Properties

Label 210.3.w.a.17.8
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-0.197383 + 2.99350i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.09236 - 4.87922i) q^{5} +(1.36533 - 4.01695i) q^{6} +(-1.72310 + 6.78461i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-8.92208 - 1.18173i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-0.197383 + 2.99350i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.09236 - 4.87922i) q^{5} +(1.36533 - 4.01695i) q^{6} +(-1.72310 + 6.78461i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-8.92208 - 1.18173i) q^{9} +(-0.293729 + 7.06496i) q^{10} +(-5.25762 - 3.03549i) q^{11} +(-3.33538 + 4.98751i) q^{12} +(4.95646 + 4.95646i) q^{13} +(4.83714 - 8.63725i) q^{14} +(14.8215 - 2.30690i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-24.7338 + 6.62741i) q^{17} +(11.7552 + 4.87999i) q^{18} +(-8.47334 - 14.6763i) q^{19} +(2.98720 - 9.54341i) q^{20} +(-19.9696 - 6.49728i) q^{21} +(6.07098 + 6.07098i) q^{22} +(7.44889 - 27.7996i) q^{23} +(6.38177 - 5.59223i) q^{24} +(-22.6135 + 10.6597i) q^{25} +(-4.95646 - 8.58484i) q^{26} +(5.29859 - 26.4750i) q^{27} +(-9.76911 + 10.0282i) q^{28} -29.7644 q^{29} +(-21.0910 - 2.27378i) q^{30} +(-36.5762 - 21.1173i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(10.1245 - 15.1395i) q^{33} +36.2128 q^{34} +(34.9858 + 0.996180i) q^{35} +(-14.2718 - 10.9689i) q^{36} +(-12.4034 + 46.2903i) q^{37} +(6.20292 + 23.1496i) q^{38} +(-15.8155 + 13.8588i) q^{39} +(-7.57372 + 11.9431i) q^{40} +2.99309 q^{41} +(24.9008 + 16.1848i) q^{42} +(22.2278 - 22.2278i) q^{43} +(-6.07098 - 10.5152i) q^{44} +(3.98016 + 44.8236i) q^{45} +(-20.3508 + 35.2485i) q^{46} +(-16.3896 + 61.1668i) q^{47} +(-10.7646 + 5.30324i) q^{48} +(-43.0618 - 23.3812i) q^{49} +(34.7923 - 6.28430i) q^{50} +(-14.9571 - 75.3488i) q^{51} +(3.62838 + 13.5413i) q^{52} +(-1.70301 + 0.456319i) q^{53} +(-16.9285 + 34.2261i) q^{54} +(-9.06761 + 28.9689i) q^{55} +(17.0154 - 10.1230i) q^{56} +(45.6059 - 22.4681i) q^{57} +(40.6589 + 10.8945i) q^{58} +(72.6479 + 41.9433i) q^{59} +(27.9786 + 10.8259i) q^{60} +(-18.0258 + 10.4072i) q^{61} +(42.2346 + 42.2346i) q^{62} +(23.3913 - 58.4966i) q^{63} +8.00000i q^{64} +(18.7694 - 29.5979i) q^{65} +(-19.3718 + 16.9752i) q^{66} +(32.1572 - 8.61650i) q^{67} +(-49.4676 - 13.2548i) q^{68} +(81.7479 + 27.7854i) q^{69} +(-47.4269 - 14.1665i) q^{70} +10.6074i q^{71} +(15.4807 + 20.2076i) q^{72} +(94.5508 - 25.3348i) q^{73} +(33.8869 - 58.6937i) q^{74} +(-27.4463 - 69.7976i) q^{75} -33.8934i q^{76} +(29.6540 - 30.4404i) q^{77} +(26.6771 - 13.1427i) q^{78} +(74.6747 - 43.1134i) q^{79} +(14.7174 - 13.5425i) q^{80} +(78.2070 + 21.0871i) q^{81} +(-4.08863 - 1.09555i) q^{82} +(-47.0984 + 47.0984i) q^{83} +(-28.0911 - 31.2232i) q^{84} +(59.3547 + 113.442i) q^{85} +(-38.4997 + 22.2278i) q^{86} +(5.87499 - 89.0996i) q^{87} +(4.44427 + 16.5862i) q^{88} +(-138.660 + 80.0552i) q^{89} +(10.9696 - 62.6871i) q^{90} +(-42.1682 + 25.0872i) q^{91} +(40.7015 - 40.7015i) q^{92} +(70.4342 - 105.323i) q^{93} +(44.7772 - 77.5564i) q^{94} +(-62.3527 + 57.3750i) q^{95} +(16.6458 - 3.30426i) q^{96} +(-81.7792 + 81.7792i) q^{97} +(50.2654 + 47.7010i) q^{98} +(43.3218 + 33.2960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −0.197383 + 2.99350i −0.0657945 + 0.997833i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −1.09236 4.87922i −0.218472 0.975843i
\(6\) 1.36533 4.01695i 0.227555 0.669492i
\(7\) −1.72310 + 6.78461i −0.246158 + 0.969230i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −8.92208 1.18173i −0.991342 0.131304i
\(10\) −0.293729 + 7.06496i −0.0293729 + 0.706496i
\(11\) −5.25762 3.03549i −0.477966 0.275954i 0.241603 0.970375i \(-0.422327\pi\)
−0.719568 + 0.694422i \(0.755660\pi\)
\(12\) −3.33538 + 4.98751i −0.277948 + 0.415626i
\(13\) 4.95646 + 4.95646i 0.381266 + 0.381266i 0.871558 0.490292i \(-0.163110\pi\)
−0.490292 + 0.871558i \(0.663110\pi\)
\(14\) 4.83714 8.63725i 0.345510 0.616946i
\(15\) 14.8215 2.30690i 0.988103 0.153793i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −24.7338 + 6.62741i −1.45493 + 0.389847i −0.897736 0.440534i \(-0.854789\pi\)
−0.557195 + 0.830382i \(0.688122\pi\)
\(18\) 11.7552 + 4.87999i 0.653069 + 0.271110i
\(19\) −8.47334 14.6763i −0.445965 0.772435i 0.552154 0.833742i \(-0.313806\pi\)
−0.998119 + 0.0613078i \(0.980473\pi\)
\(20\) 2.98720 9.54341i 0.149360 0.477170i
\(21\) −19.9696 6.49728i −0.950934 0.309394i
\(22\) 6.07098 + 6.07098i 0.275954 + 0.275954i
\(23\) 7.44889 27.7996i 0.323865 1.20868i −0.591583 0.806244i \(-0.701497\pi\)
0.915448 0.402436i \(-0.131837\pi\)
\(24\) 6.38177 5.59223i 0.265907 0.233010i
\(25\) −22.6135 + 10.6597i −0.904540 + 0.426388i
\(26\) −4.95646 8.58484i −0.190633 0.330186i
\(27\) 5.29859 26.4750i 0.196244 0.980555i
\(28\) −9.76911 + 10.0282i −0.348897 + 0.358149i
\(29\) −29.7644 −1.02636 −0.513179 0.858282i \(-0.671532\pi\)
−0.513179 + 0.858282i \(0.671532\pi\)
\(30\) −21.0910 2.27378i −0.703033 0.0757928i
\(31\) −36.5762 21.1173i −1.17988 0.681203i −0.223892 0.974614i \(-0.571876\pi\)
−0.955986 + 0.293411i \(0.905210\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 10.1245 15.1395i 0.306803 0.458774i
\(34\) 36.2128 1.06508
\(35\) 34.9858 + 0.996180i 0.999595 + 0.0284623i
\(36\) −14.2718 10.9689i −0.396438 0.304692i
\(37\) −12.4034 + 46.2903i −0.335228 + 1.25109i 0.568393 + 0.822757i \(0.307565\pi\)
−0.903621 + 0.428332i \(0.859101\pi\)
\(38\) 6.20292 + 23.1496i 0.163235 + 0.609200i
\(39\) −15.8155 + 13.8588i −0.405525 + 0.355355i
\(40\) −7.57372 + 11.9431i −0.189343 + 0.298579i
\(41\) 2.99309 0.0730021 0.0365011 0.999334i \(-0.488379\pi\)
0.0365011 + 0.999334i \(0.488379\pi\)
\(42\) 24.9008 + 16.1848i 0.592877 + 0.385353i
\(43\) 22.2278 22.2278i 0.516926 0.516926i −0.399714 0.916640i \(-0.630891\pi\)
0.916640 + 0.399714i \(0.130891\pi\)
\(44\) −6.07098 10.5152i −0.137977 0.238983i
\(45\) 3.98016 + 44.8236i 0.0884481 + 0.996081i
