Properties

Label 210.3.w.a.17.9
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.9
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(0.587638 - 2.94188i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-3.75994 - 3.29588i) q^{5} +(-1.87953 + 3.80360i) q^{6} +(5.65896 - 4.12022i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-8.30936 - 3.45752i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(0.587638 - 2.94188i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-3.75994 - 3.29588i) q^{5} +(-1.87953 + 3.80360i) q^{6} +(5.65896 - 4.12022i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-8.30936 - 3.45752i) q^{9} +(3.92980 + 5.87849i) q^{10} +(10.7431 + 6.20251i) q^{11} +(3.95970 - 4.50786i) q^{12} +(-17.5103 - 17.5103i) q^{13} +(-9.23839 + 3.55700i) q^{14} +(-11.9056 + 9.12453i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-9.60968 + 2.57491i) q^{17} +(10.0853 + 7.76450i) q^{18} +(6.00440 + 10.3999i) q^{19} +(-3.21653 - 9.46858i) q^{20} +(-8.79579 - 19.0692i) q^{21} +(-12.4050 - 12.4050i) q^{22} +(0.588343 - 2.19573i) q^{23} +(-7.05904 + 4.70849i) q^{24} +(3.27431 + 24.7847i) q^{25} +(17.5103 + 30.3287i) q^{26} +(-15.0545 + 22.4134i) q^{27} +(13.9218 - 1.47747i) q^{28} -19.7542 q^{29} +(19.6031 - 8.10659i) q^{30} +(-45.3975 - 26.2103i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(24.5601 - 27.9600i) q^{33} +14.0695 q^{34} +(-34.8571 - 3.15949i) q^{35} +(-10.9347 - 14.2980i) q^{36} +(-1.97085 + 7.35531i) q^{37} +(-4.39553 - 16.4043i) q^{38} +(-61.8030 + 41.2236i) q^{39} +(0.928115 + 14.1116i) q^{40} -18.4715 q^{41} +(5.03546 + 29.2685i) q^{42} +(33.8663 - 33.8663i) q^{43} +(12.4050 + 21.4861i) q^{44} +(19.8471 + 40.3868i) q^{45} +(-1.60738 + 2.78407i) q^{46} +(6.09028 - 22.7292i) q^{47} +(11.3663 - 3.84813i) q^{48} +(15.0476 - 46.6323i) q^{49} +(4.59902 - 35.0549i) q^{50} +(1.92807 + 29.7837i) q^{51} +(-12.8184 - 47.8391i) q^{52} +(76.5487 - 20.5112i) q^{53} +(28.7687 - 25.1070i) q^{54} +(-19.9505 - 58.7289i) q^{55} +(-19.5584 - 3.07748i) q^{56} +(34.1238 - 11.5529i) q^{57} +(26.9848 + 7.23056i) q^{58} +(6.05375 + 3.49513i) q^{59} +(-29.7456 + 3.89855i) q^{60} +(-5.55891 + 3.20944i) q^{61} +(52.4206 + 52.4206i) q^{62} +(-61.2681 + 14.6704i) q^{63} +8.00000i q^{64} +(8.12579 + 123.550i) q^{65} +(-43.7838 + 29.2045i) q^{66} +(74.1402 - 19.8658i) q^{67} +(-19.2194 - 5.14981i) q^{68} +(-6.11384 - 3.02113i) q^{69} +(46.4592 + 17.0745i) q^{70} +29.3260i q^{71} +(9.70368 + 23.5338i) q^{72} +(14.2733 - 3.82451i) q^{73} +(5.38446 - 9.32616i) q^{74} +(74.8377 + 4.93176i) q^{75} +24.0176i q^{76} +(86.3502 - 9.16400i) q^{77} +(99.5134 - 33.6910i) q^{78} +(118.620 - 68.4854i) q^{79} +(3.89739 - 19.6166i) q^{80} +(57.0911 + 57.4596i) q^{81} +(25.2325 + 6.76103i) q^{82} +(12.9941 - 12.9941i) q^{83} +(3.83445 - 41.8246i) q^{84} +(44.6184 + 21.9909i) q^{85} +(-58.6581 + 33.8663i) q^{86} +(-11.6083 + 58.1147i) q^{87} +(-9.08110 - 33.8911i) q^{88} +(91.0404 - 52.5622i) q^{89} +(-12.3291 - 62.4339i) q^{90} +(-171.236 - 26.9438i) q^{91} +(3.21477 - 3.21477i) q^{92} +(-103.785 + 118.152i) q^{93} +(-16.6389 + 28.8195i) q^{94} +(11.7008 - 58.8929i) q^{95} +(-16.9351 + 1.09631i) q^{96} +(-69.6870 + 69.6870i) q^{97} +(-37.6240 + 58.1931i) q^{98} +(-67.8227 - 88.6833i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) 0.587638 2.94188i 0.195879 0.980628i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −3.75994 3.29588i −0.751988 0.659177i
\(6\) −1.87953 + 3.80360i −0.313255 + 0.633933i
\(7\) 5.65896 4.12022i 0.808423 0.588602i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −8.30936 3.45752i −0.923263 0.384169i
\(10\) 3.92980 + 5.87849i 0.392980 + 0.587849i
\(11\) 10.7431 + 6.20251i 0.976641 + 0.563864i 0.901254 0.433290i \(-0.142647\pi\)
0.0753870 + 0.997154i \(0.475981\pi\)
\(12\) 3.95970 4.50786i 0.329975 0.375655i
\(13\) −17.5103 17.5103i −1.34695 1.34695i −0.888958 0.457989i \(-0.848570\pi\)
−0.457989 0.888958i \(-0.651430\pi\)
\(14\) −9.23839 + 3.55700i −0.659885 + 0.254071i
\(15\) −11.9056 + 9.12453i −0.793706 + 0.608302i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −9.60968 + 2.57491i −0.565275 + 0.151465i −0.530129 0.847917i \(-0.677856\pi\)
−0.0351465 + 0.999382i \(0.511190\pi\)
\(18\) 10.0853 + 7.76450i 0.560292 + 0.431361i
\(19\) 6.00440 + 10.3999i 0.316021 + 0.547365i 0.979654 0.200694i \(-0.0643196\pi\)
−0.663633 + 0.748058i \(0.730986\pi\)
\(20\) −3.21653 9.46858i −0.160826 0.473429i
\(21\) −8.79579 19.0692i −0.418847 0.908057i
\(22\) −12.4050 12.4050i −0.563864 0.563864i
\(23\) 0.588343 2.19573i 0.0255801 0.0954664i −0.951956 0.306236i \(-0.900930\pi\)
0.977536 + 0.210770i \(0.0675970\pi\)
\(24\) −7.05904 + 4.70849i −0.294127 + 0.196187i
\(25\) 3.27431 + 24.7847i 0.130972 + 0.991386i
\(26\) 17.5103 + 30.3287i 0.673473 + 1.16649i
\(27\) −15.0545 + 22.4134i −0.557575 + 0.830127i
\(28\) 13.9218 1.47747i 0.497208 0.0527667i
\(29\) −19.7542 −0.681181 −0.340590 0.940212i \(-0.610627\pi\)
−0.340590 + 0.940212i \(0.610627\pi\)
\(30\) 19.6031 8.10659i 0.653438 0.270220i
\(31\) −45.3975 26.2103i −1.46444 0.845493i −0.465225 0.885193i \(-0.654026\pi\)
−0.999212 + 0.0396998i \(0.987360\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 24.5601 27.9600i 0.744245 0.847273i
\(34\) 14.0695 0.413810
\(35\) −34.8571 3.15949i −0.995917 0.0902712i
\(36\) −10.9347 14.2980i −0.303742 0.397166i
\(37\) −1.97085 + 7.35531i −0.0532662 + 0.198792i −0.987431 0.158049i \(-0.949480\pi\)
0.934165 + 0.356841i \(0.116146\pi\)
\(38\) −4.39553 16.4043i −0.115672 0.431693i
\(39\) −61.8030 + 41.2236i −1.58469 + 1.05701i
\(40\) 0.928115 + 14.1116i 0.0232029 + 0.352791i
\(41\) −18.4715 −0.450524 −0.225262 0.974298i \(-0.572324\pi\)
−0.225262 + 0.974298i \(0.572324\pi\)
\(42\) 5.03546 + 29.2685i 0.119892 + 0.696869i
\(43\) 33.8663 33.8663i 0.787588 0.787588i −0.193511 0.981098i \(-0.561987\pi\)
0.981098 + 0.193511i \(0.0619874\pi\)
\(44\) 12.4050 + 21.4861i 0.281932 + 0.488321i
\(45\) 19.8471 + 40.3868i 0.441047 + 0.897484i
