232913i
\(241\) −195.863 + 113.081i −0.812708 + 0.469217i −0.847896 0.530163i \(-0.822131\pi\)
0.0351871 + 0.999381i \(0.488797\pi\)
\(242\) 11.8298 44.1493i 0.0488834 0.182435i
\(243\) 242.921 6.19632i 0.999675 0.0254993i
\(244\) 186.003 0.762307
\(245\) 225.286 96.2865i 0.919536 0.393006i
\(246\) 7.73060 + 11.7722i 0.0314252 + 0.0478544i
\(247\) 155.792 + 581.422i 0.630735 + 2.35394i
\(248\) −2.44058 + 9.10836i −0.00984104 + 0.0367273i
\(249\) −134.792 + 267.914i −0.541334 + 1.07596i
\(250\) 161.440 72.0215i 0.645760 0.288086i
\(251\) −172.595 −0.687631 −0.343816 0.939037i \(-0.611720\pi\)
−0.343816 + 0.939037i \(0.611720\pi\)
\(252\) −36.0983 120.718i −0.143247 0.479041i
\(253\) 158.717 + 158.717i 0.627342 + 0.627342i
\(254\) 25.5424 44.2408i 0.100561 0.174176i
\(255\) −113.044 + 83.0585i −0.443310 + 0.325720i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −122.676 457.834i −0.477339 1.78145i −0.612324 0.790607i \(-0.709765\pi\)
0.134985 0.990848i \(-0.456901\pi\)
\(258\) 35.2207 169.958i 0.136514 0.658753i
\(259\) −274.731 191.914i −1.06074 0.740980i
\(260\) 217.220 70.6386i 0.835463 0.271687i
\(261\) 245.822 182.460i 0.941846 0.699080i
\(262\) 54.0763 201.816i 0.206398 0.770288i
\(263\) 272.280 + 72.9572i 1.03529 + 0.277404i 0.736158 0.676809i \(-0.236638\pi\)
0.299127 + 0.954213i \(0.403305\pi\)
\(264\) 79.7743 4.58890i 0.302175 0.0173822i
\(265\) 90.8746 + 279.448i 0.342923 + 1.05452i
\(266\) 110.513 + 236.310i 0.415464 + 0.888383i
\(267\) −83.0442 + 400.732i −0.311027 + 1.50087i
\(268\) 7.32770 1.96345i 0.0273422 0.00732631i
\(269\) −106.164 + 61.2938i −0.394662 + 0.227858i −0.684178 0.729315i \(-0.739839\pi\)
0.289516 + 0.957173i \(0.406506\pi\)
\(270\) 42.5930 + 186.107i 0.157752 + 0.689285i
\(271\) −88.7006 51.2113i −0.327308 0.188972i 0.327337 0.944908i \(-0.393849\pi\)
−0.654645 + 0.755936i \(0.727182\pi\)
\(272\) 26.4509 26.4509i 0.0972459 0.0972459i
\(273\) −466.703 + 110.805i −1.70953 + 0.405881i
\(274\) 302.779i 1.10503i
\(275\) −24.7246 234.124i −0.0899076 0.851359i
\(276\) 64.2760 127.755i 0.232884 0.462882i
\(277\) 210.515 + 56.4074i 0.759983 + 0.203637i 0.617942 0.786224i \(-0.287967\pi\)
0.142042 + 0.989861i \(0.454633\pi\)
\(278\) −19.2626 + 5.16139i −0.0692898 + 0.0185662i
\(279\) −11.9239 + 27.5340i −0.0427380 + 0.0986882i
\(280\) 87.3441 46.5942i 0.311943 0.166408i
\(281\) 160.860i 0.572457i −0.958161 0.286228i \(-0.907598\pi\)
0.958161 0.286228i \(-0.0924016\pi\)
\(282\) −9.05391 + 10.1591i −0.0321061 + 0.0360252i
\(283\) −114.655 30.7218i −0.405143 0.108558i 0.0504921 0.998724i \(-0.483921\pi\)
−0.455635 + 0.890167i \(0.650588\pi\)
\(284\) −26.4798 45.8644i −0.0932389 0.161494i
\(285\) −143.629 368.267i −0.503961 1.29217i
\(286\) 304.199i 1.06363i
\(287\) 17.7837 14.9561i 0.0619641 0.0521117i
\(288\) −18.7290 47.3416i −0.0650313 0.164380i
\(289\) −174.542 100.772i −0.603952 0.348692i
\(290\) 178.784 + 160.898i 0.616497 + 0.554820i
\(291\) 226.056 449.311i 0.776826 1.54403i
\(292\) 54.6191 14.6352i 0.187052 0.0501204i
\(293\) −38.3008 38.3008i −0.130719 0.130719i 0.638720 0.769439i \(-0.279464\pi\)
−0.769439 + 0.638720i \(0.779464\pi\)
\(294\) −190.763 + 82.6285i −0.648854 + 0.281049i
\(295\) −172.841 88.0129i −0.585901 0.298349i
\(296\) −117.269 67.7053i −0.396179 0.228734i
\(297\) 253.244 + 22.7053i 0.852673 + 0.0764487i
\(298\) −36.2381 + 135.242i −0.121604 + 0.453833i
\(299\) −471.504 272.223i −1.57694 0.910445i
\(300\) −136.688 + 61.7763i −0.455628 + 0.205921i
\(301\) −285.313 24.6418i −0.947882 0.0818664i
\(302\) −164.492 164.492i −0.544675 0.544675i
\(303\) 74.2188 83.2786i 0.244946 0.274847i
\(304\) 52.7046 + 91.2871i 0.173370 + 0.300286i
\(305\) 24.4515 + 464.364i 0.0801689 + 1.52250i
\(306\) 95.5778 70.9421i 0.312346 0.231837i