\(46\) −20.3508 + 35.2485i −0.442408 + 0.766273i
\(47\) −16.3896 + 61.1668i −0.348715 + 1.30142i 0.539498 + 0.841987i \(0.318614\pi\)
−0.888212 + 0.459434i \(0.848052\pi\)
\(48\) −10.7646 + 5.30324i −0.224262 + 0.110484i
\(49\) −43.0618 23.3812i −0.878813 0.477167i
\(50\) 34.7923 6.28430i 0.695847 0.125686i
\(51\) −14.9571 75.3488i −0.293276 1.47743i
\(52\) 3.62838 + 13.5413i 0.0697766 + 0.260410i
\(53\) −1.70301 + 0.456319i −0.0321322 + 0.00860980i −0.274849 0.961487i \(-0.588628\pi\)
0.242717 + 0.970097i \(0.421961\pi\)
\(54\) −16.9285 + 34.2261i −0.313491 + 0.633816i
\(55\) −9.06761 + 28.9689i −0.164866 + 0.526708i
\(56\) 17.0154 10.1230i 0.303847 0.180768i
\(57\) 45.6059 22.4681i 0.800103 0.394177i
\(58\) 40.6589 + 10.8945i 0.701015 + 0.187836i
\(59\) 72.6479 + 41.9433i 1.23132 + 0.710903i 0.967305 0.253615i \(-0.0816198\pi\)
0.264015 + 0.964519i \(0.414953\pi\)
\(60\) 27.9786 + 10.8259i 0.466309 + 0.180431i
\(61\) −18.0258 + 10.4072i −0.295505 + 0.170610i −0.640422 0.768023i \(-0.721240\pi\)
0.344917 + 0.938633i \(0.387907\pi\)
\(62\) 42.2346 + 42.2346i 0.681203 + 0.681203i
\(63\) 23.3913 58.4966i 0.371290 0.928517i
\(64\) 8.00000i 0.125000i
\(65\) 18.7694 29.5979i 0.288760 0.455352i
\(66\) −19.3718 + 16.9752i −0.293512 + 0.257199i
\(67\) 32.1572 8.61650i 0.479958 0.128604i −0.0107249 0.999942i \(-0.503414\pi\)
0.490683 + 0.871338i \(0.336747\pi\)
\(68\) −49.4676 13.2548i −0.727465 0.194924i
\(69\) 81.7479 + 27.7854i 1.18475 + 0.402688i
\(70\) −47.4269 14.1665i −0.677527 0.202379i
\(71\) 10.6074i 0.149400i 0.997206 + 0.0747002i \(0.0238000\pi\)
−0.997206 + 0.0747002i \(0.976200\pi\)
\(72\) 15.4807 + 20.2076i 0.215010 + 0.280661i
\(73\) 94.5508 25.3348i 1.29522 0.347052i 0.455577 0.890197i \(-0.349433\pi\)
0.839639 + 0.543145i \(0.182766\pi\)
\(74\) 33.8869 58.6937i 0.457930 0.793159i
\(75\) −27.4463 69.7976i −0.365950 0.930634i
\(76\) 33.8934i 0.445965i
\(77\) 29.6540 30.4404i 0.385117 0.395330i
\(78\) 26.6771 13.1427i 0.342013 0.168496i
\(79\) 74.6747 43.1134i 0.945249 0.545740i 0.0536472 0.998560i \(-0.482915\pi\)
0.891602 + 0.452820i \(0.149582\pi\)
\(80\) 14.7174 13.5425i 0.183967 0.169281i
\(81\) 78.2070 + 21.0871i 0.965519 + 0.260334i
\(82\) −4.08863 1.09555i −0.0498614 0.0133603i
\(83\) −47.0984 + 47.0984i −0.567450 + 0.567450i −0.931413 0.363963i \(-0.881423\pi\)
0.363963 + 0.931413i \(0.381423\pi\)
\(84\) −28.0911 31.2232i −0.334418 0.371705i
\(85\) 59.3547 + 113.442i 0.698291 + 1.33461i
\(86\) −38.4997 + 22.2278i −0.447671 + 0.258463i
\(87\) 5.87499 89.0996i 0.0675286 1.02413i
\(88\) 4.44427 + 16.5862i 0.0505030 + 0.188480i
\(89\) −138.660 + 80.0552i −1.55797 + 0.899496i −0.560522 + 0.828139i \(0.689400\pi\)
−0.997451 + 0.0713568i \(0.977267\pi\)
\(90\) 10.9696 62.6871i 0.121884 0.696523i
\(91\) −42.1682 + 25.0872i −0.463386 + 0.275683i
\(92\) 40.7015 40.7015i 0.442408 0.442408i
\(93\) 70.4342 105.323i 0.757357 1.13250i
\(94\) 44.7772 77.5564i 0.476353 0.825068i
\(95\) −62.3527 + 57.3750i −0.656344 + 0.603947i
\(96\) 16.6458 3.30426i 0.173393 0.0344194i
\(97\) −81.7792 + 81.7792i −0.843085 + 0.843085i −0.989259 0.146174i \(-0.953304\pi\)
0.146174 + 0.989259i \(0.453304\pi\)
\(98\) 50.2654 + 47.7010i 0.512913 + 0.486745i
\(99\) 43.3218 + 33.2960i 0.437594 + 0.336323i
\(100\) −49.8274 4.15037i −0.498274 0.0415037i
\(101\) −12.5884 + 21.8038i −0.124638 + 0.215879i −0.921591 0.388162i \(-0.873110\pi\)
0.796953 + 0.604041i \(0.206444\pi\)
\(102\) −7.14781 + 108.403i −0.0700766 + 1.06278i
\(103\) −37.8541 + 141.274i −0.367516 + 1.37159i 0.496462 + 0.868058i \(0.334632\pi\)
−0.863978 + 0.503529i \(0.832035\pi\)
\(104\) 19.8258i 0.190633i
\(105\) −9.88769 + 104.533i −0.0941684 + 0.995556i
\(106\) 2.49337 0.0235224
\(107\) −79.1821 21.2168i −0.740020 0.198288i −0.130933 0.991391i \(-0.541797\pi\)
−0.609087 + 0.793104i \(0.708464\pi\)
\(108\) 35.6524 40.5574i 0.330115 0.375532i
\(109\) −14.2005 8.19866i −0.130280 0.0752171i 0.433444 0.901181i \(-0.357298\pi\)
−0.563723 + 0.825964i \(0.690632\pi\)
\(110\) 22.9899 36.2533i 0.208999 0.329575i
\(111\) −136.122 46.2667i −1.22632 0.416817i
\(112\) −26.9488 + 7.60021i −0.240614 + 0.0678590i
\(113\) 115.892 + 115.892i 1.02560 + 1.02560i 0.999664 + 0.0259326i \(0.00825553\pi\)
0.0259326 + 0.999664i \(0.491744\pi\)
\(114\) −70.5227 + 13.9991i −0.618620 + 0.122799i
\(115\) −143.777 5.97761i −1.25024 0.0519792i
\(116\) −51.5534 29.7644i −0.444426 0.256589i
\(117\) −38.3647 50.0792i −0.327904 0.428027i
\(118\) −83.8866 83.8866i −0.710903 0.710903i
\(119\) −2.34542 179.229i −0.0197094 1.50613i
\(120\) −34.2569 25.0293i −0.285474 0.208578i
\(121\) −42.0716 72.8702i −0.347699 0.602233i
\(122\) 28.4330 7.61860i 0.233057 0.0624475i
\(123\) −0.590786 + 8.95980i −0.00480314 + 0.0728439i
\(124\) −42.2346 73.1525i −0.340602 0.589939i
\(125\) 76.7130 + 98.6920i 0.613704 + 0.789536i
\(126\) −53.3643 + 71.3460i −0.423526 + 0.566238i
\(127\) 30.6273 + 30.6273i 0.241160 + 0.241160i 0.817330 0.576170i \(-0.195453\pi\)
−0.576170 + 0.817330i \(0.695453\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 62.1516 + 70.9264i 0.481795 + 0.549817i
\(130\) −36.4731 + 33.5614i −0.280562 + 0.258164i
\(131\) 55.8066 + 96.6599i 0.426005 + 0.737862i 0.996514 0.0834295i \(-0.0265873\pi\)
−0.570509 + 0.821291i \(0.693254\pi\)
\(132\) 32.6757 16.0979i 0.247543 0.121954i
\(133\) 114.173 32.1996i 0.858444 0.242102i
\(134\) −47.0814 −0.351354
\(135\) −134.965 + 3.06717i −0.999742 + 0.0227198i
\(136\) 62.7225 + 36.2128i 0.461195 + 0.266271i
\(137\) −34.9263 130.347i −0.254936 0.951435i −0.968126 0.250464i \(-0.919417\pi\)
0.713190 0.700971i \(-0.247250\pi\)
\(138\) −101.500 67.8775i −0.735504 0.491866i
\(139\) 94.2009 0.677704 0.338852 0.940840i \(-0.389961\pi\)
0.338852 + 0.940840i \(0.389961\pi\)
\(140\) 59.6010 + 36.7113i 0.425722 + 0.262223i
\(141\) −179.868 61.1355i −1.27566 0.433585i
\(142\) 3.88259 14.4900i 0.0273422 0.102042i