\(46\) −1.60738 + 2.78407i −0.0349431 + 0.0605233i
\(47\) 6.09028 22.7292i 0.129580 0.483600i −0.870381 0.492379i \(-0.836128\pi\)
0.999961 + 0.00877822i \(0.00279423\pi\)
\(48\) 11.3663 3.84813i 0.236797 0.0801694i
\(49\) 15.0476 46.6323i 0.307094 0.951679i
\(50\) 4.59902 35.0549i 0.0919805 0.701099i
\(51\) 1.92807 + 29.7837i 0.0378052 + 0.583994i
\(52\) −12.8184 47.8391i −0.246508 0.919982i
\(53\) 76.5487 20.5112i 1.44432 0.387003i 0.550273 0.834985i \(-0.314524\pi\)
0.894043 + 0.447982i \(0.147857\pi\)
\(54\) 28.7687 25.1070i 0.532755 0.464944i
\(55\) −19.9505 58.7289i −0.362737 1.06780i
\(56\) −19.5584 3.07748i −0.349256 0.0549550i
\(57\) 34.1238 11.5529i 0.598663 0.202682i
\(58\) 26.9848 + 7.23056i 0.465255 + 0.124665i
\(59\) 6.05375 + 3.49513i 0.102606 + 0.0592396i 0.550425 0.834885i \(-0.314466\pi\)
−0.447819 + 0.894124i \(0.647799\pi\)
\(60\) −29.7456 + 3.89855i −0.495760 + 0.0649759i
\(61\) −5.55891 + 3.20944i −0.0911296 + 0.0526137i −0.544872 0.838519i \(-0.683422\pi\)
0.453743 + 0.891133i \(0.350089\pi\)
\(62\) 52.4206 + 52.4206i 0.845493 + 0.845493i
\(63\) −61.2681 + 14.6704i −0.972509 + 0.232864i
\(64\) 8.00000i 0.125000i
\(65\) 8.12579 + 123.550i 0.125012 + 1.90076i
\(66\) −43.7838 + 29.2045i −0.663390 + 0.442492i
\(67\) 74.1402 19.8658i 1.10657 0.296505i 0.341133 0.940015i \(-0.389189\pi\)
0.765437 + 0.643510i \(0.222523\pi\)
\(68\) −19.2194 5.14981i −0.282638 0.0757325i
\(69\) −6.11384 3.02113i −0.0886064 0.0437845i
\(70\) 46.4592 + 17.0745i 0.663703 + 0.243922i
\(71\) 29.3260i 0.413043i 0.978442 + 0.206521i \(0.0662143\pi\)
−0.978442 + 0.206521i \(0.933786\pi\)
\(72\) 9.70368 + 23.5338i 0.134773 + 0.326858i
\(73\) 14.2733 3.82451i 0.195524 0.0523906i −0.159728 0.987161i \(-0.551062\pi\)
0.355252 + 0.934770i \(0.384395\pi\)
\(74\) 5.38446 9.32616i 0.0727630 0.126029i
\(75\) 74.8377 + 4.93176i 0.997836 + 0.0657567i
\(76\) 24.0176i 0.316021i
\(77\) 86.3502 9.16400i 1.12143 0.119013i
\(78\) 99.5134 33.6910i 1.27581 0.431936i
\(79\) 118.620 68.4854i 1.50152 0.866904i 0.501523 0.865144i \(-0.332773\pi\)
0.999998 0.00175954i \(-0.000560079\pi\)
\(80\) 3.89739 19.6166i 0.0487174 0.245207i
\(81\) 57.0911 + 57.4596i 0.704828 + 0.709378i
\(82\) 25.2325 + 6.76103i 0.307714 + 0.0824516i
\(83\) 12.9941 12.9941i 0.156555 0.156555i −0.624483 0.781038i \(-0.714690\pi\)
0.781038 + 0.624483i \(0.214690\pi\)
\(84\) 3.83445 41.8246i 0.0456482 0.497912i
\(85\) 44.6184 + 21.9909i 0.524923 + 0.258716i
\(86\) −58.6581 + 33.8663i −0.682071 + 0.393794i
\(87\) −11.6083 + 58.1147i −0.133429 + 0.667985i
\(88\) −9.08110 33.8911i −0.103194 0.385126i
\(89\) 91.0404 52.5622i 1.02293 0.590586i 0.107976 0.994154i \(-0.465563\pi\)
0.914950 + 0.403567i \(0.132230\pi\)
\(90\) −12.3291 62.4339i −0.136990 0.693710i
\(91\) −171.236 26.9438i −1.88172 0.296086i
\(92\) 3.21477 3.21477i 0.0349431 0.0349431i
\(93\) −103.785 + 118.152i −1.11597 + 1.27045i
\(94\) −16.6389 + 28.8195i −0.177010 + 0.306590i
\(95\) 11.7008 58.8929i 0.123166 0.619926i
\(96\) −16.9351 + 1.09631i −0.176407 + 0.0114199i
\(97\) −69.6870 + 69.6870i −0.718423 + 0.718423i −0.968282 0.249859i \(-0.919616\pi\)
0.249859 + 0.968282i \(0.419616\pi\)
\(98\) −37.6240 + 58.1931i −0.383919 + 0.593807i
\(99\) −67.8227 88.6833i −0.685077 0.895790i
\(100\) −19.1134 + 46.2026i −0.191134 + 0.462026i
\(101\) 64.9654 112.523i 0.643222 1.11409i −0.341487 0.939886i \(-0.610931\pi\)
0.984709 0.174207i \(-0.0557361\pi\)
\(102\) 8.26780 41.3910i 0.0810568 0.405794i
\(103\) 17.3899 64.8999i 0.168834 0.630096i −0.828686 0.559713i \(-0.810911\pi\)
0.997520 0.0703830i \(-0.0224221\pi\)
\(104\) 70.0412i 0.673473i
\(105\) −29.7782 + 100.689i −0.283602 + 0.958942i
\(106\) −112.075 −1.05731
\(107\) −98.6262 26.4268i −0.921740 0.246979i −0.233411 0.972378i \(-0.574989\pi\)
−0.688329 + 0.725399i \(0.741655\pi\)
\(108\) −48.4886 + 23.7666i −0.448969 + 0.220062i
\(109\) −27.6546 15.9664i −0.253712 0.146481i 0.367751 0.929924i \(-0.380128\pi\)
−0.621463 + 0.783444i \(0.713461\pi\)
\(110\) 5.75664 + 87.5276i 0.0523331 + 0.795705i
\(111\) 20.4803 + 10.1203i 0.184507 + 0.0911736i
\(112\) 25.5908 + 11.3628i 0.228489 + 0.101453i
\(113\) −156.967 156.967i −1.38909 1.38909i −0.827235 0.561857i \(-0.810087\pi\)
−0.561857 0.827235i \(-0.689913\pi\)
\(114\) −50.8426 + 3.29133i −0.445988 + 0.0288713i
\(115\) −9.44900 + 6.31669i −0.0821652 + 0.0549278i
\(116\) −34.2154 19.7542i −0.294960 0.170295i
\(117\) 84.9572 + 206.042i 0.726130 + 1.76104i
\(118\) −6.99027 6.99027i −0.0592396 0.0592396i
\(119\) −43.7716 + 54.1653i −0.367829 + 0.455170i
\(120\) 42.0602 + 5.56213i 0.350502 + 0.0463511i
\(121\) 16.4422 + 28.4787i 0.135886 + 0.235361i
\(122\) 8.76834 2.34947i 0.0718717 0.0192580i
\(123\) −10.8545 + 54.3410i −0.0882483 + 0.441797i
\(124\) −52.4206 90.7951i −0.422746 0.732218i
\(125\) 69.3761 103.981i 0.555009 0.831844i
\(126\) 89.0635 + 2.38553i 0.706853 + 0.0189328i
\(127\) −28.1408 28.1408i −0.221581 0.221581i 0.587583 0.809164i \(-0.300080\pi\)
−0.809164 + 0.587583i \(0.800080\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −79.7295 119.532i −0.618058 0.926602i
\(130\) 34.1223 171.746i 0.262479 1.32112i
\(131\) 90.6747 + 157.053i 0.692173 + 1.19888i 0.971124 + 0.238574i \(0.0766799\pi\)
−0.278951 + 0.960305i \(0.589987\pi\)
\(132\) 70.4993 23.8681i 0.534086 0.180819i
\(133\) 76.8286 + 34.1133i 0.577659 + 0.256491i
\(134\) −108.549 −0.810066
\(135\) 130.476 34.6552i 0.966490 0.256705i
\(136\) 24.3692 + 14.0695i 0.179185 + 0.103453i
\(137\) −32.9109 122.825i −0.240225 0.896533i −0.975723 0.219006i \(-0.929719\pi\)
0.735498 0.677527i \(-0.236948\pi\)
\(138\) 7.24585 + 6.36476i 0.0525062 + 0.0461215i
\(139\) −43.3069 −0.311560 −0.155780 0.987792i \(-0.549789\pi\)
−0.155780 + 0.987792i \(0.549789\pi\)
\(140\) −57.2148 40.3295i −0.408677 0.288068i
\(141\) −63.2878 31.2734i −0.448850 0.221797i
\(142\) 10.7341 40.0601i 0.0755921 0.282113i
\(143\) −79.5064 296.722i −0.555989 2.07498i