\(307\) −178.315 178.315i −0.580830 0.580830i 0.354301 0.935131i \(-0.384719\pi\)
−0.935131 + 0.354301i \(0.884719\pi\)
\(308\) −23.0379 129.810i −0.0747985 0.421461i
\(309\) −80.3805 + 52.7845i −0.260131 + 0.170824i
\(310\) −23.0602 4.89564i −0.0743879 0.0157924i
\(311\) 36.9045 + 63.9205i 0.118664 + 0.205532i 0.919238 0.393701i \(-0.128806\pi\)
−0.800574 + 0.599233i \(0.795472\pi\)
\(312\) −184.025 + 60.8326i −0.589822 + 0.194976i
\(313\) 57.2987 + 213.842i 0.183063 + 0.683201i 0.995037 + 0.0995068i \(0.0317265\pi\)
−0.811974 + 0.583694i \(0.801607\pi\)
\(314\) 98.7832i 0.314596i
\(315\) 296.633 105.990i 0.941692 0.336477i
\(316\) 89.0870 0.281921
\(317\) −137.782 + 36.9186i −0.434644 + 0.116463i −0.469505 0.882930i \(-0.655568\pi\)
0.0348611 + 0.999392i \(0.488901\pi\)
\(318\) −78.2594 236.742i −0.246099 0.744473i
\(319\) 277.408 160.161i 0.869616 0.502073i
\(320\) 33.5414 21.7939i 0.104817 0.0681058i
\(321\) 293.415 + 446.813i 0.914065 + 1.39194i
\(322\) −221.820 80.4564i −0.688881 0.249865i
\(323\) −174.260 + 174.260i −0.539506 + 0.539506i
\(324\) −36.9073 157.740i −0.113911 0.486851i
\(325\) 204.908 + 533.014i 0.630485 + 1.64004i
\(326\) 189.463 109.387i 0.581176 0.335542i
\(327\) 21.1180 + 18.8206i 0.0645809 + 0.0575552i
\(328\) 6.63905 6.63905i 0.0202410 0.0202410i
\(329\) 18.4061 + 12.8576i 0.0559457 + 0.0390809i
\(330\) 21.9433 + 198.557i 0.0664950 + 0.601686i
\(331\) 260.816 451.747i 0.787964 1.36479i −0.139248 0.990258i \(-0.544468\pi\)
0.927212 0.374537i \(-0.122198\pi\)
\(332\) 193.128 + 51.7485i 0.581711 + 0.155869i
\(333\) −337.601 267.728i −1.01382 0.803988i
\(334\) −55.1776 + 95.5703i −0.165202 + 0.286139i
\(335\) 5.86512 + 18.0358i 0.0175078 + 0.0538382i
\(336\) −73.9212 + 39.8957i −0.220003 + 0.118737i
\(337\) −132.357 + 132.357i −0.392750 + 0.392750i −0.875667 0.482916i \(-0.839578\pi\)
0.482916 + 0.875667i \(0.339578\pi\)
\(338\) 129.114 + 481.859i 0.381993 + 1.42562i
\(339\) 340.682 + 171.403i 1.00496 + 0.505613i
\(340\) 69.5129 + 62.5586i 0.204450 + 0.183996i
\(341\) −15.6977 + 27.1892i −0.0460343 + 0.0797337i
\(342\) 123.388 + 311.890i 0.360784 + 0.911959i
\(343\) 172.491 + 296.473i 0.502888 + 0.864352i
\(344\) −115.713 −0.336375
\(345\) 327.396 + 143.673i 0.948975 + 0.416444i
\(346\) −163.498 + 94.3959i −0.472539 + 0.272821i
\(347\) −50.9331 + 190.085i −0.146781 + 0.547796i 0.852888 + 0.522093i \(0.174849\pi\)
−0.999670 + 0.0257021i \(0.991818\pi\)
\(348\) −152.364 135.789i −0.437828 0.390197i
\(349\) −282.056 −0.808184 −0.404092 0.914718i \(-0.632412\pi\)
−0.404092 + 0.914718i \(0.632412\pi\)
\(350\) 127.806 + 211.933i 0.365161 + 0.605523i
\(351\) −607.587 + 105.786i −1.73102 + 0.301385i
\(352\) −13.7875 51.4556i −0.0391690 0.146181i
\(353\) 116.873 436.174i 0.331084 1.23562i −0.576969 0.816766i \(-0.695765\pi\)
0.908053 0.418855i \(-0.137569\pi\)
\(354\) 147.021 + 73.9688i 0.415313 + 0.208951i
\(355\) 111.021 72.1373i 0.312737 0.203204i
\(356\) 272.831 0.766378
\(357\) −134.826 142.794i −0.377664 0.399983i
\(358\) 254.036 + 254.036i 0.709598 + 0.709598i
\(359\) −167.547 + 290.199i −0.466703 + 0.808354i −0.999277 0.0380300i \(-0.987892\pi\)
0.532573 + 0.846384i \(0.321225\pi\)
\(360\) 115.728 52.9812i 0.321467 0.147170i
\(361\) −166.722 288.771i −0.461834 0.799919i
\(362\) 112.524 + 419.944i 0.310839 + 1.16007i
\(363\) −94.9415 19.6749i −0.261547 0.0542007i
\(364\) 135.469 + 289.673i 0.372168 + 0.795804i
\(365\) 43.7174 + 134.435i 0.119774 + 0.368315i
\(366\) −22.6597 393.920i −0.0619118 1.07629i
\(367\) 160.378 598.537i 0.436996 1.63089i −0.299248 0.954175i \(-0.596736\pi\)
0.736244 0.676716i \(-0.236597\pi\)
\(368\) −92.0936 24.6764i −0.250254 0.0670555i
\(369\) 23.9896 17.8062i 0.0650125 0.0482552i