\(143\) −11.0139 41.1045i −0.0770204 0.287444i
\(144\) −13.7505 33.2705i −0.0954897 0.231045i
\(145\) 32.5133 + 145.227i 0.224230 + 1.00156i
\(146\) −138.432 −0.948164
\(147\) 78.4912 124.290i 0.533954 0.845514i
\(148\) −67.7737 + 67.7737i −0.457930 + 0.457930i
\(149\) −100.290 173.707i −0.673085 1.16582i −0.977025 0.213126i \(-0.931635\pi\)
0.303939 0.952691i \(-0.401698\pi\)
\(150\) 11.9446 + 105.391i 0.0796308 + 0.702609i
\(151\) 132.934 230.249i 0.880361 1.52483i 0.0294207 0.999567i \(-0.490634\pi\)
0.850940 0.525263i \(-0.176033\pi\)
\(152\) −12.4058 + 46.2992i −0.0816173 + 0.304600i
\(153\) 228.509 29.9014i 1.49352 0.195434i
\(154\) −51.6501 + 30.7283i −0.335391 + 0.199534i
\(155\) −63.0815 + 201.531i −0.406978 + 1.30020i
\(156\) −41.2521 + 8.18873i −0.264436 + 0.0524919i
\(157\) 4.79975 + 17.9129i 0.0305717 + 0.114095i 0.979526 0.201320i \(-0.0645230\pi\)
−0.948954 + 0.315415i \(0.897856\pi\)
\(158\) −117.788 + 31.5612i −0.745494 + 0.199755i
\(159\) −1.02985 5.18802i −0.00647702 0.0326291i
\(160\) −25.0612 + 13.1124i −0.156633 + 0.0819526i
\(161\) 175.775 + 98.4395i 1.09177 + 0.611426i
\(162\) −99.1144 57.4312i −0.611817 0.354514i
\(163\) −80.8800 21.6717i −0.496196 0.132955i 0.00203783 0.999998i \(-0.499351\pi\)
−0.498234 + 0.867043i \(0.666018\pi\)
\(164\) 5.18418 + 2.99309i 0.0316108 + 0.0182505i
\(165\) −84.9286 32.8619i −0.514719 0.199163i
\(166\) 81.5768 47.0984i 0.491427 0.283725i
\(167\) −146.343 146.343i −0.876304 0.876304i 0.116846 0.993150i \(-0.462722\pi\)
−0.993150 + 0.116846i \(0.962722\pi\)
\(168\) 26.9447 + 52.9338i 0.160385 + 0.315082i
\(169\) 119.867i 0.709272i
\(170\) −39.5574 176.690i −0.232690 1.03935i
\(171\) 58.2564 + 140.956i 0.340681 + 0.824304i
\(172\) 60.7275 16.2719i 0.353067 0.0946040i
\(173\) −239.295 64.1188i −1.38321 0.370629i −0.510922 0.859627i \(-0.670696\pi\)
−0.872285 + 0.488998i \(0.837362\pi\)
\(174\) −40.6381 + 119.562i −0.233552 + 0.687138i
\(175\) −33.3564 171.792i −0.190608 0.981666i
\(176\) 24.2839i 0.137977i
\(177\) −139.897 + 209.193i −0.790377 + 1.18188i
\(178\) 218.715 58.6044i 1.22873 0.329238i
\(179\) −20.0007 + 34.6423i −0.111736 + 0.193532i −0.916470 0.400103i \(-0.868974\pi\)
0.804734 + 0.593635i \(0.202308\pi\)
\(180\) −37.9298 + 81.6170i −0.210721 + 0.453428i
\(181\) 210.145i 1.16102i 0.814253 + 0.580510i \(0.197147\pi\)
−0.814253 + 0.580510i \(0.802853\pi\)
\(182\) 66.7853 18.8351i 0.366952 0.103489i
\(183\) −27.5959 56.0144i −0.150798 0.306090i
\(184\) −70.4971 + 40.7015i −0.383136 + 0.221204i
\(185\) 239.409 + 9.95356i 1.29410 + 0.0538030i
\(186\) −134.766 + 118.093i −0.724546 + 0.634908i
\(187\) 150.159 + 40.2349i 0.802987 + 0.215160i
\(188\) −89.5544 + 89.5544i −0.476353 + 0.476353i
\(189\) 170.492 + 81.5680i 0.902076 + 0.431577i
\(190\) 106.176 55.5530i 0.558822 0.292384i
\(191\) 161.722 93.3702i 0.846712 0.488849i −0.0128282 0.999918i \(-0.504083\pi\)
0.859540 + 0.511068i \(0.170750\pi\)
\(192\) −23.9480 1.57907i −0.124729 0.00822431i
\(193\) −45.3096 169.098i −0.234765 0.876155i −0.978255 0.207407i \(-0.933497\pi\)
0.743490 0.668747i \(-0.233169\pi\)
\(194\) 141.646 81.7792i 0.730133 0.421542i
\(195\) 84.8965 + 62.0284i 0.435367 + 0.318094i
\(196\) −51.2041 83.5592i −0.261245 0.426322i
\(197\) 32.6753 32.6753i 0.165865 0.165865i −0.619294 0.785159i \(-0.712581\pi\)
0.785159 + 0.619294i \(0.212581\pi\)
\(198\) −46.9915 61.3400i −0.237331 0.309798i
\(199\) 19.7740 34.2496i 0.0993670 0.172109i −0.812056 0.583580i \(-0.801652\pi\)
0.911423 + 0.411471i \(0.134985\pi\)
\(200\) 66.5464 + 23.9076i 0.332732 + 0.119538i
\(201\) 19.4462 + 97.9633i 0.0967472 + 0.487380i
\(202\) 25.1768 25.1768i 0.124638 0.124638i
\(203\) 51.2871 201.940i 0.252646 0.994776i
\(204\) 49.4424 145.465i 0.242365 0.713064i
\(205\) −3.26952 14.6039i −0.0159489 0.0712386i
\(206\) 103.419 179.128i 0.502036 0.869552i
\(207\) −99.3114 + 239.228i −0.479765 + 1.15569i
\(208\) −7.25676 + 27.0826i −0.0348883 + 0.130205i
\(209\) 102.883i 0.492263i
\(210\) 51.7687 139.176i 0.246518 0.662744i
\(211\) −145.662 −0.690341 −0.345170 0.938540i \(-0.612179\pi\)
−0.345170 + 0.938540i \(0.612179\pi\)
\(212\) −3.40601 0.912638i −0.0160661 0.00430490i
\(213\) −31.7533 2.09373i −0.149077 0.00982972i
\(214\) 100.399 + 57.9653i 0.469154 + 0.270866i
\(215\) −132.735 84.1736i −0.617372 0.391505i
\(216\) −63.5472 + 42.3528i −0.294200 + 0.196078i
\(217\) 206.297 211.768i 0.950679 0.975890i
\(218\) 16.3973 + 16.3973i 0.0752171 + 0.0752171i
\(219\) 57.1770 + 288.038i 0.261082 + 1.31524i
\(220\) −44.6745 + 41.1080i −0.203066 + 0.186855i
\(221\) −155.441 89.7438i −0.703352 0.406080i
\(222\) 169.011 + 113.025i 0.761311 + 0.509124i
\(223\) −202.781 202.781i −0.909331 0.909331i 0.0868873 0.996218i \(-0.472308\pi\)
−0.996218 + 0.0868873i \(0.972308\pi\)
\(224\) 39.5946 0.518140i 0.176762 0.00231313i
\(225\) 214.356 68.3835i 0.952695 0.303927i
\(226\) −115.892 200.731i −0.512798 0.888192i
\(227\) −55.3013 + 14.8179i −0.243618 + 0.0652773i −0.378562 0.925576i \(-0.623581\pi\)
0.134944 + 0.990853i \(0.456915\pi\)
\(228\) 101.460 + 6.68999i 0.444999 + 0.0293421i
\(229\) 33.1909 + 57.4883i 0.144938 + 0.251041i 0.929350 0.369200i \(-0.120368\pi\)
−0.784412 + 0.620241i \(0.787035\pi\)
\(230\) 194.216 + 60.7917i 0.844416 + 0.264312i
\(231\) 85.2702 + 94.7778i 0.369135 + 0.410293i
\(232\) 59.5287 + 59.5287i 0.256589 + 0.256589i
\(233\) −92.6893 + 345.921i −0.397808 + 1.48464i 0.419135 + 0.907924i \(0.362333\pi\)
−0.816944 + 0.576717i \(0.804333\pi\)
\(234\) 34.0769 + 82.4519i 0.145628 + 0.352359i
\(235\) 316.349 + 13.1524i 1.34617 + 0.0559675i
\(236\) 83.8866 + 145.296i 0.355452 + 0.615660i
\(237\) 114.321 + 232.049i 0.482365 + 0.979108i
\(238\) −62.3985 + 245.690i −0.262178 + 1.03231i
\(239\) −97.3879 −0.407481 −0.203740 0.979025i \(-0.565310\pi\)
−0.203740 + 0.979025i \(0.565310\pi\)
\(240\) 37.6344 + 46.7296i 0.156810 + 0.194706i