\(144\) −4.64152 35.6995i −0.0322328 0.247913i
\(145\) 74.2748 + 65.1077i 0.512240 + 0.449019i
\(146\) −20.8975 −0.143134
\(147\) −128.344 71.6712i −0.873090 0.487559i
\(148\) −10.7689 + 10.7689i −0.0727630 + 0.0727630i
\(149\) 25.1494 + 43.5600i 0.168788 + 0.292349i 0.937994 0.346652i \(-0.112681\pi\)
−0.769206 + 0.639001i \(0.779348\pi\)
\(150\) −100.425 34.1294i −0.669500 0.227529i
\(151\) −100.541 + 174.142i −0.665832 + 1.15326i 0.313227 + 0.949678i \(0.398590\pi\)
−0.979059 + 0.203577i \(0.934743\pi\)
\(152\) 8.79106 32.8087i 0.0578359 0.215846i
\(153\) 88.7531 + 11.8299i 0.580086 + 0.0773194i
\(154\) −121.311 19.0881i −0.787732 0.123949i
\(155\) 84.3060 + 248.174i 0.543910 + 1.60112i
\(156\) −148.270 + 9.59833i −0.950446 + 0.0615277i
\(157\) 74.9231 + 279.617i 0.477217 + 1.78100i 0.612806 + 0.790233i \(0.290041\pi\)
−0.135589 + 0.990765i \(0.543293\pi\)
\(158\) −187.106 + 50.1348i −1.18421 + 0.317309i
\(159\) −15.3586 237.251i −0.0965948 1.49214i
\(160\) −12.5041 + 25.3702i −0.0781507 + 0.158564i
\(161\) −5.71746 14.8496i −0.0355122 0.0922337i
\(162\) −56.9562 99.3881i −0.351581 0.613507i
\(163\) 75.7586 + 20.2995i 0.464777 + 0.124537i 0.483605 0.875286i \(-0.339327\pi\)
−0.0188285 + 0.999823i \(0.505994\pi\)
\(164\) −31.9936 18.4715i −0.195083 0.112631i
\(165\) −184.497 + 24.1808i −1.11817 + 0.146550i
\(166\) −22.5064 + 12.9941i −0.135581 + 0.0782777i
\(167\) −144.633 144.633i −0.866063 0.866063i 0.125971 0.992034i \(-0.459795\pi\)
−0.992034 + 0.125971i \(0.959795\pi\)
\(168\) −20.5468 + 55.7300i −0.122302 + 0.331726i
\(169\) 444.222i 2.62853i
\(170\) −52.9007 46.3716i −0.311180 0.272774i
\(171\) −13.9348 107.177i −0.0814899 0.626767i
\(172\) 92.5244 24.7918i 0.537932 0.144139i
\(173\) 197.090 + 52.8100i 1.13925 + 0.305260i 0.778648 0.627461i \(-0.215906\pi\)
0.360598 + 0.932721i \(0.382573\pi\)
\(174\) 37.1287 75.1372i 0.213384 0.431823i
\(175\) 120.647 + 126.764i 0.689413 + 0.724368i
\(176\) 49.6201i 0.281932i
\(177\) 13.8397 15.7556i 0.0781903 0.0890145i
\(178\) −143.603 + 38.4782i −0.806756 + 0.216170i
\(179\) 41.2899 71.5162i 0.230670 0.399532i −0.727336 0.686282i \(-0.759242\pi\)
0.958005 + 0.286750i \(0.0925749\pi\)
\(180\) −6.01055 + 89.7991i −0.0333919 + 0.498884i
\(181\) 255.798i 1.41325i −0.707588 0.706625i \(-0.750217\pi\)
0.707588 0.706625i \(-0.249783\pi\)
\(182\) 224.051 + 99.4828i 1.23105 + 0.546609i
\(183\) 6.17517 + 18.2396i 0.0337441 + 0.0996702i
\(184\) −5.56814 + 3.21477i −0.0302616 + 0.0174716i
\(185\) 31.6525 21.1598i 0.171095 0.114378i
\(186\) 185.019 123.411i 0.994728 0.663499i
\(187\) −119.208 31.9417i −0.637477 0.170811i
\(188\) 33.2779 33.2779i 0.177010 0.177010i
\(189\) 7.15520 + 188.865i 0.0378582 + 0.999283i
\(190\) −37.5398 + 76.1665i −0.197578 + 0.400876i
\(191\) −203.101 + 117.260i −1.06335 + 0.613928i −0.926358 0.376644i \(-0.877078\pi\)
−0.136996 + 0.990572i \(0.543745\pi\)
\(192\) 23.5351 + 4.70110i 0.122579 + 0.0244849i
\(193\) 16.1562 + 60.2957i 0.0837108 + 0.312413i 0.995067 0.0992057i \(-0.0316302\pi\)
−0.911356 + 0.411619i \(0.864964\pi\)
\(194\) 120.701 69.6870i 0.622173 0.359212i
\(195\) 368.244 + 48.6973i 1.88843 + 0.249730i
\(196\) 72.6955 65.7219i 0.370895 0.335316i
\(197\) −72.9575 + 72.9575i −0.370342 + 0.370342i −0.867602 0.497259i \(-0.834340\pi\)
0.497259 + 0.867602i \(0.334340\pi\)
\(198\) 60.1871 + 145.968i 0.303975 + 0.737214i
\(199\) 98.5803 170.746i 0.495378 0.858020i −0.504608 0.863349i \(-0.668363\pi\)
0.999986 + 0.00532864i \(0.00169617\pi\)
\(200\) 43.0207 56.1179i 0.215103 0.280590i
\(201\) −14.8753 229.786i −0.0740067 1.14321i
\(202\) −129.931 + 129.931i −0.643222 + 0.643222i
\(203\) −111.788 + 81.3918i −0.550682 + 0.400945i
\(204\) −26.4442 + 53.5149i −0.129628 + 0.262328i
\(205\) 69.4517 + 60.8799i 0.338789 + 0.296975i
\(206\) −47.5100 + 82.2898i −0.230631 + 0.399465i
\(207\) −12.4805 + 16.2109i −0.0602925 + 0.0783135i
\(208\) 25.6369 95.6781i 0.123254 0.459991i
\(209\) 148.969i 0.712772i
\(210\) 77.5325 126.644i 0.369202 0.603067i
\(211\) 6.79097 0.0321847 0.0160924 0.999871i \(-0.494877\pi\)
0.0160924 + 0.999871i \(0.494877\pi\)
\(212\) 153.097 + 41.0223i 0.722158 + 0.193502i
\(213\) 86.2738 + 17.2331i 0.405041 + 0.0809065i
\(214\) 125.053 + 72.1994i 0.584360 + 0.337380i
\(215\) −238.954 + 15.7159i −1.11142 + 0.0730972i
\(216\) 74.9359 14.7178i 0.346925 0.0681379i
\(217\) −364.895 + 38.7248i −1.68154 + 0.178455i
\(218\) 31.9328 + 31.9328i 0.146481 + 0.146481i
\(219\) −2.86376 44.2378i −0.0130765 0.201999i
\(220\) 24.1736 121.672i 0.109880 0.553054i
\(221\) 213.356 + 123.181i 0.965411 + 0.557380i
\(222\) −24.2724 21.3209i −0.109335 0.0960399i
\(223\) −120.317 120.317i −0.539537 0.539537i 0.383856 0.923393i \(-0.374596\pi\)
−0.923393 + 0.383856i \(0.874596\pi\)
\(224\) −30.7986 24.8887i −0.137494 0.111110i
\(225\) 58.4861 217.266i 0.259938 0.965625i
\(226\) 156.967 + 271.875i 0.694546 + 1.20299i
\(227\) 342.548 91.7855i 1.50902 0.404342i 0.592912 0.805267i \(-0.297978\pi\)
0.916111 + 0.400925i \(0.131311\pi\)
\(228\) 70.6570 + 14.1137i 0.309899 + 0.0619020i
\(229\) −40.1136 69.4788i −0.175169 0.303401i 0.765051 0.643970i \(-0.222714\pi\)
−0.940220 + 0.340569i \(0.889380\pi\)
\(230\) 15.2196 5.17019i 0.0661723 0.0224791i
\(231\) 23.7832 259.417i 0.102957 1.12302i
\(232\) 39.5085 + 39.5085i 0.170295 + 0.170295i
\(233\) 22.9825 85.7717i 0.0986372 0.368119i −0.898909 0.438136i \(-0.855639\pi\)
0.997546 + 0.0700172i \(0.0223054\pi\)
\(234\) −40.6372 312.555i −0.173663 1.33570i
\(235\) −97.8119 + 65.3877i −0.416221 + 0.278245i
\(236\) 6.99027 + 12.1075i 0.0296198 + 0.0513030i
\(237\) −131.770 389.211i −0.555993 1.64224i
\(238\) 79.6190 57.9696i 0.334534 0.243570i
\(239\) 324.480 1.35766 0.678828 0.734297i \(-0.262488\pi\)
0.678828 + 0.734297i \(0.262488\pi\)
\(240\) −55.4195 22.9931i −0.230914 0.0958047i
\(241\) 199.017 + 114.903i 0.825799 + 0.476775i 0.852412 0.522871i \(-0.175139\pi\)
−0.0266134 + 0.999646i \(0.508472\pi\)
\(242\) −12.0365 44.9208i −0.0497376 0.185623i