\(370\) 153.613 301.667i 0.415171 0.815317i
\(371\) −372.655 + 174.277i −1.00446 + 0.469750i
\(372\) 19.5872 + 4.05908i 0.0526537 + 0.0109115i
\(373\) −316.330 + 84.7604i −0.848070 + 0.227240i −0.656581 0.754255i \(-0.727998\pi\)
−0.191488 + 0.981495i \(0.561331\pi\)
\(374\) 107.859 62.2722i 0.288392 0.166503i
\(375\) −172.196 333.127i −0.459189 0.888339i
\(376\) 7.85665 + 4.53604i 0.0208953 + 0.0120639i
\(377\) −549.399 + 549.399i −1.45729 + 1.45729i
\(378\) −251.262 + 91.1562i −0.664714 + 0.241154i
\(379\) 119.151i 0.314382i 0.987568 + 0.157191i \(0.0502438\pi\)
−0.987568 + 0.157191i \(0.949756\pi\)
\(380\) −220.973 + 143.580i −0.581509 + 0.377841i
\(381\) −96.8058 48.7047i −0.254083 0.127834i
\(382\) 195.776 + 52.4581i 0.512503 + 0.137325i
\(383\) 319.180 85.5240i 0.833368 0.223300i 0.183186 0.983078i \(-0.441359\pi\)
0.650183 + 0.759778i \(0.274692\pi\)
\(384\) −28.3708 + 18.6306i −0.0738822 + 0.0485172i
\(385\) 321.047 74.5797i 0.833889 0.193714i
\(386\) 402.498i 1.04274i
\(387\) −364.232 53.8860i −0.941167 0.139240i
\(388\) −323.890 86.7861i −0.834768 0.223675i
\(389\) 148.817 + 257.759i 0.382564 + 0.662620i 0.991428 0.130655i \(-0.0417079\pi\)
−0.608864 + 0.793274i \(0.708375\pi\)
\(390\) −176.063 451.428i −0.451443 1.15751i
\(391\) 222.906i 0.570091i
\(392\) 79.7461 + 113.352i 0.203434 + 0.289162i
\(393\) −433.997 89.9378i −1.10432 0.228849i
\(394\) −219.860 126.936i −0.558019 0.322172i
\(395\) 11.7112 + 222.409i 0.0296486 + 0.563062i
\(396\) −19.4369 168.388i −0.0490832 0.425223i
\(397\) 303.837 81.4129i 0.765333 0.205070i 0.145024 0.989428i \(-0.453674\pi\)
0.620309 + 0.784358i \(0.287007\pi\)
\(398\) −87.1886 87.1886i −0.219067 0.219067i
\(399\) 486.998 262.836i 1.22055 0.658736i
\(400\) 58.8186 + 80.8726i 0.147046 + 0.202181i
\(401\) 160.034 + 92.3959i 0.399088 + 0.230414i 0.686090 0.727516i \(-0.259325\pi\)
−0.287002 + 0.957930i \(0.592659\pi\)
\(402\) −5.05093 15.2796i −0.0125645 0.0380088i
\(403\) 19.7096 73.5571i 0.0489071 0.182524i
\(404\) −64.4043 37.1839i −0.159417 0.0920392i
\(405\) 388.952 112.877i 0.960376 0.278708i
\(406\) −192.836 + 276.051i −0.474964 + 0.679928i
\(407\) −318.791 318.791i −0.783271 0.783271i
\(408\) −59.2406 52.7958i −0.145198 0.129402i
\(409\) 211.032 + 365.519i 0.515972 + 0.893689i 0.999828 + 0.0185417i \(0.00590236\pi\)
−0.483856 + 0.875147i \(0.660764\pi\)
\(410\) 17.4474 + 15.7019i 0.0425547 + 0.0382974i
\(411\) −641.231 + 36.8859i −1.56017 + 0.0897468i
\(412\) 45.3314 + 45.3314i 0.110028 + 0.110028i
\(413\) 92.5892 255.270i 0.224187 0.618087i
\(414\) −278.393 120.561i −0.672448 0.291211i
\(415\) −103.804 + 488.955i −0.250130 + 1.17821i
\(416\) 64.6062 + 111.901i 0.155303 + 0.268993i
\(417\) 13.2776 + 40.1659i 0.0318407 + 0.0963210i
\(418\) 90.8330 + 338.993i 0.217304 + 0.810989i
\(419\) 583.700i 1.39308i −0.717519 0.696539i \(-0.754722\pi\)
0.717519 0.696539i \(-0.245278\pi\)
\(420\) −109.319 179.303i −0.260283 0.426911i
\(421\) 634.883 1.50804 0.754018 0.656853i \(-0.228113\pi\)
0.754018 + 0.656853i \(0.228113\pi\)
\(422\) −390.041 + 104.511i −0.924269 + 0.247657i
\(423\) 22.6182 + 17.9369i 0.0534708 + 0.0424041i
\(424\) −143.958 + 83.1140i −0.339523 + 0.196024i
\(425\) −147.042 + 181.766i −0.345981 + 0.427684i
\(426\) −93.9067 + 61.6669i −0.220438 + 0.144758i
\(427\) −640.993 + 113.760i −1.50116 + 0.266417i
\(428\) 251.985 251.985i 0.588750 0.588750i
\(429\) −644.239 + 37.0590i −1.50172 + 0.0863845i
\(430\) −15.2114 288.882i −0.0353753 0.671819i
\(431\) 13.8237 7.98112i 0.0320736 0.0185177i −0.483877 0.875136i \(-0.660772\pi\)
0.515951 + 0.856618i \(0.327439\pi\)
\(432\) −97.9792 + 45.4320i −0.226804 + 0.105167i
\(433\) −106.458 + 106.458i −0.245862 + 0.245862i −0.819270 0.573408i \(-0.805621\pi\)
0.573408 + 0.819270i \(0.305621\pi\)