\(241\) 44.6777 + 25.7947i 0.185385 + 0.107032i 0.589820 0.807535i \(-0.299199\pi\)
−0.404436 + 0.914567i \(0.632532\pi\)
\(242\) 30.7986 + 114.942i 0.127267 + 0.474966i
\(243\) −78.5609 + 229.950i −0.323296 + 0.946298i
\(244\) −41.6288 −0.170610
\(245\) −67.0429 + 235.649i −0.273644 + 0.961831i
\(246\) 4.08654 12.0231i 0.0166120 0.0488743i
\(247\) 30.7445 114.740i 0.124472 0.464535i
\(248\) 30.9179 + 115.387i 0.124669 + 0.465270i
\(249\) −131.693 150.285i −0.528886 0.603556i
\(250\) −68.6681 162.895i −0.274673 0.651579i
\(251\) 328.831 1.31009 0.655043 0.755592i \(-0.272651\pi\)
0.655043 + 0.755592i \(0.272651\pi\)
\(252\) 99.0114 77.9277i 0.392903 0.309237i
\(253\) −123.549 + 123.549i −0.488336 + 0.488336i
\(254\) −30.6273 53.0481i −0.120580 0.208851i
\(255\) −351.305 + 155.287i −1.37767 + 0.608968i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −7.24061 + 27.0223i −0.0281736 + 0.105145i −0.978581 0.205863i \(-0.934000\pi\)
0.950407 + 0.311008i \(0.100667\pi\)
\(258\) −58.9398 119.636i −0.228449 0.463706i
\(259\) −292.689 163.916i −1.13007 0.632879i
\(260\) 62.1075 32.4956i 0.238875 0.124983i
\(261\) 265.560 + 35.1736i 1.01747 + 0.134765i
\(262\) −40.8533 152.467i −0.155929 0.581933i
\(263\) 58.4662 15.6660i 0.222305 0.0595664i −0.145947 0.989292i \(-0.546623\pi\)
0.368252 + 0.929726i \(0.379956\pi\)
\(264\) −50.5281 + 10.0301i −0.191394 + 0.0379927i
\(265\) 4.08677 + 7.81087i 0.0154218 + 0.0294750i
\(266\) −167.749 + 2.19519i −0.630636 + 0.00825260i
\(267\) −212.276 430.879i −0.795041 1.61378i
\(268\) 64.3144 + 17.2330i 0.239979 + 0.0643022i
\(269\) 223.312 + 128.929i 0.830154 + 0.479290i 0.853906 0.520428i \(-0.174228\pi\)
−0.0237511 + 0.999718i \(0.507561\pi\)
\(270\) 185.488 + 45.2108i 0.686994 + 0.167448i
\(271\) 163.182 94.2131i 0.602147 0.347650i −0.167739 0.985831i \(-0.553647\pi\)
0.769886 + 0.638182i \(0.220313\pi\)
\(272\) −72.4257 72.4257i −0.266271 0.266271i
\(273\) −66.7751 131.182i −0.244597 0.480521i
\(274\) 190.841i 0.696499i
\(275\) 151.251 + 12.5984i 0.550003 + 0.0458124i
\(276\) 113.806 + 129.874i 0.412341 + 0.470557i
\(277\) −262.100 + 70.2296i −0.946211 + 0.253536i −0.698754 0.715362i \(-0.746262\pi\)
−0.247457 + 0.968899i \(0.579595\pi\)
\(278\) −128.681 34.4799i −0.462881 0.124029i
\(279\) 301.381 + 231.634i 1.08022 + 0.830228i
\(280\) −67.9793 71.9640i −0.242783 0.257014i
\(281\) 265.329i 0.944230i −0.881537 0.472115i \(-0.843491\pi\)
0.881537 0.472115i \(-0.156509\pi\)
\(282\) 223.327 + 149.349i 0.791939 + 0.529606i
\(283\) −401.740 + 107.646i −1.41958 + 0.380374i −0.885334 0.464956i \(-0.846070\pi\)
−0.534243 + 0.845331i \(0.679403\pi\)
\(284\) −10.6074 + 18.3726i −0.0373501 + 0.0646923i
\(285\) −159.445 197.978i −0.559455 0.694659i
\(286\) 60.1812i 0.210424i
\(287\) −5.15740 + 20.3069i −0.0179700 + 0.0707558i
\(288\) 6.60571 + 50.4813i 0.0229365 + 0.175282i
\(289\) 317.558 183.342i 1.09882 0.634402i
\(290\) 8.74266 210.284i 0.0301471 0.725118i
\(291\) −228.664 260.948i −0.785788 0.896728i
\(292\) 189.102 + 50.6696i 0.647608 + 0.173526i
\(293\) 15.6606 15.6606i 0.0534491 0.0534491i −0.679877 0.733326i \(-0.737967\pi\)
0.733326 + 0.679877i \(0.237967\pi\)
\(294\) −152.714 + 141.054i −0.519437 + 0.479776i
\(295\) 125.293 400.282i 0.424722 1.35689i
\(296\) 117.387 67.7737i 0.396579 0.228965i
\(297\) −108.223 + 123.112i −0.364386 + 0.414517i
\(298\) 73.4172 + 273.997i 0.246366 + 0.919452i
\(299\) 174.708 100.868i 0.584308 0.337350i
\(300\) 22.2592 148.339i 0.0741975 0.494464i
\(301\) 112.506 + 189.108i 0.373775 + 0.628265i
\(302\) −265.869 + 265.869i −0.880361 + 0.880361i
\(303\) −62.7849 41.9871i −0.207211 0.138571i
\(304\) 33.8934 58.7050i 0.111491 0.193109i
\(305\) 70.4696 + 76.5834i 0.231048 + 0.251093i
\(306\) −323.094 42.7939i −1.05586 0.139849i
\(307\) −222.516 + 222.516i −0.724809 + 0.724809i −0.969581 0.244772i \(-0.921287\pi\)
0.244772 + 0.969581i \(0.421287\pi\)
\(308\) 81.8027 23.0704i 0.265593 0.0749038i
\(309\) −415.431 141.201i −1.34444 0.456962i
\(310\) 159.936 252.207i 0.515924 0.813571i
\(311\) 92.6420 160.461i 0.297884 0.515951i −0.677767 0.735276i \(-0.737052\pi\)
0.975652 + 0.219326i \(0.0703857\pi\)
\(312\) 59.3487 + 3.91329i 0.190220 + 0.0125426i
\(313\) 23.4325 87.4513i 0.0748642 0.279397i −0.918338 0.395796i \(-0.870469\pi\)
0.993202 + 0.116399i \(0.0371352\pi\)
\(314\) 26.2263i 0.0835234i
\(315\) −310.969 50.2319i −0.987203 0.159466i
\(316\) 172.454 0.545740
\(317\) −450.963 120.835i −1.42260 0.381183i −0.536192 0.844096i \(-0.680138\pi\)
−0.886404 + 0.462913i \(0.846804\pi\)
\(318\) −0.492151 + 7.46392i −0.00154764 + 0.0234714i
\(319\) 156.490 + 90.3494i 0.490564 + 0.283227i
\(320\) 39.0337 8.73886i 0.121980 0.0273089i
\(321\) 79.1417 232.844i 0.246547 0.725370i
\(322\) −204.081 198.809i −0.633792 0.617419i
\(323\) 306.844 + 306.844i 0.949980 + 0.949980i
\(324\) 114.371 + 114.731i 0.352998 + 0.354108i
\(325\) −164.917 59.2486i −0.507438 0.182303i
\(326\) 102.552 + 59.2083i 0.314576 + 0.181620i
\(327\) 27.3456 40.8909i 0.0836258 0.125049i
\(328\) −5.98617 5.98617i −0.0182505 0.0182505i
\(329\) −386.752 216.594i −1.17554 0.658339i
\(330\) 103.986 + 75.9762i 0.315110 + 0.230231i
\(331\) 184.281 + 319.184i 0.556740 + 0.964302i 0.997766 + 0.0668078i \(0.0212814\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(332\) −128.675 + 34.4784i −0.387576 + 0.103851i
\(333\) 165.367 398.348i 0.496599 1.19624i
\(334\) 146.343 + 253.473i 0.438152 + 0.758902i
\(335\) −77.1689 147.490i −0.230355 0.440268i
\(336\) −17.4320 82.1713i −0.0518809 0.244558i
\(337\) 424.870 + 424.870i 1.26074 + 1.26074i 0.950734 + 0.310009i \(0.100332\pi\)
0.310009 + 0.950734i \(0.399668\pi\)
\(338\) −43.8744 + 163.741i −0.129806 + 0.484442i
\(339\) −369.799 + 324.049i −1.09085 + 0.955895i
\(340\) −10.6368 + 255.842i −0.0312846 + 0.752477i
\(341\) 128.203 + 222.054i 0.375961 + 0.651183i
\(342\) −27.9862 213.873i −0.0818311 0.625359i
\(343\) 232.832 251.869i 0.678811 0.734313i