\(243\) 202.588 134.190i 0.833697 0.552222i
\(244\) −12.8377 −0.0526137
\(245\) −210.273 + 125.739i −0.858256 + 0.513222i
\(246\) 34.7178 70.2581i 0.141129 0.285602i
\(247\) 76.9671 287.245i 0.311607 1.16293i
\(248\) 38.3745 + 143.216i 0.154736 + 0.577482i
\(249\) −30.5913 45.8630i −0.122857 0.184189i
\(250\) −132.829 + 116.647i −0.531316 + 0.466587i
\(251\) 28.3486 0.112943 0.0564713 0.998404i \(-0.482015\pi\)
0.0564713 + 0.998404i \(0.482015\pi\)
\(252\) −120.790 35.8582i −0.479325 0.142294i
\(253\) 19.9396 19.9396i 0.0788127 0.0788127i
\(254\) 28.1408 + 48.7412i 0.110790 + 0.191895i
\(255\) 90.9141 118.340i 0.356526 0.464077i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −47.9061 + 178.788i −0.186405 + 0.695673i 0.807920 + 0.589292i \(0.200593\pi\)
−0.994325 + 0.106382i \(0.966073\pi\)
\(258\) 65.1609 + 192.466i 0.252562 + 0.745994i
\(259\) 19.1525 + 49.7437i 0.0739480 + 0.192061i
\(260\) −109.475 + 222.120i −0.421059 + 0.854308i
\(261\) 164.145 + 68.3008i 0.628909 + 0.261689i
\(262\) −66.3785 247.728i −0.253353 0.945526i
\(263\) −148.547 + 39.8031i −0.564818 + 0.151343i −0.529919 0.848048i \(-0.677778\pi\)
−0.0348993 + 0.999391i \(0.511111\pi\)
\(264\) −105.040 + 6.79984i −0.397879 + 0.0257570i
\(265\) −355.421 175.175i −1.34121 0.661037i
\(266\) −92.4635 74.7209i −0.347607 0.280906i
\(267\) −101.133 298.718i −0.378776 1.11879i
\(268\) 148.280 + 39.7316i 0.553285 + 0.148252i
\(269\) 411.851 + 237.783i 1.53105 + 0.883950i 0.999314 + 0.0370376i \(0.0117921\pi\)
0.531732 + 0.846912i \(0.321541\pi\)
\(270\) −190.918 0.417760i −0.707105 0.00154726i
\(271\) 319.911 184.701i 1.18048 0.681552i 0.224356 0.974507i \(-0.427972\pi\)
0.956126 + 0.292955i \(0.0946387\pi\)
\(272\) −28.1391 28.1391i −0.103453 0.103453i
\(273\) −179.891 + 487.924i −0.658940 + 1.78727i
\(274\) 179.828i 0.656308i
\(275\) −118.551 + 286.572i −0.431094 + 1.04208i
\(276\) −7.56836 11.3466i −0.0274216 0.0411108i
\(277\) −7.19180 + 1.92704i −0.0259632 + 0.00695682i −0.271777 0.962360i \(-0.587611\pi\)
0.245814 + 0.969317i \(0.420945\pi\)
\(278\) 59.1583 + 15.8514i 0.212800 + 0.0570195i
\(279\) 286.602 + 374.754i 1.02725 + 1.34320i
\(280\) 63.3952 + 76.0332i 0.226412 + 0.271547i
\(281\) 250.182i 0.890329i −0.895449 0.445164i \(-0.853145\pi\)
0.895449 0.445164i \(-0.146855\pi\)
\(282\) 75.0059 + 65.8853i 0.265979 + 0.233636i
\(283\) −299.069 + 80.1352i −1.05678 + 0.283163i −0.745051 0.667008i \(-0.767575\pi\)
−0.311729 + 0.950171i \(0.600908\pi\)
\(284\) −29.3260 + 50.7942i −0.103261 + 0.178853i
\(285\) −166.380 69.0300i −0.583791 0.242210i
\(286\) 434.431i 1.51899i
\(287\) −104.529 + 76.1066i −0.364214 + 0.265180i
\(288\) −6.72651 + 50.4654i −0.0233559 + 0.175227i
\(289\) −164.566 + 95.0120i −0.569431 + 0.328761i
\(290\) −77.6302 116.125i −0.267690 0.400432i
\(291\) 164.060 + 245.962i 0.563782 + 0.845230i
\(292\) 28.5466 + 7.64903i 0.0977622 + 0.0261953i
\(293\) 243.373 243.373i 0.830625 0.830625i −0.156977 0.987602i \(-0.550175\pi\)
0.987602 + 0.156977i \(0.0501750\pi\)
\(294\) 149.088 + 144.882i 0.507102 + 0.492796i
\(295\) −11.2422 33.0940i −0.0381091 0.112183i
\(296\) 18.6523 10.7689i 0.0630146 0.0363815i
\(297\) −300.751 + 147.413i −1.01263 + 0.496339i
\(298\) −18.4106 68.7093i −0.0617806 0.230568i
\(299\) −48.7499 + 28.1458i −0.163043 + 0.0941331i
\(300\) 124.691 + 83.3797i 0.415636 + 0.277932i
\(301\) 52.1114 331.184i 0.173128 1.10028i
\(302\) 201.081 201.081i 0.665832 0.665832i
\(303\) −292.855 257.244i −0.966517 0.848989i
\(304\) −24.0176 + 41.5997i −0.0790053 + 0.136841i
\(305\) 31.4791 + 6.25422i 0.103210 + 0.0205056i
\(306\) −116.909 48.6458i −0.382056 0.158973i
\(307\) −93.3285 + 93.3285i −0.304002 + 0.304002i −0.842577 0.538576i \(-0.818963\pi\)
0.538576 + 0.842577i \(0.318963\pi\)
\(308\) 158.727 + 70.4777i 0.515347 + 0.228824i
\(309\) −180.709 89.2967i −0.584819 0.288986i
\(310\) −24.3262 369.870i −0.0784715 1.19313i
\(311\) −256.340 + 443.994i −0.824245 + 1.42763i 0.0782503 + 0.996934i \(0.475067\pi\)
−0.902495 + 0.430700i \(0.858267\pi\)
\(312\) 206.053 + 41.1589i 0.660427 + 0.131919i
\(313\) −102.373 + 382.062i −0.327071 + 1.22064i 0.585143 + 0.810930i \(0.301038\pi\)
−0.912214 + 0.409715i \(0.865628\pi\)
\(314\) 409.387i 1.30378i
\(315\) 278.716 + 146.773i 0.884814 + 0.465945i
\(316\) 273.942 0.866904
\(317\) 40.4015 + 10.8255i 0.127449 + 0.0341500i 0.321980 0.946747i \(-0.395652\pi\)
−0.194530 + 0.980896i \(0.562318\pi\)
\(318\) −65.8595 + 329.712i −0.207105 + 1.03683i
\(319\) −212.221 122.526i −0.665269 0.384094i
\(320\) 26.3671 30.0795i 0.0823971 0.0939985i
\(321\) −135.701 + 274.617i −0.422745 + 0.855506i
\(322\) 2.37486 + 22.3777i 0.00737533 + 0.0694960i
\(323\) −84.4792 84.4792i −0.261546 0.261546i
\(324\) 41.4250 + 156.614i 0.127855 + 0.483377i
\(325\) 376.653 491.321i 1.15893 1.51176i
\(326\) −96.0581 55.4592i −0.294657 0.170120i
\(327\) −63.2222 + 71.9742i −0.193340 + 0.220105i
\(328\) 36.9430 + 36.9430i 0.112631 + 0.112631i
\(329\) −59.1847 153.717i −0.179893 0.467225i
\(330\) 260.879 + 34.4991i 0.790542 + 0.104543i
\(331\) 22.6830 + 39.2881i 0.0685287 + 0.118695i 0.898254 0.439477i \(-0.144836\pi\)
−0.829725 + 0.558172i \(0.811503\pi\)
\(332\) 35.5005 9.51234i 0.106929 0.0286516i
\(333\) 41.8077 54.3037i 0.125549 0.163074i
\(334\) 144.633 + 250.511i 0.433032 + 0.750033i
\(335\) −344.238 169.663i −1.02758 0.506457i
\(336\) 48.4661 68.6079i 0.144244 0.204190i
\(337\) −13.0476 13.0476i −0.0387170 0.0387170i 0.687483 0.726200i \(-0.258715\pi\)
−0.726200 + 0.687483i \(0.758715\pi\)
\(338\) 162.596 606.818i 0.481055 1.79532i
\(339\) −554.020 + 369.540i −1.63428 + 1.09009i
\(340\) 55.2905 + 82.7078i 0.162619 + 0.243258i
\(341\) −325.139 563.157i −0.953486 1.65149i
\(342\) −20.1943 + 151.507i −0.0590477 + 0.443004i
\(343\) −106.981 325.890i −0.311899 0.950115i
\(344\) −135.465 −0.393794
\(345\) 13.0304 + 31.5098i 0.0377693 + 0.0913327i
\(346\) −249.899 144.280i −0.722253 0.416993i