\(434\) 2.83989 32.8814i 0.00654353 0.0757637i
\(435\) 318.972 398.234i 0.733269 0.915480i
\(436\) 9.42916 16.3318i 0.0216265 0.0374582i
\(437\) 606.720 + 162.570i 1.38837 + 0.372014i
\(438\) −37.6486 113.891i −0.0859556 0.260024i
\(439\) 86.9506 150.603i 0.198065 0.343059i −0.749836 0.661624i \(-0.769868\pi\)
0.947901 + 0.318565i \(0.103201\pi\)
\(440\) 126.649 41.1853i 0.287838 0.0936029i
\(441\) 198.232 + 393.935i 0.449505 + 0.893278i
\(442\) −213.611 + 213.611i −0.483284 + 0.483284i
\(443\) 6.66345 + 24.8683i 0.0150416 + 0.0561362i 0.973039 0.230642i \(-0.0740825\pi\)
−0.957997 + 0.286778i \(0.907416\pi\)
\(444\) −129.101 + 256.603i −0.290769 + 0.577934i
\(445\) 35.8657 + 681.133i 0.0805971 + 1.53064i
\(446\) 92.5468 160.296i 0.207504 0.359408i
\(447\) 290.833 + 60.2698i 0.650634 + 0.134832i
\(448\) 36.0438 + 42.8584i 0.0804549 + 0.0956661i
\(449\) 590.012 1.31406 0.657029 0.753866i \(-0.271813\pi\)
0.657029 + 0.753866i \(0.271813\pi\)
\(450\) 147.483 + 281.955i 0.327740 + 0.626567i
\(451\) 27.0720 15.6300i 0.0600267 0.0346564i
\(452\) 65.8039 245.583i 0.145584 0.543326i
\(453\) −328.325 + 368.403i −0.724780 + 0.813253i
\(454\) 29.6786 0.0653713
\(455\) −705.371 + 376.284i −1.55027 + 0.826998i
\(456\) 186.909 122.740i 0.409888 0.269166i
\(457\) −108.396 404.540i −0.237191 0.885208i −0.977149 0.212555i \(-0.931821\pi\)
0.739958 0.672653i \(-0.234845\pi\)
\(458\) 108.898 406.413i 0.237769 0.887365i
\(459\) −161.886 193.774i −0.352694 0.422166i
\(460\) 49.4993 233.159i 0.107607 0.506868i
\(461\) 630.123 1.36686 0.683431 0.730015i \(-0.260487\pi\)
0.683431 + 0.730015i \(0.260487\pi\)
\(462\) −272.107 + 64.6042i −0.588977 + 0.139836i
\(463\) 109.680 + 109.680i 0.236889 + 0.236889i 0.815561 0.578672i \(-0.196429\pi\)
−0.578672 + 0.815561i \(0.696429\pi\)
\(464\) −68.0305 + 117.832i −0.146617 + 0.253949i
\(465\) −7.55878 + 49.4338i −0.0162554 + 0.106309i
\(466\) 13.5631 + 23.4921i 0.0291055 + 0.0504121i
\(467\) −227.552 849.236i −0.487264 1.81849i −0.569644 0.821892i \(-0.692919\pi\)
0.0823804 0.996601i \(-0.473748\pi\)
\(468\) 151.251 + 382.320i 0.323186 + 0.816923i
\(469\) −24.0515 + 11.2480i −0.0512825 + 0.0239829i
\(470\) −10.2916 + 20.2108i −0.0218970 + 0.0430016i
\(471\) −209.205 + 12.0342i −0.444172 + 0.0255504i
\(472\) 28.3976 105.981i 0.0601644 0.224537i
\(473\) −372.130 99.7119i −0.786744 0.210807i
\(474\) −10.8530 188.670i −0.0228966 0.398038i
\(475\) −387.501 532.795i −0.815792 1.12167i
\(476\) −74.9763 + 107.331i −0.157513 + 0.225486i
\(477\) −491.843 + 194.580i −1.03112 + 0.407925i
\(478\) 188.844 50.6006i 0.395071 0.105859i
\(479\) 90.6955 52.3631i 0.189344 0.109318i −0.402332 0.915494i \(-0.631800\pi\)
0.591675 + 0.806176i \(0.298467\pi\)
\(480\) −50.2416 68.3797i −0.104670 0.142458i
\(481\) 947.038 + 546.773i 1.96889 + 1.13674i
\(482\) 226.163 226.163i 0.469217 0.469217i
\(483\) −143.369 + 479.576i −0.296830 + 0.992910i
\(484\) 64.6391i 0.133552i
\(485\) 174.087 820.014i 0.358943 1.69075i
\(486\) −329.568 + 97.3796i −0.678124 + 0.200370i
\(487\) 534.720 + 143.278i 1.09799 + 0.294205i 0.761945 0.647642i \(-0.224245\pi\)
0.336043 + 0.941847i \(0.390911\pi\)
\(488\) −254.085 + 68.0818i −0.520665 + 0.139512i
\(489\) −254.743 387.923i −0.520946 0.793299i
\(490\) −272.503 + 213.990i −0.556130 + 0.436715i
\(491\) 212.339i 0.432463i 0.976342 + 0.216231i \(0.0693766\pi\)
−0.976342 + 0.216231i \(0.930623\pi\)
\(492\) −14.8691 13.2515i −0.0302218 0.0269340i
\(493\) −307.265 82.3313i −0.623255 0.167001i
\(494\) −425.631 737.214i −0.861600 1.49234i
\(495\) 417.834 70.6611i 0.844108 0.142750i
\(496\) 13.3356i 0.0268862i
\(497\) 119.304 + 141.861i 0.240049 + 0.285434i
\(498\) 86.0663 415.315i 0.172824 0.833965i
\(499\) −144.944 83.6836i −0.290470 0.167703i 0.347684 0.937612i \(-0.386968\pi\)