\(344\) −88.9113 −0.258463
\(345\) 46.2732 429.218i 0.134125 1.24411i
\(346\) 303.413 + 175.176i 0.876918 + 0.506289i
\(347\) 15.5792 + 58.1423i 0.0448968 + 0.167557i 0.984734 0.174065i \(-0.0556903\pi\)
−0.939837 + 0.341622i \(0.889024\pi\)
\(348\) 99.2754 148.450i 0.285274 0.426581i
\(349\) −544.766 −1.56093 −0.780467 0.625197i \(-0.785019\pi\)
−0.780467 + 0.625197i \(0.785019\pi\)
\(350\) −17.3143 + 246.881i −0.0494695 + 0.705374i
\(351\) 157.485 104.960i 0.448674 0.299031i
\(352\) −8.88853 + 33.1724i −0.0252515 + 0.0942399i
\(353\) 80.4748 + 300.336i 0.227974 + 0.850811i 0.981191 + 0.193039i \(0.0618343\pi\)
−0.753217 + 0.657772i \(0.771499\pi\)
\(354\) 267.672 234.557i 0.756136 0.662589i
\(355\) 51.7560 11.5871i 0.145791 0.0326397i
\(356\) −320.221 −0.899496
\(357\) 536.985 + 28.3558i 1.50416 + 0.0794281i
\(358\) 40.0014 40.0014i 0.111736 0.111736i
\(359\) 184.699 + 319.907i 0.514481 + 0.891106i 0.999859 + 0.0168022i \(0.00534854\pi\)
−0.485378 + 0.874304i \(0.661318\pi\)
\(360\) 81.6869 97.6076i 0.226908 0.271132i
\(361\) 36.9050 63.9213i 0.102230 0.177067i
\(362\) 76.9183 287.063i 0.212482 0.792992i
\(363\) 226.441 111.558i 0.623804 0.307322i
\(364\) −98.1245 + 1.28407i −0.269573 + 0.00352767i
\(365\) −226.897 433.659i −0.621636 1.18811i
\(366\) 17.1941 + 86.6179i 0.0469783 + 0.236661i
\(367\) −160.700 599.740i −0.437874 1.63417i −0.734093 0.679049i \(-0.762392\pi\)
0.296218 0.955120i \(-0.404274\pi\)
\(368\) 111.199 29.7956i 0.302170 0.0809662i
\(369\) −26.7046 3.53703i −0.0723701 0.00958546i
\(370\) −323.396 101.227i −0.874043 0.273586i
\(371\) −0.161490 12.3405i −0.000435282 0.0332629i
\(372\) 227.318 111.990i 0.611071 0.301049i
\(373\) −138.928 37.2257i −0.372462 0.0998008i 0.0677323 0.997704i \(-0.478424\pi\)
−0.440194 + 0.897903i \(0.645090\pi\)
\(374\) −190.393 109.924i −0.509073 0.293914i
\(375\) −310.576 + 210.160i −0.828204 + 0.560427i
\(376\) 155.113 89.5544i 0.412534 0.238177i
\(377\) −147.526 147.526i −0.391315 0.391315i
\(378\) −203.041 173.829i −0.537145 0.459864i
\(379\) 743.787i 1.96250i 0.192741 + 0.981250i \(0.438262\pi\)
−0.192741 + 0.981250i \(0.561738\pi\)
\(380\) −165.373 + 37.0237i −0.435192 + 0.0974307i
\(381\) −97.7282 + 85.6375i −0.256504 + 0.224770i
\(382\) −255.092 + 68.3517i −0.667781 + 0.178931i
\(383\) 177.428 + 47.5416i 0.463258 + 0.124130i 0.482896 0.875678i \(-0.339585\pi\)
−0.0196383 + 0.999807i \(0.506251\pi\)
\(384\) 32.1356 + 10.9226i 0.0836864 + 0.0284443i
\(385\) −180.918 111.437i −0.469918 0.289446i
\(386\) 247.576i 0.641390i
\(387\) −224.586 + 172.051i −0.580325 + 0.444576i
\(388\) −223.425 + 59.8665i −0.575838 + 0.154295i
\(389\) 216.669 375.281i 0.556989 0.964734i −0.440757 0.897627i \(-0.645290\pi\)
0.997746 0.0671069i \(-0.0213769\pi\)
\(390\) −93.2668 115.807i −0.239146 0.296940i
\(391\) 736.958i 1.88480i
\(392\) 39.3613 + 132.886i 0.100411 + 0.338995i
\(393\) −300.367 + 147.978i −0.764292 + 0.376534i
\(394\) −56.5953 + 32.6753i −0.143643 + 0.0829323i
\(395\) −291.931 317.259i −0.739067 0.803186i
\(396\) 41.7395 + 100.992i 0.105403 + 0.255031i
\(397\) −365.291 97.8793i −0.920128 0.246547i −0.232488 0.972599i \(-0.574687\pi\)
−0.687640 + 0.726052i \(0.741353\pi\)
\(398\) −39.5481 + 39.5481i −0.0993670 + 0.0993670i
\(399\) 73.8536 + 348.133i 0.185097 + 0.872513i
\(400\) −82.1533 57.0161i −0.205383 0.142540i
\(401\) −144.925 + 83.6723i −0.361408 + 0.208659i −0.669698 0.742633i \(-0.733577\pi\)
0.308290 + 0.951292i \(0.400243\pi\)
\(402\) 9.29309 140.938i 0.0231171 0.350593i
\(403\) −76.6216 285.956i −0.190128 0.709568i
\(404\) −43.6076 + 25.1768i −0.107940 + 0.0623189i
\(405\) 17.4583 404.624i 0.0431069 0.999070i
\(406\) −143.974 + 257.082i −0.354617 + 0.633207i
\(407\) 205.726 205.726i 0.505470 0.505470i
\(408\) −120.783 + 180.612i −0.296038 + 0.442676i
\(409\) −282.764 + 489.761i −0.691353 + 1.19746i 0.280041 + 0.959988i \(0.409652\pi\)
−0.971395 + 0.237471i \(0.923681\pi\)
\(410\) −0.879157 + 21.1461i −0.00214428 + 0.0515757i
\(411\) 397.086 78.8235i 0.966147 0.191785i
\(412\) −206.839 + 206.839i −0.502036 + 0.502036i
\(413\) −409.749 + 420.615i −0.992127 + 1.01844i
\(414\) 223.225 290.441i 0.539192 0.701549i
\(415\) 281.252 + 178.355i 0.677715 + 0.429771i
\(416\) 19.8258 34.3394i 0.0476583 0.0825466i
\(417\) −18.5937 + 281.990i −0.0445892 + 0.676236i
\(418\) 37.6578 140.541i 0.0900904 0.336222i
\(419\) 431.753i 1.03044i −0.857059 0.515218i \(-0.827711\pi\)
0.857059 0.515218i \(-0.172289\pi\)
\(420\) −121.659 + 171.169i −0.289665 + 0.407546i
\(421\) −408.628 −0.970613 −0.485307 0.874344i \(-0.661292\pi\)
−0.485307 + 0.874344i \(0.661292\pi\)
\(422\) 198.978 + 53.3160i 0.471512 + 0.126341i
\(423\) 218.512 526.367i 0.516577 1.24437i
\(424\) 4.31865 + 2.49337i 0.0101855 + 0.00588060i
\(425\) 488.672 413.524i 1.14982 0.972998i
\(426\) 42.6095 + 14.4826i 0.100022 + 0.0339968i
\(427\) −39.5484 140.231i −0.0926193 0.328409i
\(428\) −115.931 115.931i −0.270866 0.270866i
\(429\) 125.220 24.8568i 0.291889 0.0579413i
\(430\) 150.510 + 163.568i 0.350023 + 0.380390i
\(431\) −282.743 163.241i −0.656015 0.378751i 0.134742 0.990881i \(-0.456980\pi\)
−0.790757 + 0.612130i \(0.790313\pi\)
\(432\) 102.309 34.5951i 0.236827 0.0800813i
\(433\) 135.145 + 135.145i 0.312114 + 0.312114i 0.845728 0.533614i \(-0.179167\pi\)
−0.533614 + 0.845728i \(0.679167\pi\)
\(434\) −359.320 + 213.771i −0.827926 + 0.492559i
\(435\) −441.154 + 68.6633i −1.01415 + 0.157847i
\(436\) −16.3973 28.4010i −0.0376085 0.0651399i
\(437\) −471.112 + 126.234i −1.07806 + 0.288865i
\(438\) 27.3242 414.396i 0.0623839 0.946109i
\(439\) −308.876 534.989i −0.703590 1.21865i −0.967198 0.254023i \(-0.918246\pi\)
0.263608 0.964630i \(-0.415087\pi\)
\(440\) 76.0731 39.8026i 0.172893 0.0904605i
\(441\) 356.571 + 259.496i 0.808550 + 0.588427i
\(442\) 179.488 + 179.488i 0.406080 + 0.406080i
\(443\) −99.2276 + 370.322i −0.223990 + 0.835942i 0.758817 + 0.651304i \(0.225778\pi\)