\(347\) 17.2244 + 64.2822i 0.0496380 + 0.185251i 0.986293 0.165001i \(-0.0527626\pi\)
−0.936655 + 0.350252i \(0.886096\pi\)
\(348\) −78.2209 + 89.0493i −0.224773 + 0.255889i
\(349\) 469.199 1.34441 0.672204 0.740366i \(-0.265348\pi\)
0.672204 + 0.740366i \(0.265348\pi\)
\(350\) −118.408 217.323i −0.338309 0.620924i
\(351\) 656.075 128.856i 1.86916 0.367112i
\(352\) 18.1622 67.7822i 0.0515972 0.192563i
\(353\) 21.1547 + 78.9503i 0.0599282 + 0.223655i 0.989395 0.145251i \(-0.0463990\pi\)
−0.929467 + 0.368906i \(0.879732\pi\)
\(354\) −24.6723 + 16.4568i −0.0696958 + 0.0464882i
\(355\) 96.6552 110.264i 0.272268 0.310603i
\(356\) 210.249 0.590586
\(357\) 133.626 + 160.601i 0.374303 + 0.449861i
\(358\) −82.5798 + 82.5798i −0.230670 + 0.230670i
\(359\) −128.468 222.513i −0.357850 0.619815i 0.629751 0.776797i \(-0.283157\pi\)
−0.987601 + 0.156982i \(0.949823\pi\)
\(360\) 41.0793 120.468i 0.114109 0.334633i
\(361\) 108.394 187.744i 0.300261 0.520068i
\(362\) −93.6286 + 349.427i −0.258643 + 0.965267i
\(363\) 93.4430 31.6358i 0.257419 0.0871510i
\(364\) −269.646 217.904i −0.740787 0.598639i
\(365\) −66.2718 32.6631i −0.181567 0.0894880i
\(366\) −1.75926 27.1761i −0.00480673 0.0742516i
\(367\) 91.3678 + 340.989i 0.248959 + 0.929126i 0.971352 + 0.237644i \(0.0763752\pi\)
−0.722394 + 0.691482i \(0.756958\pi\)
\(368\) 8.78291 2.35337i 0.0238666 0.00639504i
\(369\) 153.486 + 63.8656i 0.415952 + 0.173078i
\(370\) −50.9832 + 17.3193i −0.137792 + 0.0468088i
\(371\) 348.676 431.469i 0.939826 1.16299i
\(372\) −297.913 + 100.861i −0.800841 + 0.271131i
\(373\) −134.772 36.1120i −0.361318 0.0968150i 0.0735926 0.997288i \(-0.476554\pi\)
−0.434911 + 0.900473i \(0.643220\pi\)
\(374\) 151.150 + 87.2665i 0.404144 + 0.233333i
\(375\) −265.131 265.199i −0.707015 0.707198i
\(376\) −57.6390 + 33.2779i −0.153295 + 0.0885050i
\(377\) 345.903 + 345.903i 0.917514 + 0.917514i
\(378\) 59.3550 260.613i 0.157024 0.689452i
\(379\) 603.595i 1.59260i 0.604903 + 0.796299i \(0.293212\pi\)
−0.604903 + 0.796299i \(0.706788\pi\)
\(380\) 79.1592 90.3048i 0.208314 0.237644i
\(381\) −99.3234 + 66.2503i −0.260691 + 0.173885i
\(382\) 320.361 85.8405i 0.838641 0.224713i
\(383\) −540.952 144.948i −1.41241 0.378454i −0.529624 0.848232i \(-0.677667\pi\)
−0.882784 + 0.469779i \(0.844334\pi\)
\(384\) −30.4288 15.0363i −0.0792416 0.0391569i
\(385\) −354.875 250.144i −0.921753 0.649725i
\(386\) 88.2791i 0.228702i
\(387\) −398.501 + 164.314i −1.02972 + 0.424583i
\(388\) −190.389 + 51.0145i −0.490692 + 0.131481i
\(389\) −193.521 + 335.189i −0.497484 + 0.861668i −0.999996 0.00290262i \(-0.999076\pi\)
0.502512 + 0.864570i \(0.332409\pi\)
\(390\) −485.206 201.308i −1.24412 0.516175i
\(391\) 22.6152i 0.0578393i
\(392\) −123.360 + 63.1693i −0.314693 + 0.161146i
\(393\) 515.316 174.464i 1.31124 0.443929i
\(394\) 126.366 72.9575i 0.320726 0.185171i
\(395\) −671.725 133.457i −1.70057 0.337866i
\(396\) −28.7890 221.427i −0.0726996 0.559158i
\(397\) 145.722 + 39.0460i 0.367057 + 0.0983527i 0.437633 0.899154i \(-0.355817\pi\)
−0.0705756 + 0.997506i \(0.522484\pi\)
\(398\) −197.161 + 197.161i −0.495378 + 0.495378i
\(399\) 145.505 205.975i 0.364674 0.516227i
\(400\) −79.3079 + 60.9118i −0.198270 + 0.152280i
\(401\) 13.0459 7.53207i 0.0325335 0.0187832i −0.483645 0.875264i \(-0.660687\pi\)
0.516179 + 0.856481i \(0.327354\pi\)
\(402\) −63.7874 + 319.338i −0.158675 + 0.794373i
\(403\) 335.975 + 1253.87i 0.833684 + 3.11135i
\(404\) 225.047 129.931i 0.557047 0.321611i
\(405\) −25.2788 404.210i −0.0624167 0.998050i
\(406\) 182.497 70.2658i 0.449501 0.173069i
\(407\) −66.7943 + 66.7943i −0.164114 + 0.164114i
\(408\) 55.7112 63.4235i 0.136547 0.155450i
\(409\) 228.214 395.279i 0.557981 0.966452i −0.439684 0.898153i \(-0.644909\pi\)
0.997665 0.0682992i \(-0.0217573\pi\)
\(410\) −72.5892 108.585i −0.177047 0.264840i
\(411\) −380.677 + 24.6433i −0.926220 + 0.0599595i
\(412\) 95.0201 95.0201i 0.230631 0.230631i
\(413\) 48.6586 5.16395i 0.117818 0.0125035i
\(414\) 22.9823 17.5763i 0.0555129 0.0424548i
\(415\) −91.6841 + 6.03001i −0.220926 + 0.0145301i
\(416\) −70.0412 + 121.315i −0.168368 + 0.291623i
\(417\) −25.4487 + 127.404i −0.0610282 + 0.305525i
\(418\) 54.5266 203.496i 0.130446 0.486832i
\(419\) 478.799i 1.14272i 0.820700 + 0.571359i \(0.193584\pi\)
−0.820700 + 0.571359i \(0.806416\pi\)
\(420\) −152.266 + 144.620i −0.362539 + 0.344334i
\(421\) −106.194 −0.252243 −0.126122 0.992015i \(-0.540253\pi\)
−0.126122 + 0.992015i \(0.540253\pi\)
\(422\) −9.27664 2.48567i −0.0219826 0.00589021i
\(423\) −129.193 + 167.808i −0.305421 + 0.396709i
\(424\) −194.120 112.075i −0.457830 0.264328i
\(425\) −95.2832 229.742i −0.224196 0.540568i
\(426\) −111.544 55.1192i −0.261841 0.129388i
\(427\) −18.2340 + 41.0660i −0.0427027 + 0.0961732i
\(428\) −144.399 144.399i −0.337380 0.337380i
\(429\) −919.643 + 59.5337i −2.14369 + 0.138773i
\(430\) 332.170 + 65.9951i 0.772489 + 0.153477i
\(431\) 65.6870 + 37.9244i 0.152406 + 0.0879916i 0.574264 0.818670i \(-0.305288\pi\)
−0.421858 + 0.906662i \(0.638622\pi\)
\(432\) −107.751 7.32358i −0.249425 0.0169527i
\(433\) −93.6962 93.6962i −0.216388 0.216388i 0.590586 0.806975i \(-0.298897\pi\)
−0.806975 + 0.590586i \(0.798897\pi\)
\(434\) 512.630 + 80.6616i 1.18117 + 0.185856i
\(435\) 235.186 180.248i 0.540657 0.414363i
\(436\) −31.9328 55.3092i −0.0732403 0.126856i
\(437\) 26.3681 7.06530i 0.0603388 0.0161677i
\(438\) −12.2802 + 61.4781i −0.0280369 + 0.140361i
\(439\) −77.2676 133.831i −0.176008 0.304855i 0.764502 0.644622i \(-0.222985\pi\)
−0.940510 + 0.339767i \(0.889652\pi\)
\(440\) −77.5568 + 157.359i −0.176265 + 0.357634i
\(441\) −286.268 + 335.457i −0.649135 + 0.760674i
\(442\) −246.362 246.362i −0.557380 0.557380i
\(443\) 110.767 413.388i 0.250038 0.933156i −0.720745 0.693200i \(-0.756200\pi\)
0.970784 0.239956i \(-0.0771330\pi\)
\(444\) 25.3527 + 38.0091i 0.0571007 + 0.0856062i
\(445\) −515.545 102.428i −1.15853 0.230175i
\(446\) 120.317 + 208.395i 0.269768 + 0.467252i
\(447\) 142.927 48.3890i 0.319747 0.108253i