−0.638154 + 0.769909i \(0.720302\pi\)
\(500\) −194.170 + 157.474i −0.388339 + 0.314949i
\(501\) 209.123 + 105.213i 0.417411 + 0.210007i
\(502\) 235.770 63.1743i 0.469661 0.125845i
\(503\) 292.158 + 292.158i 0.580831 + 0.580831i 0.935131 0.354301i \(-0.115281\pi\)
−0.354301 + 0.935131i \(0.615281\pi\)
\(504\) 93.4972 + 151.691i 0.185510 + 0.300975i
\(505\) 84.3646 165.676i 0.167059 0.328072i
\(506\) −274.907 158.717i −0.543294 0.313671i
\(507\) 1004.76 332.142i 1.98178 0.655112i
\(508\) −18.6984 + 69.7833i −0.0368078 + 0.137369i
\(509\) −72.6555 41.9477i −0.142742 0.0824120i 0.426928 0.904285i \(-0.359596\pi\)
−0.569670 + 0.821874i \(0.692929\pi\)
\(510\) 124.019 154.837i 0.243175 0.303602i
\(511\) −179.275 + 83.8402i −0.350831 + 0.164071i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 645.495 299.310i 1.25827 0.583449i
\(514\) 335.158 + 580.510i 0.652058 + 1.12940i
\(515\) −107.213 + 119.131i −0.208180 + 0.231322i
\(516\) 14.0967 + 245.059i 0.0273191 + 0.474920i
\(517\) 21.3580 + 21.3580i 0.0413114 + 0.0413114i
\(518\) 445.535 + 161.600i 0.860107 + 0.311970i
\(519\) 219.832 + 334.761i 0.423568 + 0.645011i
\(520\) −270.873 + 176.002i −0.520910 + 0.338466i
\(521\) −240.730 416.957i −0.462054 0.800302i 0.537009 0.843577i \(-0.319554\pi\)
−0.999063 + 0.0432749i \(0.986221\pi\)
\(522\) −269.014 + 339.222i −0.515352 + 0.649851i
\(523\) −116.586 435.105i −0.222918 0.831941i −0.983228 0.182381i \(-0.941620\pi\)
0.760310 0.649560i \(-0.225047\pi\)
\(524\) 295.478i 0.563890i
\(525\) 433.266 296.489i 0.825268 0.564741i
\(526\) −398.646 −0.757881
\(527\) 30.1155 8.06943i 0.0571452 0.0153120i
\(528\) −107.294 + 35.4680i −0.203208 + 0.0671742i
\(529\) −33.8918 + 19.5674i −0.0640677 + 0.0369895i
\(530\) −226.422 348.470i −0.427211 0.657491i
\(531\) 138.742 320.375i 0.261284 0.603343i
\(532\) −237.459 282.354i −0.446352 0.530742i
\(533\) −53.6155 + 53.6155i −0.100592 + 0.100592i
\(534\) −33.2375 577.806i −0.0622425 1.08203i
\(535\) 662.217 + 595.966i 1.23779 + 1.11395i
\(536\) −9.29116 + 5.36425i −0.0173342 + 0.0100079i
\(537\) 507.055 568.950i 0.944236 1.05950i
\(538\) 122.588 122.588i 0.227858 0.227858i
\(539\) 158.784 + 433.254i 0.294591 + 0.803811i
\(540\) −126.303 238.637i −0.233895 0.441920i
\(541\) 24.3231 42.1289i 0.0449596 0.0778723i −0.842670 0.538431i \(-0.819017\pi\)
0.887629 + 0.460558i \(0.152351\pi\)
\(542\) 139.912 + 37.4893i 0.258140 + 0.0691684i
\(543\) 875.658 289.464i 1.61263 0.533084i
\(544\) −26.4509 + 45.8143i −0.0486230 + 0.0842174i
\(545\) 42.0125 + 21.3934i 0.0770872 + 0.0392539i
\(546\) 596.971 322.188i 1.09335 0.590088i
\(547\) 463.843 463.843i 0.847977 0.847977i −0.141904 0.989880i \(-0.545322\pi\)
0.989880 + 0.141904i \(0.0453224\pi\)
\(548\) 110.825 + 413.604i 0.202235 + 0.754751i
\(549\) −831.492 + 95.9784i −1.51456 + 0.174824i
\(550\) 119.470 + 310.769i 0.217218 + 0.565035i
\(551\) 448.190 776.288i 0.813412 1.40887i
\(552\) −41.0409 + 198.044i −0.0743495 + 0.358775i
\(553\) −307.007 + 54.4859i −0.555166 + 0.0985278i
\(554\) −308.216 −0.556347
\(555\) −657.591 288.574i −1.18485 0.519954i
\(556\) 24.4240 14.1012i 0.0439280 0.0253618i
\(557\) 84.0919 313.835i 0.150973 0.563438i −0.848444 0.529285i \(-0.822460\pi\)
0.999417 0.0341527i \(-0.0108733\pi\)
\(558\) 6.21020 41.9766i 0.0111294 0.0752269i
\(559\) 934.471 1.67168
\(560\) −102.260 + 95.6189i −0.182606 + 0.170748i
\(561\) −145.021 220.839i −0.258505 0.393652i
\(562\) 58.8790 + 219.739i 0.104767 + 0.390995i
\(563\) −36.4063 + 135.870i −0.0646649 + 0.241333i −0.990692 0.136125i \(-0.956535\pi\)
0.926027 + 0.377458i \(0.123202\pi\)
\(564\) 8.64938 17.1916i 0.0153358 0.0304815i
\(565\) 621.759 + 131.998i 1.10046 + 0.233625i
\(566\) 167.867 0.296585