−0.982807 + 0.184638i \(0.940889\pi\)
\(444\) −189.503 216.258i −0.426809 0.487067i
\(445\) 542.072 + 589.101i 1.21814 + 1.32382i
\(446\) 202.781 + 351.227i 0.454665 + 0.787504i
\(447\) 539.787 265.930i 1.20758 0.594922i
\(448\) −54.2769 13.7848i −0.121154 0.0307697i
\(449\) −38.5058 −0.0857590 −0.0428795 0.999080i \(-0.513653\pi\)
−0.0428795 + 0.999080i \(0.513653\pi\)
\(450\) −317.846 + 14.9537i −0.706326 + 0.0332304i
\(451\) −15.7365 9.08548i −0.0348925 0.0201452i
\(452\) 84.8391 + 316.624i 0.187697 + 0.700495i
\(453\) 663.012 + 443.387i 1.46360 + 0.978779i
\(454\) 80.9667 0.178341
\(455\) 168.468 + 178.343i 0.370260 + 0.391964i
\(456\) −136.148 46.2755i −0.298570 0.101481i
\(457\) 165.470 617.544i 0.362080 1.35130i −0.509257 0.860615i \(-0.670080\pi\)
0.871337 0.490686i \(-0.163254\pi\)
\(458\) −24.2974 90.6793i −0.0530512 0.197990i
\(459\) 44.4061 + 689.943i 0.0967453 + 1.50314i
\(460\) −243.052 154.131i −0.528374 0.335067i
\(461\) −142.328 −0.308737 −0.154369 0.988013i \(-0.549334\pi\)
−0.154369 + 0.988013i \(0.549334\pi\)
\(462\) −81.7902 160.680i −0.177035 0.347792i
\(463\) 62.1843 62.1843i 0.134307 0.134307i −0.636757 0.771064i \(-0.719725\pi\)
0.771064 + 0.636757i \(0.219725\pi\)
\(464\) −59.5287 103.107i −0.128295 0.222213i
\(465\) −590.832 228.613i −1.27061 0.491642i
\(466\) 253.232 438.611i 0.543416 0.941225i
\(467\) 144.105 537.808i 0.308577 1.15162i −0.621246 0.783616i \(-0.713373\pi\)
0.929823 0.368008i \(-0.119960\pi\)
\(468\) −16.3705 125.104i −0.0349797 0.267317i
\(469\) 3.04935 + 233.021i 0.00650181 + 0.496847i
\(470\) −427.327 133.758i −0.909206 0.284592i
\(471\) −54.5697 + 10.8323i −0.115859 + 0.0229986i
\(472\) −61.4092 229.182i −0.130104 0.485556i
\(473\) −184.338 + 49.3932i −0.389720 + 0.104425i
\(474\) −71.2291 358.828i −0.150272 0.757022i
\(475\) 348.056 + 241.558i 0.732750 + 0.508544i
\(476\) 175.167 312.779i 0.367997 0.657099i
\(477\) 15.7336 2.05881i 0.0329845 0.00431617i
\(478\) 133.034 + 35.6464i 0.278314 + 0.0745741i
\(479\) 32.8860 + 18.9867i 0.0686554 + 0.0396382i 0.533935 0.845526i \(-0.320713\pi\)
−0.465279 + 0.885164i \(0.654046\pi\)
\(480\) −34.3054 77.6089i −0.0714695 0.161685i
\(481\) −290.913 + 167.959i −0.604809 + 0.349187i
\(482\) −51.5893 51.5893i −0.107032 0.107032i
\(483\) −329.374 + 506.751i −0.681933 + 1.04917i
\(484\) 168.286i 0.347699i
\(485\) 488.351 + 309.686i 1.00691 + 0.638529i
\(486\) 191.484 285.363i 0.394000 0.587166i
\(487\) −469.334 + 125.758i −0.963726 + 0.258230i −0.706177 0.708036i \(-0.749582\pi\)
−0.257549 + 0.966265i \(0.582915\pi\)
\(488\) 56.8660 + 15.2372i 0.116529 + 0.0312238i
\(489\) 80.8387 237.837i 0.165314 0.486373i
\(490\) 177.836 297.363i 0.362930 0.606862i
\(491\) 170.670i 0.347596i −0.984781 0.173798i \(-0.944396\pi\)
0.984781 0.173798i \(-0.0556040\pi\)
\(492\) −9.98307 + 14.9281i −0.0202908 + 0.0303416i
\(493\) 736.186 197.261i 1.49328 0.400123i
\(494\) −83.9956 + 145.485i −0.170032 + 0.294503i
\(495\) 115.135 247.747i 0.232597 0.500500i
\(496\) 168.938i 0.340602i
\(497\) −71.9673 18.2777i −0.144803 0.0367761i
\(498\) 124.887 + 253.497i 0.250777 + 0.509029i
\(499\) 7.72541 4.46027i 0.0154818 0.00893841i −0.492239 0.870460i \(-0.663821\pi\)
0.507721 + 0.861522i \(0.330488\pi\)
\(500\) 34.1788 + 247.653i 0.0683576 + 0.495305i
\(501\) 466.963 409.191i 0.932061 0.816749i
\(502\) −449.192 120.361i −0.894805 0.239762i
\(503\) 256.753 256.753i 0.510443 0.510443i −0.404219 0.914662i \(-0.632457\pi\)
0.914662 + 0.404219i \(0.132457\pi\)
\(504\) −163.776 + 70.2106i −0.324952 + 0.139307i
\(505\) 120.136 + 37.6041i 0.237894 + 0.0744636i
\(506\) 213.993 123.549i 0.422911 0.244168i
\(507\) 358.822 + 23.6598i 0.707735 + 0.0466662i
\(508\) 22.4208 + 83.6754i 0.0441353 + 0.164715i
\(509\) −460.998 + 266.157i −0.905693 + 0.522902i −0.879043 0.476743i \(-0.841817\pi\)
−0.0266499 + 0.999645i \(0.508484\pi\)
\(510\) 536.730 83.5392i 1.05241 0.163802i
\(511\) 8.96590 + 685.144i 0.0175458 + 1.34079i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −433.451 + 146.568i −0.844933 + 0.285708i
\(514\) 19.7817 34.2630i 0.0384859 0.0666594i
\(515\) 730.654 + 30.3773i 1.41875 + 0.0589850i
\(516\) 36.7233 + 185.000i 0.0711692 + 0.358526i
\(517\) 271.841 271.841i 0.525805 0.525805i
\(518\) 339.824 + 331.044i 0.656030 + 0.639082i
\(519\) 239.172 703.673i 0.460833 1.35582i
\(520\) −96.7346 + 21.6569i −0.186028 + 0.0416479i
\(521\) 241.082 417.566i 0.462730 0.801471i −0.536366 0.843985i \(-0.680203\pi\)
0.999096 + 0.0425142i \(0.0135368\pi\)
\(522\) −349.887 145.250i −0.670282 0.278256i
\(523\) −238.196 + 888.960i −0.455442 + 1.69973i 0.231344 + 0.972872i \(0.425688\pi\)
−0.686786 + 0.726860i \(0.740979\pi\)
\(524\) 223.227i 0.426005i
\(525\) 520.842 65.9437i 0.992080 0.125607i
\(526\) −85.6004 −0.162738
\(527\) 1044.62 + 279.906i 1.98221 + 0.531131i
\(528\) 72.6939 + 4.79324i 0.137678 + 0.00907811i
\(529\) −259.207 149.653i −0.489994 0.282898i
\(530\) −2.72366 12.1657i −0.00513897 0.0229542i
\(531\) −598.604 460.072i −1.12732 0.866425i
\(532\) 229.953 + 58.4018i 0.432243 + 0.109778i
\(533\) 14.8351 + 14.8351i 0.0278333 + 0.0278333i
\(534\) 132.262 + 666.290i 0.247681 + 1.24773i
\(535\) −17.0261 + 409.523i −0.0318245 + 0.765463i
\(536\) −81.5474 47.0814i −0.152141 0.0878385i
\(537\) −99.7538 66.7099i −0.185761 0.124227i
\(538\) −257.858 257.858i −0.479290 0.479290i
\(539\) 155.429 + 253.643i 0.288366 + 0.470581i
\(540\) −236.834 129.653i −0.438581 0.240098i
\(541\) −322.337 558.305i −0.595818 1.03199i −0.993431 0.114433i \(-0.963495\pi\)
0.397613 0.917553i \(-0.369839\pi\)
\(542\) −257.395 + 68.9688i −0.474898 + 0.127249i
\(543\) −629.068 41.4791i −1.15850 0.0763887i
\(544\) 72.4257 + 125.445i 0.133135 + 0.230597i
\(545\) −24.4910 + 78.2432i −0.0449377 + 0.143565i
\(546\) 43.2005 + 203.640i 0.0791218 + 0.372966i
\(547\) 753.854 + 753.854i 1.37816 + 1.37816i 0.847725 + 0.530436i \(0.177972\pi\)