\(448\) 32.9617 + 45.2717i 0.0735753 + 0.101053i
\(449\) −145.264 −0.323527 −0.161763 0.986830i \(-0.551718\pi\)
−0.161763 + 0.986830i \(0.551718\pi\)
\(450\) −159.418 + 275.383i −0.354263 + 0.611962i
\(451\) −198.440 114.570i −0.440001 0.254034i
\(452\) −114.908 428.843i −0.254221 0.948767i
\(453\) 453.223 + 398.111i 1.00049 + 0.878833i
\(454\) −501.525 −1.10468
\(455\) 555.035 + 665.682i 1.21986 + 1.46304i
\(456\) −91.3533 45.1419i −0.200336 0.0989953i
\(457\) 212.374 792.590i 0.464713 1.73433i −0.193127 0.981174i \(-0.561863\pi\)
0.657839 0.753158i \(-0.271471\pi\)
\(458\) 29.3652 + 109.592i 0.0641162 + 0.239285i
\(459\) 86.9568 254.150i 0.189448 0.553703i
\(460\) −22.6828 + 1.49184i −0.0493105 + 0.00324313i
\(461\) −204.599 −0.443817 −0.221908 0.975068i \(-0.571229\pi\)
−0.221908 + 0.975068i \(0.571229\pi\)
\(462\) −127.442 + 345.665i −0.275848 + 0.748194i
\(463\) 151.528 151.528i 0.327275 0.327275i −0.524274 0.851549i \(-0.675663\pi\)
0.851549 + 0.524274i \(0.175663\pi\)
\(464\) −39.5085 68.4307i −0.0851476 0.147480i
\(465\) 779.641 102.182i 1.67665 0.219747i
\(466\) −62.7893 + 108.754i −0.134741 + 0.233378i
\(467\) 59.9564 223.760i 0.128386 0.479144i −0.871551 0.490304i \(-0.836886\pi\)
0.999938 + 0.0111598i \(0.00355236\pi\)
\(468\) −58.8916 + 441.832i −0.125837 + 0.944086i
\(469\) 337.705 417.894i 0.720053 0.891031i
\(470\) 157.547 53.5196i 0.335207 0.113871i
\(471\) 866.628 56.1017i 1.83997 0.119112i
\(472\) −5.11723 19.0978i −0.0108416 0.0404614i
\(473\) 573.883 153.771i 1.21328 0.325098i
\(474\) 37.5405 + 579.904i 0.0791993 + 1.22343i
\(475\) −238.098 + 182.870i −0.501260 + 0.384989i
\(476\) −129.980 + 50.0454i −0.273067 + 0.105137i
\(477\) −706.989 94.2342i −1.48216 0.197556i
\(478\) −443.248 118.768i −0.927296 0.248468i
\(479\) 311.301 + 179.730i 0.649898 + 0.375219i 0.788417 0.615141i \(-0.210901\pi\)
−0.138519 + 0.990360i \(0.544234\pi\)
\(480\) 67.2883 + 51.6941i 0.140184 + 0.107696i
\(481\) 163.304 94.2836i 0.339509 0.196016i
\(482\) −229.806 229.806i −0.476775 0.476775i
\(483\) −47.0457 + 8.09391i −0.0974031 + 0.0167576i
\(484\) 65.7687i 0.135886i
\(485\) 491.700 32.3388i 1.01381 0.0666779i
\(486\) −325.858 + 109.154i −0.670489 + 0.224597i
\(487\) 441.541 118.310i 0.906654 0.242937i 0.224782 0.974409i \(-0.427833\pi\)
0.681872 + 0.731472i \(0.261166\pi\)
\(488\) 17.5367 + 4.69894i 0.0359358 + 0.00962898i
\(489\) 104.237 210.944i 0.213164 0.431379i
\(490\) 333.262 94.7981i 0.680126 0.193465i
\(491\) 587.015i 1.19555i 0.801664 + 0.597775i \(0.203948\pi\)
−0.801664 + 0.597775i \(0.796052\pi\)
\(492\) −73.1416 + 83.2668i −0.148662 + 0.169241i
\(493\) 189.832 50.8653i 0.385055 0.103175i
\(494\) −210.278 + 364.212i −0.425664 + 0.737271i
\(495\) −37.2805 + 556.979i −0.0753141 + 1.12521i
\(496\) 209.682i 0.422746i
\(497\) 120.830 + 165.955i 0.243118 + 0.333913i
\(498\) 25.0015 + 73.8472i 0.0502038 + 0.148287i
\(499\) 505.419 291.804i 1.01286 0.584778i 0.100836 0.994903i \(-0.467848\pi\)
0.912029 + 0.410125i \(0.134515\pi\)
\(500\) 224.143 110.724i 0.448287 0.221447i
\(501\) −510.484 + 340.501i −1.01893 + 0.679642i
\(502\) −38.7249 10.3763i −0.0771413 0.0206699i
\(503\) −390.083 + 390.083i −0.775514 + 0.775514i −0.979064 0.203551i \(-0.934752\pi\)
0.203551 + 0.979064i \(0.434752\pi\)
\(504\) 151.877 + 93.1954i 0.301343 + 0.184911i
\(505\) −615.130 + 208.963i −1.21808 + 0.413788i
\(506\) −34.5364 + 19.9396i −0.0682538 + 0.0394064i
\(507\) 1306.85 + 261.041i 2.57761 + 0.514875i
\(508\) −20.6005 76.8820i −0.0405521 0.151342i
\(509\) −235.694 + 136.078i −0.463053 + 0.267344i −0.713327 0.700831i \(-0.752813\pi\)
0.250274 + 0.968175i \(0.419479\pi\)
\(510\) −167.506 + 128.378i −0.328444 + 0.251721i
\(511\) 65.0141 80.4518i 0.127229 0.157440i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −323.491 21.9869i −0.630588 0.0428594i
\(514\) 130.882 226.694i 0.254634 0.441039i
\(515\) −279.288 + 186.705i −0.542306 + 0.362534i
\(516\) −18.5639 286.765i −0.0359765 0.555745i
\(517\) 206.406 206.406i 0.399238 0.399238i
\(518\) −7.95537 74.9615i −0.0153578 0.144713i
\(519\) 271.178 548.781i 0.522501 1.05738i
\(520\) 230.848 263.351i 0.443938 0.506444i
\(521\) −35.4235 + 61.3553i −0.0679913 + 0.117764i −0.898017 0.439961i \(-0.854992\pi\)
0.830026 + 0.557725i \(0.188326\pi\)
\(522\) −199.227 153.382i −0.381660 0.293835i
\(523\) −96.3401 + 359.546i −0.184207 + 0.687468i 0.810592 + 0.585611i \(0.199145\pi\)
−0.994799 + 0.101858i \(0.967521\pi\)
\(524\) 362.699i 0.692173i
\(525\) 443.823 280.439i 0.845378 0.534169i
\(526\) 217.488 0.413476
\(527\) 503.745 + 134.978i 0.955872 + 0.256125i
\(528\) 145.976 + 29.1586i 0.276471 + 0.0552246i
\(529\) 453.652 + 261.916i 0.857566 + 0.495116i
\(530\) 421.396 + 369.386i 0.795086 + 0.696955i
\(531\) −38.2183 49.9733i −0.0719742 0.0941117i
\(532\) 98.9578 + 135.915i 0.186011 + 0.255479i
\(533\) 323.442 + 323.442i 0.606832 + 0.606832i
\(534\) 28.8121 + 445.073i 0.0539553 + 0.833471i
\(535\) 283.729 + 424.424i 0.530334 + 0.793315i
\(536\) −188.012 108.549i −0.350769 0.202516i
\(537\) −186.129 163.496i −0.346609 0.304461i
\(538\) −475.565 475.565i −0.883950 0.883950i
\(539\) 450.894 407.640i 0.836539 0.756290i
\(540\) 260.646 + 70.4516i 0.482679 + 0.130466i
\(541\) −3.41709 5.91858i −0.00631626 0.0109401i 0.862850 0.505460i \(-0.168677\pi\)
−0.869166 + 0.494520i \(0.835344\pi\)
\(542\) −504.611 + 135.210i −0.931017 + 0.249465i
\(543\) −752.529 150.317i −1.38587 0.276826i
\(544\) 28.1391 + 48.7383i 0.0517263 + 0.0895925i
\(545\) 51.3563 + 151.179i 0.0942318 + 0.277393i
\(546\) 424.328 600.673i 0.777157 1.10013i
\(547\) −153.475 153.475i −0.280575 0.280575i 0.552763 0.833338i \(-0.313573\pi\)
−0.833338 + 0.552763i \(0.813573\pi\)
\(548\) 65.8217 245.650i 0.120113 0.448266i
\(549\) 57.2877 7.44833i 0.104349 0.0135671i
\(550\) 266.836 348.072i 0.485156 0.632858i
\(551\) −118.612 205.443i −0.215268 0.372854i
\(552\) 6.18543 + 18.2699i 0.0112055 + 0.0330977i
\(553\) 389.092 876.297i 0.703602 1.58462i