\(567\) 223.662 + 521.022i 0.394466 + 0.918911i
\(568\) 52.9597 + 52.9597i 0.0932389 + 0.0932389i
\(569\) −371.512 + 643.477i −0.652920 + 1.13089i 0.329491 + 0.944159i \(0.393123\pi\)
−0.982411 + 0.186732i \(0.940210\pi\)
\(570\) 330.996 + 450.490i 0.580694 + 0.790334i
\(571\) 90.1507 + 156.146i 0.157882 + 0.273460i 0.934105 0.356999i \(-0.116200\pi\)
−0.776223 + 0.630459i \(0.782867\pi\)
\(572\) 111.345 + 415.544i 0.194658 + 0.726475i
\(573\) 87.2463 421.009i 0.152262 0.734745i
\(574\) −18.8187 + 26.9396i −0.0327852 + 0.0469332i
\(575\) 588.599 + 92.9263i 1.02365 + 0.161611i
\(576\) 42.9125 + 57.8145i 0.0745009 + 0.100372i
\(577\) −250.300 + 934.133i −0.433796 + 1.61895i 0.310135 + 0.950692i \(0.399626\pi\)
−0.743931 + 0.668256i \(0.767041\pi\)
\(578\) 275.314 + 73.7701i 0.476322 + 0.127630i
\(579\) 852.418 49.0341i 1.47222 0.0846876i
\(580\) −303.116 154.351i −0.522614 0.266122i
\(581\) −697.198 60.2153i −1.20000 0.103641i
\(582\) −144.339 + 696.513i −0.248006 + 1.19676i
\(583\) −534.585 + 143.242i −0.916956 + 0.245698i
\(584\) −69.2543 + 39.9840i −0.118586 + 0.0684657i
\(585\) −934.594 + 427.864i −1.59760 + 0.731391i
\(586\) 66.3389 + 38.3008i 0.113206 + 0.0653597i
\(587\) 777.398 777.398i 1.32436 1.32436i 0.414147 0.910210i \(-0.364080\pi\)
0.910210 0.414147i \(-0.135920\pi\)
\(588\) 230.343 182.697i 0.391740 0.310709i
\(589\) 87.8557i 0.149161i
\(590\) 268.320 + 56.9637i 0.454779 + 0.0965487i
\(591\) −242.043 + 481.087i −0.409548 + 0.814022i
\(592\) 184.974 + 49.5637i 0.312457 + 0.0837225i
\(593\) −521.442 + 139.720i −0.879328 + 0.235615i −0.670117 0.742255i \(-0.733756\pi\)
−0.209211 + 0.977871i \(0.567090\pi\)
\(594\) −354.248 + 61.6778i −0.596378 + 0.103835i
\(595\) −277.813 173.072i −0.466912 0.290877i
\(596\) 198.008i 0.332229i
\(597\) −174.028 + 195.271i −0.291504 + 0.327088i
\(598\) 743.727 + 199.281i 1.24369 + 0.333246i
\(599\) −334.255 578.947i −0.558022 0.966523i −0.997662 0.0683484i \(-0.978227\pi\)
0.439639 0.898174i \(-0.355106\pi\)
\(600\) 164.108 134.419i 0.273513 0.224032i
\(601\) 586.870i 0.976488i −0.872707 0.488244i \(-0.837638\pi\)
0.872707 0.488244i \(-0.162362\pi\)
\(602\) 398.764 70.7704i 0.662398 0.117559i
\(603\) −31.7440 + 12.5584i −0.0526435 + 0.0208265i
\(604\) 284.908 + 164.492i 0.471703 + 0.272338i
\(605\) −161.374 + 8.49731i −0.266734 + 0.0140451i
\(606\) −70.9027 + 140.927i −0.117001 + 0.232552i
\(607\) −692.161 + 185.464i −1.14030 + 0.305542i −0.779071 0.626936i \(-0.784309\pi\)
−0.361228 + 0.932478i \(0.617642\pi\)
\(608\) −105.409 105.409i −0.173370 0.173370i
\(609\) 608.118 + 374.761i 0.998552 + 0.615371i
\(610\) −203.370 625.383i −0.333394 1.02522i
\(611\) −63.4485 36.6320i −0.103844 0.0599542i
\(612\) −104.595 + 131.893i −0.170907 + 0.215511i
\(613\) 57.8477 215.891i 0.0943682 0.352187i −0.902555 0.430575i \(-0.858311\pi\)
0.996923 + 0.0783882i \(0.0249774\pi\)
\(614\) 308.850 + 178.315i 0.503013 + 0.290415i
\(615\) 31.1283 38.8634i 0.0506151 0.0631925i
\(616\) 78.9842 + 168.891i 0.128221 + 0.274174i
\(617\) −371.341 371.341i −0.601849 0.601849i 0.338954 0.940803i \(-0.389927\pi\)
−0.940803 + 0.338954i \(0.889927\pi\)
\(618\) 90.4813 101.526i 0.146410 0.164282i
\(619\) −364.934 632.084i −0.589554 1.02114i −0.994291 0.106704i \(-0.965970\pi\)
0.404737 0.914433i \(-0.367363\pi\)
\(620\) 33.2928 1.75306i 0.0536981 0.00282752i
\(621\) −221.412 + 604.274i −0.356541 + 0.973066i
\(622\) −73.8090 73.8090i −0.118664 0.118664i
\(623\) −940.215 + 166.864i −1.50917 + 0.267840i
\(624\) 229.116 150.457i 0.367173 0.241116i
\(625\) −418.666 464.051i −0.669866 0.742482i
\(626\) −156.543 271.141i −0.250069 0.433132i
\(627\) 706.861 233.666i 1.12737 0.372673i
\(628\) 36.1571 + 134.940i 0.0575751 + 0.214873i
\(629\) 447.717i 0.711791i