0.530436 + 0.847725i \(0.322028\pi\)
\(548\) 69.8525 260.693i 0.127468 0.475718i
\(549\) 173.126 71.5521i 0.315348 0.130332i
\(550\) −202.001 72.5713i −0.367274 0.131948i
\(551\) 252.204 + 436.829i 0.457720 + 0.792794i
\(552\) −107.925 219.067i −0.195516 0.396860i
\(553\) 163.836 + 580.927i 0.296267 + 1.05050i
\(554\) 383.742 0.692674
\(555\) −77.0514 + 714.707i −0.138831 + 1.28776i
\(556\) 163.161 + 94.2009i 0.293455 + 0.169426i
\(557\) −4.65931 17.3888i −0.00836501 0.0312187i 0.961617 0.274395i \(-0.0884774\pi\)
−0.969982 + 0.243176i \(0.921811\pi\)
\(558\) −326.910 426.730i −0.585861 0.764750i
\(559\) 220.343 0.394173
\(560\) 66.5208 + 123.187i 0.118787 + 0.219976i
\(561\) −150.082 + 441.558i −0.267526 + 0.787090i
\(562\) −97.1170 + 362.445i −0.172806 + 0.644921i
\(563\) −212.599 793.429i −0.377617 1.40929i −0.849483 0.527617i \(-0.823086\pi\)
0.471865 0.881671i \(-0.343581\pi\)
\(564\) −250.404 285.758i −0.443979 0.506662i
\(565\) 438.868 692.060i 0.776758 1.22488i
\(566\) 588.188 1.03920
\(567\) −277.826 + 494.269i −0.489993 + 0.871726i
\(568\) 21.2149 21.2149i 0.0373501 0.0373501i
\(569\) 306.103 + 530.186i 0.537967 + 0.931786i 0.999013 + 0.0444103i \(0.0141409\pi\)
−0.461046 + 0.887376i \(0.652526\pi\)
\(570\) 145.341 + 328.803i 0.254983 + 0.576848i
\(571\) −39.0173 + 67.5799i −0.0683315 + 0.118354i −0.898167 0.439655i \(-0.855101\pi\)
0.829835 + 0.558008i \(0.188434\pi\)
\(572\) 22.0278 82.2090i 0.0385102 0.143722i
\(573\) 247.582 + 502.544i 0.432081 + 0.877041i
\(574\) 14.4780 25.8520i 0.0252230 0.0450384i
\(575\) 127.890 + 708.051i 0.222418 + 1.23139i
\(576\) 9.45388 71.3766i 0.0164130 0.123918i
\(577\) −115.407 430.705i −0.200012 0.746456i −0.990912 0.134510i \(-0.957054\pi\)
0.790900 0.611946i \(-0.209613\pi\)
\(578\) −500.900 + 134.216i −0.866609 + 0.232207i
\(579\) 515.138 102.257i 0.889703 0.176610i
\(580\) −88.9120 + 284.053i −0.153297 + 0.489747i
\(581\) −238.389 400.700i −0.410308 0.689672i
\(582\) 216.848 + 440.158i 0.372590 + 0.756286i
\(583\) 10.3389 + 2.77030i 0.0177340 + 0.00475181i
\(584\) −239.771 138.432i −0.410567 0.237041i
\(585\) −202.439 + 241.894i −0.346050 + 0.413494i
\(586\) −27.1249 + 15.6606i −0.0462883 + 0.0267246i
\(587\) 774.944 + 774.944i 1.32018 + 1.32018i 0.913629 + 0.406549i \(0.133268\pi\)
0.406549 + 0.913629i \(0.366732\pi\)
\(588\) 260.241 136.786i 0.442587 0.232630i
\(589\) 715.736i 1.21517i
\(590\) −317.667 + 500.935i −0.538418 + 0.849042i
\(591\) 91.3640 + 104.263i 0.154592 + 0.176418i
\(592\) −185.161 + 49.6138i −0.312772 + 0.0838071i
\(593\) −165.220 44.2706i −0.278618 0.0746554i 0.116804 0.993155i \(-0.462735\pi\)
−0.395422 + 0.918500i \(0.629402\pi\)
\(594\) 192.897 128.561i 0.324742 0.216433i
\(595\) −871.935 + 207.226i −1.46544 + 0.348279i
\(596\) 401.159i 0.673085i
\(597\) 98.6232 + 65.9539i 0.165198 + 0.110476i
\(598\) −275.576 + 73.8403i −0.460829 + 0.123479i
\(599\) 291.458 504.819i 0.486574 0.842770i −0.513307 0.858205i \(-0.671580\pi\)
0.999881 + 0.0154348i \(0.00491323\pi\)
\(600\) −84.7026 + 194.488i −0.141171 + 0.324146i
\(601\) 831.971i 1.38431i −0.721749 0.692155i \(-0.756661\pi\)
0.721749 0.692155i \(-0.243339\pi\)
\(602\) −84.4680 299.506i −0.140312 0.497519i
\(603\) −297.092 + 38.8758i −0.492689 + 0.0644706i
\(604\) 460.499 265.869i 0.762415 0.440180i
\(605\) −309.592 + 284.877i −0.511722 + 0.470871i
\(606\) 70.3974 + 80.3364i 0.116167 + 0.132568i
\(607\) 676.244 + 181.199i 1.11408 + 0.298516i 0.768484 0.639869i \(-0.221012\pi\)
0.345592 + 0.938385i \(0.387678\pi\)
\(608\) −67.7867 + 67.7867i −0.111491 + 0.111491i
\(609\) 594.383 + 193.387i 0.975998 + 0.317549i
\(610\) −68.2318 130.408i −0.111855 0.213784i
\(611\) −384.405 + 221.936i −0.629141 + 0.363235i
\(612\) 425.691 + 176.718i 0.695573 + 0.288755i
\(613\) −257.420 960.706i −0.419935 1.56722i −0.774741 0.632279i \(-0.782120\pi\)
0.354805 0.934940i \(-0.384547\pi\)
\(614\) 385.410 222.516i 0.627703 0.362405i
\(615\) 44.3622 6.90474i 0.0721336 0.0112272i
\(616\) −120.189 + 1.57281i −0.195112 + 0.00255326i
\(617\) 78.0872 78.0872i 0.126559 0.126559i −0.640990 0.767549i \(-0.721476\pi\)
0.767549 + 0.640990i \(0.221476\pi\)
\(618\) 515.805 + 344.943i 0.834637 + 0.558160i
\(619\) 232.594 402.865i 0.375758 0.650832i −0.614682 0.788775i \(-0.710716\pi\)
0.990440 + 0.137943i \(0.0440491\pi\)
\(620\) −310.791 + 285.980i −0.501276 + 0.461259i
\(621\) −696.527 344.508i −1.12162 0.554764i
\(622\) −185.284 + 185.284i −0.297884 + 0.297884i
\(623\) −304.218 1078.69i −0.488311 1.73145i
\(624\) −79.6394 27.0688i −0.127627 0.0433795i
\(625\) 397.742 482.106i 0.636387 0.771370i
\(626\) −64.0188 + 110.884i −0.102266 + 0.177131i
\(627\) −307.980 20.3074i −0.491196 0.0323882i
\(628\) −9.59950 + 35.8258i −0.0152858 + 0.0570475i
\(629\) 1227.14i 1.95094i
\(630\) 406.405 + 182.441i 0.645088 + 0.289588i
\(631\) −547.403 −0.867516 −0.433758 0.901029i \(-0.642813\pi\)
−0.433758 + 0.901029i \(0.642813\pi\)
\(632\) −235.576 63.1225i −0.372747 0.0998773i
\(633\) 28.7512 436.039i 0.0454206 0.688845i
\(634\) 571.798 + 330.128i 0.901890 + 0.520706i
\(635\) 115.981 182.893i 0.182648 0.288021i
\(636\) 3.40427 10.0158i 0.00535263 0.0157480i
\(637\) −97.5464 329.322i −0.153134 0.516989i
\(638\) −180.699 180.699i −0.283227 0.283227i
\(639\) 12.5352 94.6403i 0.0196168 0.148107i
\(640\) −56.5197 2.34983i −0.0883121 0.00367161i
\(641\) −504.465 291.253i −0.786996 0.454372i 0.0519078 0.998652i \(-0.483470\pi\)
−0.838904 + 0.544279i \(0.816803\pi\)
\(642\) −193.336 + 289.103i −0.301147 + 0.450316i
\(643\) −111.140 111.140i −0.172847 0.172847i 0.615382 0.788229i \(-0.289002\pi\)
−0.788229 + 0.615382i \(0.789002\pi\)
\(644\) 206.011 + 346.277i 0.319893 + 0.537697i
\(645\) 278.173 380.728i 0.431277 0.590276i
\(646\) −306.844 531.469i −0.474990 0.822707i
\(647\) −692.021 + 185.427i −1.06958 + 0.286594i −0.750322 0.661072i \(-0.770102\pi\)
−0.319262 + 0.947666i \(0.603435\pi\)