\(554\) 10.5295 0.0190064
\(555\) −43.6496 105.552i −0.0786479 0.190184i
\(556\) −75.0097 43.3069i −0.134910 0.0778900i
\(557\) −175.018 653.178i −0.314216 1.17267i −0.924717 0.380655i \(-0.875699\pi\)
0.610501 0.792016i \(-0.290968\pi\)
\(558\) −254.336 616.827i −0.455800 1.10542i
\(559\) −1186.02 −2.12168
\(560\) −58.7694 127.068i −0.104945 0.226906i
\(561\) −164.020 + 331.927i −0.292371 + 0.591669i
\(562\) −91.5731 + 341.755i −0.162941 + 0.608106i
\(563\) 212.137 + 791.706i 0.376797 + 1.40623i 0.850701 + 0.525650i \(0.176178\pi\)
−0.473903 + 0.880577i \(0.657155\pi\)
\(564\) −78.3443 117.455i −0.138908 0.208254i
\(565\) 72.8419 + 1107.53i 0.128924 + 1.96024i
\(566\) 437.867 0.773616
\(567\) 559.822 + 89.9341i 0.987341 + 0.158614i
\(568\) 58.6521 58.6521i 0.103261 0.103261i
\(569\) −300.221 519.999i −0.527630 0.913882i −0.999481 0.0322036i \(-0.989747\pi\)
0.471852 0.881678i \(-0.343586\pi\)
\(570\) 202.013 + 155.196i 0.354409 + 0.272274i
\(571\) 184.989 320.410i 0.323973 0.561139i −0.657331 0.753602i \(-0.728314\pi\)
0.981304 + 0.192464i \(0.0616478\pi\)
\(572\) 159.013 593.444i 0.277995 1.03749i
\(573\) 225.616 + 666.405i 0.393746 + 1.16301i
\(574\) 170.647 65.7031i 0.297294 0.114465i
\(575\) 56.3468 + 7.39240i 0.0979944 + 0.0128563i
\(576\) 27.6602 66.4749i 0.0480212 0.115408i
\(577\) 168.644 + 629.390i 0.292278 + 1.09080i 0.943355 + 0.331785i \(0.107651\pi\)
−0.651077 + 0.759012i \(0.725682\pi\)
\(578\) 259.577 69.5536i 0.449096 0.120335i
\(579\) 186.877 12.0976i 0.322758 0.0208940i
\(580\) 63.5400 + 187.045i 0.109552 + 0.322491i
\(581\) 19.9946 127.072i 0.0344140 0.218712i
\(582\) −134.082 396.041i −0.230382 0.680482i
\(583\) 949.588 + 254.441i 1.62880 + 0.436434i
\(584\) −36.1956 20.8975i −0.0619787 0.0357834i
\(585\) 359.656 1054.71i 0.614796 1.80293i
\(586\) −421.534 + 243.373i −0.719342 + 0.415312i
\(587\) −332.823 332.823i −0.566990 0.566990i 0.364294 0.931284i \(-0.381310\pi\)
−0.931284 + 0.364294i \(0.881310\pi\)
\(588\) −150.627 252.482i −0.256169 0.429392i
\(589\) 629.508i 1.06877i
\(590\) 3.24389 + 49.3221i 0.00549811 + 0.0835968i
\(591\) 171.760 + 257.505i 0.290626 + 0.435711i
\(592\) −29.4212 + 7.88340i −0.0496980 + 0.0133165i
\(593\) −811.972 217.567i −1.36926 0.366893i −0.502053 0.864837i \(-0.667422\pi\)
−0.867209 + 0.497944i \(0.834088\pi\)
\(594\) 464.790 91.2871i 0.782475 0.153682i
\(595\) 343.101 59.3921i 0.576640 0.0998186i
\(596\) 100.597i 0.168788i
\(597\) −444.386 390.348i −0.744364 0.653850i
\(598\) 76.8957 20.6041i 0.128588 0.0344551i
\(599\) −114.855 + 198.935i −0.191745 + 0.332112i −0.945829 0.324666i \(-0.894748\pi\)
0.754083 + 0.656779i \(0.228081\pi\)
\(600\) −139.812 159.539i −0.233020 0.265898i
\(601\) 500.222i 0.832317i 0.909292 + 0.416158i \(0.136624\pi\)
−0.909292 + 0.416158i \(0.863376\pi\)
\(602\) −192.407 + 433.332i −0.319614 + 0.719820i
\(603\) −684.745 91.2693i −1.13556 0.151359i
\(604\) −348.283 + 201.081i −0.576628 + 0.332916i
\(605\) 32.0408 161.270i 0.0529600 0.266561i
\(606\) 305.889 + 458.594i 0.504768 + 0.756755i
\(607\) −487.286 130.568i −0.802778 0.215104i −0.165974 0.986130i \(-0.553077\pi\)
−0.636803 + 0.771026i \(0.719744\pi\)
\(608\) 48.0352 48.0352i 0.0790053 0.0790053i
\(609\) 173.754 + 376.698i 0.285311 + 0.618551i
\(610\) −40.7120 20.0656i −0.0667410 0.0328944i
\(611\) −504.638 + 291.353i −0.825922 + 0.476846i
\(612\) 141.895 + 109.243i 0.231855 + 0.178502i
\(613\) 31.2143 + 116.493i 0.0509206 + 0.190038i 0.986701 0.162545i \(-0.0519701\pi\)
−0.935781 + 0.352583i \(0.885303\pi\)
\(614\) 161.650 93.3285i 0.263273 0.152001i
\(615\) 219.914 168.544i 0.357584 0.274055i
\(616\) −191.028 154.372i −0.310111 0.250604i
\(617\) −177.691 + 177.691i −0.287993 + 0.287993i −0.836286 0.548293i \(-0.815278\pi\)
0.548293 + 0.836286i \(0.315278\pi\)
\(618\) 214.168 + 188.126i 0.346551 + 0.304410i
\(619\) 160.858 278.615i 0.259868 0.450105i −0.706338 0.707875i \(-0.749654\pi\)
0.966206 + 0.257769i \(0.0829875\pi\)
\(620\) −102.152 + 514.156i −0.164761 + 0.829284i
\(621\) 40.3565 + 46.2424i 0.0649863 + 0.0744644i
\(622\) 512.680 512.680i 0.824245 0.824245i
\(623\) 298.626 672.553i 0.479336 1.07954i
\(624\) −266.409 131.645i −0.426937 0.210969i
\(625\) −603.558 + 162.305i −0.965692 + 0.259688i
\(626\) 279.689 484.435i 0.446787 0.773858i
\(627\) 438.251 + 87.5400i 0.698964 + 0.139617i
\(628\) −149.846 + 559.234i −0.238609 + 0.890499i
\(629\) 75.7569i 0.120440i
\(630\) −327.011 302.512i −0.519065 0.480178i
\(631\) 967.459 1.53322 0.766608 0.642116i \(-0.221943\pi\)
0.766608 + 0.642116i \(0.221943\pi\)
\(632\) −374.211 100.270i −0.592106 0.158654i
\(633\) 3.99063 19.9783i 0.00630432 0.0315612i
\(634\) −51.2270 29.5759i −0.0807997 0.0466497i
\(635\) 13.0589 + 198.556i 0.0205652 + 0.312687i
\(636\) 210.649 426.289i 0.331209 0.670265i
\(637\) −1080.03 + 553.057i −1.69550 + 0.868222i
\(638\) 245.052 + 245.052i 0.384094 + 0.384094i
\(639\) 101.395 243.681i 0.158678 0.381347i
\(640\) −47.0280 + 31.4384i −0.0734812 + 0.0491225i
\(641\) 1072.34 + 619.114i 1.67291 + 0.965856i 0.965996 + 0.258558i \(0.0832473\pi\)
0.706916 + 0.707298i \(0.250086\pi\)
\(642\) 285.888 325.464i 0.445308 0.506954i
\(643\) −193.264 193.264i −0.300566 0.300566i 0.540669 0.841235i \(-0.318171\pi\)
−0.841235 + 0.540669i \(0.818171\pi\)
\(644\) 4.94670 31.4378i 0.00768120 0.0488164i
\(645\) −94.1842 + 712.211i −0.146022 + 1.10420i
\(646\) 84.4792 + 146.322i 0.130773 + 0.226505i
\(647\) 795.387 213.123i 1.22935 0.329402i 0.415021 0.909812i \(-0.363774\pi\)
0.814325 + 0.580409i \(0.197107\pi\)
\(648\) 0.737150 229.101i 0.00113758 0.353552i
\(649\) 43.3572 + 75.0968i 0.0668061 + 0.115712i
\(650\) −694.353 + 533.293i −1.06824 + 0.820450i
\(651\) −100.502 + 1096.23i −0.154381 + 1.68392i
\(652\) 110.918 + 110.918i 0.170120 + 0.170120i
\(653\) −236.615 + 883.061i −0.362351 + 1.35231i 0.508625 + 0.860988i \(0.330154\pi\)
−0.870976 + 0.491325i \(0.836513\pi\)
\(654\) 112.707 75.1777i 0.172336 0.114951i