\(630\) −366.413 + 253.361i −0.581608 + 0.402160i
\(631\) 678.904 1.07592 0.537958 0.842971i \(-0.319196\pi\)
0.537958 + 0.842971i \(0.319196\pi\)
\(632\) −121.695 + 32.6081i −0.192555 + 0.0515951i
\(633\) 268.853 + 813.305i 0.424728 + 1.28484i
\(634\) 174.701 100.864i 0.275553 0.159091i
\(635\) −176.675 37.5077i −0.278228 0.0590672i
\(636\) 193.558 + 294.751i 0.304337 + 0.463445i
\(637\) −644.011 915.401i −1.01101 1.43705i
\(638\) −320.323 + 320.323i −0.502073 + 0.502073i
\(639\) 142.040 + 191.365i 0.222284 + 0.299476i
\(640\) −37.8413 + 42.0480i −0.0591271 + 0.0657000i
\(641\) −512.506 + 295.895i −0.799541 + 0.461615i −0.843310 0.537427i \(-0.819396\pi\)
0.0437699 + 0.999042i \(0.486063\pi\)
\(642\) −564.357 502.961i −0.879061 0.783428i
\(643\) 462.272 462.272i 0.718930 0.718930i −0.249456 0.968386i \(-0.580252\pi\)
0.968386 + 0.249456i \(0.0802519\pi\)
\(644\) 332.460 + 28.7138i 0.516243 + 0.0445867i
\(645\) −609.947 + 67.4078i −0.945654 + 0.104508i
\(646\) 174.260 301.828i 0.269753 0.467226i
\(647\) −111.765 29.9472i −0.172743 0.0462863i 0.171411 0.985200i \(-0.445167\pi\)
−0.344154 + 0.938913i \(0.611834\pi\)
\(648\) 108.153 + 201.968i 0.166903 + 0.311678i
\(649\) 182.652 316.362i 0.281436 0.487461i
\(650\) −475.005 653.109i −0.730778 1.00478i
\(651\) −69.9829 2.00861i −0.107501 0.00308542i
\(652\) −218.774 + 218.774i −0.335542 + 0.335542i
\(653\) 53.9679 + 201.411i 0.0826460 + 0.308439i 0.994858 0.101279i \(-0.0322936\pi\)
−0.912212 + 0.409719i \(0.865627\pi\)
\(654\) −35.7365 17.9796i −0.0546429 0.0274918i
\(655\) −737.674 + 38.8429i −1.12622 + 0.0593022i
\(656\) −6.63905 + 11.4992i −0.0101205 + 0.0175292i
\(657\) −236.613 + 93.6075i −0.360142 + 0.142477i
\(658\) −29.8494 10.8267i −0.0453639 0.0164540i
\(659\) 971.092 1.47358 0.736792 0.676119i \(-0.236340\pi\)
0.736792 + 0.676119i \(0.236340\pi\)
\(660\) −102.652 263.201i −0.155533 0.398790i
\(661\) −578.822 + 334.183i −0.875676 + 0.505572i −0.869230 0.494407i \(-0.835385\pi\)
−0.00644601 + 0.999979i \(0.502052\pi\)
\(662\) −190.931 + 712.563i −0.288415 + 1.07638i
\(663\) 478.414 + 426.367i 0.721589 + 0.643088i
\(664\) −282.759 −0.425842
\(665\) 673.694 629.945i 1.01307 0.947286i
\(666\) 559.166 + 242.153i 0.839589 + 0.363593i
\(667\) 209.844 + 783.147i 0.314608 + 1.17413i
\(668\) 40.3928 150.748i 0.0604682 0.225670i
\(669\) −350.752 176.469i −0.524293 0.263781i
\(670\) −14.6135 22.4906i −0.0218111 0.0335680i
\(671\) −875.797 −1.30521
\(672\) 86.3754 81.5555i 0.128535 0.121362i
\(673\) 43.2365 + 43.2365i 0.0642445 + 0.0642445i 0.738499 0.674255i \(-0.235535\pi\)
−0.674255 + 0.738499i \(0.735535\pi\)
\(674\) 132.357 229.249i 0.196375 0.340132i
\(675\) 579.163 346.691i 0.858020 0.513617i
\(676\) −352.745 610.972i −0.521812 0.903805i
\(677\) 216.148 + 806.676i 0.319273 + 1.19154i 0.919945 + 0.392048i \(0.128233\pi\)
−0.600671 + 0.799496i \(0.705100\pi\)
\(678\) −528.118 109.443i −0.778935 0.161420i
\(679\) 1169.25 + 100.986i 1.72202 + 0.148727i
\(680\) −117.854 60.0131i −0.173315 0.0882546i
\(681\) −3.61558 62.8538i −0.00530922 0.0922963i
\(682\) 11.4915 42.8869i 0.0168497 0.0628840i
\(683\) 903.320 + 242.044i 1.32258 + 0.354383i 0.849942 0.526876i \(-0.176637\pi\)
0.472634 + 0.881259i \(0.343303\pi\)
\(684\) −282.711 380.886i −0.413320 0.556851i
\(685\) −1018.01 + 331.050i −1.48615 + 0.483285i
\(686\) −344.143 341.853i −0.501666 0.498328i
\(687\) −873.976 181.115i −1.27216 0.263632i
\(688\) 158.067 42.3539i 0.229748 0.0615608i
\(689\) 1162.57 671.210i 1.68733 0.974180i
\(690\) −499.820 76.4259i −0.724376 0.110762i
\(691\) −893.269 515.729i −1.29272 0.746352i −0.313584 0.949560i \(-0.601530\pi\)
−0.979136 + 0.203208i \(0.934863\pi\)
\(692\) 188.792 188.792i 0.272821 0.272821i
\(693\) 169.970 + 568.404i 0.245266 + 0.820208i
\(694\) 278.304i 0.401014i
\(695\) 38.4149 + 59.1217i 0.0552733 + 0.0850672i
\(696\) 257.835 + 129.721i 0.370453 + 0.186381i
\(697\) −29.9858 8.03466i −0.0430212 0.0115275i
\(698\) 385.296 103.240i 0.552000 0.147908i
\(699\) 48.0996 31.5862i 0.0688120 0.0451877i
\(700\) −252.159 242.725i −0.360228 0.346751i
\(701\) 508.656i 0.725615i 0.931864 + 0.362807i \(0.118182\pi\)
−0.931864 + 0.362807i \(0.881818\pi\)
\(702\) 791.258 366.899i 1.12715 0.522648i
\(703\) −1218.63 326.530i −1.73346 0.464480i
\(704\) 37.6681 + 65.2431i 0.0535059 + 0.0926749i
\(705\) 44.0565 + 19.3336i 0.0624915 + 0.0274235i
\(706\) 638.604i 0.904538i
\(707\) 244.689 + 88.7512i 0.346094 + 0.125532i
\(708\) −227.909 47.2299i −0.321905 0.0667088i
\(709\) 86.1429 + 49.7346i 0.121499 + 0.0701476i 0.559518 0.828818i \(-0.310986\pi\)
−0.438019 + 0.898966i \(0.644320\pi\)
\(710\) −125.254 + 139.178i −0.176414 + 0.196025i
\(711\) −398.247 + 45.9693i −0.560122 + 0.0646545i
\(712\) −372.694 + 99.8630i −0.523446 + 0.140257i
\(713\) −56.1904 56.1904i −0.0788084 0.0788084i
\(714\) 236.442 + 145.711i 0.331151 + 0.204076i
\(715\) −1022.79 + 332.603i −1.43047 + 0.465179i
\(716\) −440.003 254.036i −0.614530 0.354799i
\(717\) −130.169 393.773i −0.181546 0.549196i
\(718\) 122.653 457.746i 0.170825 0.637529i
\(719\) −497.276 287.102i −0.691621 0.399308i 0.112598 0.993641i \(-0.464083\pi\)
−0.804219 + 0.594333i \(0.797416\pi\)
\(720\) −138.695 + 114.733i −0.192632 + 0.159351i
\(721\) −183.944 128.494i −0.255123 0.178216i
\(722\) 333.444 + 333.444i 0.461834 + 0.461834i
\(723\) −506.524 451.420i −0.700587 0.624370i
\(724\) −307.420 532.468i −0.424614 0.735453i
\(725\) 345.497 777.033i 0.476547 1.07177i
\(726\) 136.894 7.87463i 0.188559 0.0108466i
\(727\) 538.164 + 538.164i 0.740254 + 0.740254i 0.972627 0.232373i \(-0.0746491\pi\)
−0.232373 + 0.972627i \(0.574649\pi\)
\(728\) −291.082 346.115i −0.399838 0.475433i
\(729\) 246.382 + 686.103i 0.337972 + 0.941156i
\(730\) −108.926 167.640i −0.149213 0.229644i
\(731\) 191.294 + 331.331i 0.261689 + 0.453258i
\(732\) 175.139 + 529.811i 0.239260 + 0.723786i
\(733\) −336.084 1254.28i −0.458505 1.71116i −0.677574 0.735454i \(-0.736969\pi\)
0.219069 0.975709i \(-0.429698\pi\)
\(734\) 876.319i 1.19390i
\(735\) 486.390 + 551.044i 0.661756 + 0.749720i
\(736\) 134.834 0.183199
\(737\) −34.5026 + 9.24494i −0.0468149 + 0.0125440i
\(738\) −26.2529 + 33.1045i −0.0355730 + 0.0448570i
\(739\) −1252.93 + 723.380i −1.69544 + 0.978863i −0.745462 + 0.666549i \(0.767771\pi\)
−0.949979 + 0.312314i \(0.898896\pi\)
\(740\) −99.4216 + 468.312i −0.134353 + 0.632854i
\(741\) −1509.43 + 991.219i −2.03702 + 1.33768i
\(742\) 445.267 374.468i 0.600090 0.504674i
\(743\) −213.369 + 213.369i −0.287173 + 0.287173i −0.835961 0.548788i \(-0.815089\pi\)
0.548788 + 0.835961i \(0.315089\pi\)
\(744\) −28.2423 + 1.62460i −0.0379601 + 0.00218360i
\(745\) 494.336 26.0298i 0.663539 0.0349393i
\(746\) 401.090 231.570i 0.537655 0.310415i
\(747\) −890.047 131.677i −1.19149 0.176275i
\(748\) −124.544 + 124.544i −0.166503 + 0.166503i
\(749\) −714.263 + 1022.49i −0.953623 + 1.36514i
\(750\) 357.157 + 392.032i 0.476209 + 0.522709i
\(751\) −439.885 + 761.904i −0.585733 + 1.01452i 0.409051 + 0.912512i \(0.365860\pi\)
−0.994784 + 0.102008i \(0.967473\pi\)
\(752\) −12.3927 3.32061i −0.0164796 0.00441571i
\(753\) −162.514 491.622i −0.215823 0.652884i
\(754\) 549.399 951.587i 0.728646 1.26205i
\(755\) −373.208 + 732.910i −0.494315 + 0.970741i
\(756\) 309.865 216.490i 0.409874 0.286362i
\(757\) 38.0541 38.0541i 0.0502697 0.0502697i −0.681525 0.731795i \(-0.738683\pi\)
0.731795 + 0.681525i \(0.238683\pi\)
\(758\) −43.6122 162.763i −0.0575359 0.214727i
\(759\) −302.644 + 601.538i −0.398741 + 0.792541i
\(760\) 249.302