\(655\) 176.697 889.364i 0.269767 1.35781i
\(656\) −36.9430 63.9871i −0.0563155 0.0975413i
\(657\) −131.825 17.5709i −0.200647 0.0267442i
\(658\) 24.5835 + 231.644i 0.0373609 + 0.352043i
\(659\) 909.184 1.37964 0.689821 0.723980i \(-0.257689\pi\)
0.689821 + 0.723980i \(0.257689\pi\)
\(660\) −343.740 142.615i −0.520817 0.216083i
\(661\) −804.144 464.273i −1.21656 0.702379i −0.252377 0.967629i \(-0.581212\pi\)
−0.964180 + 0.265250i \(0.914546\pi\)
\(662\) −16.6051 61.9711i −0.0250832 0.0936119i
\(663\) 487.760 555.282i 0.735687 0.837530i
\(664\) −51.9764 −0.0782777
\(665\) −176.438 381.482i −0.265320 0.573658i
\(666\) −76.9869 + 58.8776i −0.115596 + 0.0884047i
\(667\) −11.6223 + 43.3749i −0.0174247 + 0.0650299i
\(668\) −105.878 395.143i −0.158501 0.591532i
\(669\) −424.660 + 283.255i −0.634769 + 0.423401i
\(670\) 408.137 + 357.764i 0.609160 + 0.533977i
\(671\) −79.6262 −0.118668
\(672\) −91.3181 + 75.9803i −0.135890 + 0.113066i
\(673\) 47.0329 47.0329i 0.0698855 0.0698855i −0.671300 0.741186i \(-0.734264\pi\)
0.741186 + 0.671300i \(0.234264\pi\)
\(674\) 13.0476 + 22.5992i 0.0193585 + 0.0335299i
\(675\) −604.802 299.733i −0.896003 0.444049i
\(676\) −444.222 + 769.415i −0.657133 + 1.13819i
\(677\) −177.154 + 661.147i −0.261675 + 0.976583i 0.702580 + 0.711605i \(0.252031\pi\)
−0.964254 + 0.264978i \(0.914635\pi\)
\(678\) 892.066 302.015i 1.31573 0.445451i
\(679\) −107.230 + 681.482i −0.157924 + 1.00366i
\(680\) −45.2551 133.219i −0.0665516 0.195910i
\(681\) −68.7282 1061.67i −0.100922 1.55899i
\(682\) 238.018 + 888.296i 0.349000 + 1.30249i
\(683\) 51.8605 13.8960i 0.0759304 0.0203455i −0.220654 0.975352i \(-0.570819\pi\)
0.296584 + 0.955007i \(0.404152\pi\)
\(684\) 83.0414 199.571i 0.121406 0.291771i
\(685\) −281.074 + 570.285i −0.410327 + 0.832533i
\(686\) 26.8553 + 484.331i 0.0391476 + 0.706022i
\(687\) −227.971 + 77.1813i −0.331835 + 0.112345i
\(688\) 185.049 + 49.5837i 0.268966 + 0.0720693i
\(689\) −1699.55 981.235i −2.46669 1.42414i
\(690\) −6.26647 47.8126i −0.00908184 0.0692936i
\(691\) −340.261 + 196.450i −0.492418 + 0.284298i −0.725577 0.688141i \(-0.758427\pi\)
0.233159 + 0.972439i \(0.425094\pi\)
\(692\) 288.559 + 288.559i 0.416993 + 0.416993i
\(693\) −749.200 222.411i −1.08110 0.320939i
\(694\) 94.1157i 0.135613i
\(695\) 162.831 + 142.734i 0.234290 + 0.205373i
\(696\) 139.446 93.0127i 0.200354 0.133639i
\(697\) 177.505 47.5624i 0.254670 0.0682387i
\(698\) −640.937 171.739i −0.918248 0.246044i
\(699\) −238.825 118.014i −0.341667 0.168833i
\(700\) 82.2029 + 340.210i 0.117433 + 0.486014i
\(701\) 122.711i 0.175052i 0.996162 + 0.0875259i \(0.0278960\pi\)
−0.996162 + 0.0875259i \(0.972104\pi\)
\(702\) −943.380 64.1191i −1.34385 0.0913377i
\(703\) −88.3285 + 23.6675i −0.125645 + 0.0336665i
\(704\) −49.6201 + 85.9444i −0.0704830 + 0.122080i
\(705\) 134.885 + 326.176i 0.191326 + 0.462660i
\(706\) 115.591i 0.163727i
\(707\) −95.9843 904.437i −0.135763 1.27926i
\(708\) 39.7266 13.4497i 0.0561110 0.0189968i
\(709\) −869.912 + 502.244i −1.22696 + 0.708384i −0.966392 0.257072i \(-0.917242\pi\)
−0.260565 + 0.965456i \(0.583909\pi\)
\(710\) −172.393 + 115.245i −0.242807 + 0.162317i
\(711\) −1222.45 + 158.938i −1.71934 + 0.223542i
\(712\) −287.205 76.9564i −0.403378 0.108085i
\(713\) −84.2600 + 84.2600i −0.118177 + 0.118177i
\(714\) −123.753 268.295i −0.173323 0.375763i
\(715\) −679.022 + 1377.70i −0.949681 + 1.92685i
\(716\) 143.032 82.5798i 0.199766 0.115335i
\(717\) 190.677 954.582i 0.265937 1.33136i
\(718\) 94.0453 + 350.982i 0.130982 + 0.488832i
\(719\) −477.102 + 275.455i −0.663563 + 0.383109i −0.793633 0.608396i \(-0.791813\pi\)
0.130070 + 0.991505i \(0.458480\pi\)
\(720\) −100.210 + 149.526i −0.139180 + 0.207675i
\(721\) −168.993 438.916i −0.234387 0.608760i
\(722\) −216.789 + 216.789i −0.300261 + 0.300261i
\(723\) 454.981 517.965i 0.629296 0.716411i
\(724\) 255.798 443.055i 0.353312 0.611955i
\(725\) −64.6815 489.602i −0.0892159 0.675313i
\(726\) −139.225 + 9.01282i −0.191770 + 0.0124144i
\(727\) −240.311 + 240.311i −0.330551 + 0.330551i −0.852796 0.522244i \(-0.825095\pi\)
0.522244 + 0.852796i \(0.325095\pi\)
\(728\) 288.585 + 396.360i 0.396408 + 0.544451i
\(729\) −275.722 674.847i −0.378220 0.925716i
\(730\) 78.5735 + 68.8758i 0.107635 + 0.0943504i
\(731\) −238.242 + 412.646i −0.325912 + 0.564496i
\(732\) −7.54394 + 37.7672i −0.0103059 + 0.0515945i
\(733\) 215.282 803.442i 0.293699 1.09610i −0.648545 0.761176i \(-0.724622\pi\)
0.942245 0.334925i \(-0.108711\pi\)
\(734\) 499.243i 0.680168i
\(735\) 246.347 + 692.487i 0.335165 + 0.942159i
\(736\) −12.8591 −0.0174716
\(737\) 919.711 + 246.436i 1.24791 + 0.334377i
\(738\) −186.290 143.422i −0.252425 0.194339i
\(739\) −520.019 300.233i −0.703679 0.406269i 0.105037 0.994468i \(-0.466504\pi\)
−0.808716 + 0.588199i \(0.799837\pi\)
\(740\) 75.9836 4.99740i 0.102681 0.00675324i
\(741\) −799.813 395.224i −1.07937 0.533366i
\(742\) −634.228 + 461.774i −0.854755 + 0.622337i
\(743\) −883.804 883.804i −1.18951 1.18951i −0.977204 0.212303i \(-0.931903\pi\)
−0.212303 0.977204i \(-0.568097\pi\)
\(744\) 443.874 28.7345i 0.596605 0.0386216i
\(745\) 49.0085 246.672i 0.0657832 0.331104i
\(746\) 170.884 + 98.6598i 0.229067 + 0.132252i
\(747\) −152.900 + 63.0453i −0.204686 + 0.0843980i
\(748\) −174.533 174.533i −0.233333 0.233333i
\(749\) −667.006 + 256.813i −0.890528 + 0.342875i
\(750\) 265.106 + 459.314i 0.353474 + 0.612418i
\(751\) −273.083 472.994i −0.363626 0.629819i 0.624928 0.780682i \(-0.285128\pi\)
−0.988555 + 0.150863i \(0.951795\pi\)
\(752\) 90.9169 24.3611i 0.120900 0.0323951i
\(753\) 16.6587 83.3983i 0.0221231 0.110755i
\(754\) −345.903 599.121i −0.458757 0.794591i
\(755\) 951.977 323.392i 1.26090 0.428333i
\(756\) −176.471 + 334.278i −0.233428 + 0.442167i
\(757\) 844.895 + 844.895i 1.11611 + 1.11611i 0.992307 + 0.123803i \(0.0395089\pi\)
0.123803 + 0.992307i \(0.460491\pi\)
\(758\) 220.931 824.526i 0.291466 1.08776i
\(759\) −46.9428 70.3773i −0.0618482 0.0927237i
\(760\) −141.187