\(648\) −114.240 198.588i −0.176296 0.306463i
\(649\) −254.637 441.044i −0.392353 0.679575i
\(650\) 203.595 + 141.299i 0.313223 + 0.217383i
\(651\) 593.208 + 659.350i 0.911226 + 1.01283i
\(652\) −118.417 118.417i −0.181620 0.181620i
\(653\) −96.2164 + 359.084i −0.147345 + 0.549900i 0.852295 + 0.523062i \(0.175210\pi\)
−0.999640 + 0.0268376i \(0.991456\pi\)
\(654\) −52.3219 + 45.8488i −0.0800030 + 0.0701052i
\(655\) 410.664 377.880i 0.626968 0.576916i
\(656\) 5.98617 + 10.3684i 0.00912526 + 0.0158054i
\(657\) −873.528 + 114.305i −1.32957 + 0.173981i
\(658\) 449.034 + 437.433i 0.682422 + 0.664792i
\(659\) 287.718 0.436598 0.218299 0.975882i \(-0.429949\pi\)
0.218299 + 0.975882i \(0.429949\pi\)
\(660\) −114.239 141.847i −0.173089 0.214920i
\(661\) 358.917 + 207.221i 0.542991 + 0.313496i 0.746290 0.665621i \(-0.231833\pi\)
−0.203299 + 0.979117i \(0.565166\pi\)
\(662\) −134.903 503.465i −0.203781 0.760521i
\(663\) 299.329 447.598i 0.451477 0.675110i
\(664\) 188.394 0.283725
\(665\) −281.827 521.902i −0.423799 0.784815i
\(666\) −371.702 + 483.625i −0.558111 + 0.726164i
\(667\) −221.712 + 827.439i −0.332401 + 1.24054i
\(668\) −107.130 399.816i −0.160375 0.598527i
\(669\) 647.050 566.999i 0.967189 0.847532i
\(670\) 51.4297 + 229.720i 0.0767608 + 0.342866i
\(671\) 126.364 0.188322
\(672\) −6.26426 + 118.629i −0.00932182 + 0.176531i
\(673\) 257.918 257.918i 0.383237 0.383237i −0.489030 0.872267i \(-0.662649\pi\)
0.872267 + 0.489030i \(0.162649\pi\)
\(674\) −424.870 735.897i −0.630371 1.09184i
\(675\) 162.396 + 655.174i 0.240586 + 0.970628i
\(676\) 119.867 207.616i 0.177318 0.307124i
\(677\) −151.079 + 563.836i −0.223160 + 0.832845i 0.759973 + 0.649955i \(0.225212\pi\)
−0.983133 + 0.182891i \(0.941455\pi\)
\(678\) 623.765 307.303i 0.920007 0.453249i
\(679\) −413.926 695.754i −0.609611 1.02467i
\(680\) 108.175 345.594i 0.159081 0.508226i
\(681\) −33.4419 168.469i −0.0491071 0.247385i
\(682\) −93.8509 350.256i −0.137611 0.513572i
\(683\) 399.678 107.093i 0.585180 0.156799i 0.0459306 0.998945i \(-0.485375\pi\)
0.539249 + 0.842146i \(0.318708\pi\)
\(684\) −40.0530 + 302.399i −0.0585570 + 0.442104i
\(685\) −597.837 + 312.798i −0.872755 + 0.456639i
\(686\) −410.245 + 258.838i −0.598025 + 0.377314i
\(687\) −178.643 + 88.0097i −0.260033 + 0.128107i
\(688\) 121.455 + 32.5438i 0.176534 + 0.0473020i
\(689\) −10.7026 6.17916i −0.0155336 0.00896830i
\(690\) −220.315 + 569.385i −0.319297 + 0.825196i
\(691\) −446.192 + 257.609i −0.645720 + 0.372806i −0.786814 0.617190i \(-0.788271\pi\)
0.141095 + 0.989996i \(0.454938\pi\)
\(692\) −350.352 350.352i −0.506289 0.506289i
\(693\) −300.548 + 236.549i −0.433692 + 0.341340i
\(694\) 85.1262i 0.122660i
\(695\) −102.901 459.627i −0.148059 0.661333i
\(696\) −189.949 + 166.449i −0.272916 + 0.239151i
\(697\) −74.0305 + 19.8364i −0.106213 + 0.0284597i
\(698\) 744.164 + 199.398i 1.06614 + 0.285671i
\(699\) −1017.22 345.745i −1.45525 0.494628i
\(700\) 114.017 330.908i 0.162881 0.472726i
\(701\) 733.940i 1.04699i 0.852029 + 0.523495i \(0.175372\pi\)
−0.852029 + 0.523495i \(0.824628\pi\)
\(702\) −253.546 + 85.7347i −0.361177 + 0.122129i
\(703\) 784.467 210.197i 1.11588 0.299000i
\(704\) 24.2839 42.0610i 0.0344942 0.0597457i
\(705\) −101.814 + 944.395i −0.144417 + 1.33957i
\(706\) 439.723i 0.622837i
\(707\) −126.239 122.978i −0.178556 0.173943i
\(708\) −451.501 + 222.435i −0.637713 + 0.314174i
\(709\) 897.760 518.322i 1.26623 0.731061i 0.291961 0.956430i \(-0.405692\pi\)
0.974273 + 0.225369i \(0.0723588\pi\)
\(710\) −74.9411 3.11571i −0.105551 0.00438833i
\(711\) −717.202 + 296.416i −1.00872 + 0.416900i
\(712\) 437.430 + 117.209i 0.614367 + 0.164619i
\(713\) −859.506 + 859.506i −1.20548 + 1.20548i
\(714\) −723.156 235.285i −1.01282 0.329531i
\(715\) −188.527 + 98.6401i −0.263674 + 0.137958i
\(716\) −69.2845 + 40.0014i −0.0967661 + 0.0558679i
\(717\) 19.2228 291.531i 0.0268100 0.406598i
\(718\) −135.209 504.606i −0.188313 0.702793i
\(719\) −746.305 + 430.879i −1.03798 + 0.599276i −0.919259 0.393653i \(-0.871211\pi\)
−0.118716 + 0.992928i \(0.537878\pi\)
\(720\) −147.313 + 103.435i −0.204602 + 0.143660i
\(721\) −893.259 500.254i −1.23892 0.693834i
\(722\) −73.8100 + 73.8100i −0.102230 + 0.102230i
\(723\) −86.0350 + 128.651i −0.118997 + 0.177941i
\(724\) −210.145 + 363.981i −0.290255 + 0.502737i
\(725\) 673.077 317.279i 0.928382 0.437626i
\(726\) −350.157 + 69.5079i −0.482310 + 0.0957409i
\(727\) −381.491 + 381.491i −0.524747 + 0.524747i −0.919001 0.394255i \(-0.871003\pi\)
0.394255 + 0.919001i \(0.371003\pi\)
\(728\) 134.511 + 34.1620i 0.184767 + 0.0469258i
\(729\) −672.850 280.560i −0.922976 0.384856i
\(730\) 151.217 + 675.439i 0.207147 + 0.925259i
\(731\) −402.466 + 697.092i −0.550569 + 0.953614i
\(732\) 8.21683 124.616i 0.0112252 0.170240i
\(733\) 137.212 512.084i 0.187193 0.698614i −0.806957 0.590610i \(-0.798887\pi\)
0.994150 0.108004i \(-0.0344460\pi\)
\(734\) 878.081i 1.19629i
\(735\) −692.181 247.206i −0.941743 0.336335i
\(736\) −162.806 −0.221204
\(737\) −195.226 52.3106i −0.264892 0.0709777i
\(738\) 35.1845 + 14.6062i 0.0476754 + 0.0197916i
\(739\) 607.558 + 350.774i 0.822135 + 0.474660i 0.851152 0.524919i \(-0.175904\pi\)
−0.0290169 + 0.999579i \(0.509238\pi\)
\(740\) 404.716 + 256.649i 0.546913 + 0.346824i
\(741\) 337.406 + 114.682i 0.455339 + 0.154766i
\(742\) −4.29634 + 16.9166i −0.00579022 + 0.0227986i
\(743\) −701.159 701.159i −0.943687 0.943687i 0.0548100 0.998497i \(-0.482545\pi\)
−0.998497 + 0.0548100i \(0.982545\pi\)
\(744\) −351.514 + 69.7771i −0.472465 + 0.0937865i
\(745\) −738.001 + 679.085i −0.990606 + 0.911524i
\(746\) 176.154 + 101.702i 0.236131 + 0.136330i
\(747\) 475.873 364.558i 0.637046 0.488029i
\(748\) 219.847 + 219.847i 0.293914 + 0.293914i
\(749\) 280.387 500.661i 0.374348 0.668439i
\(750\) 501.179 173.405i 0.668239 0.231207i
\(751\) −257.969 446.816i −0.343501 0.594962i 0.641579 0.767057i \(-0.278280\pi\)
−0.985080 + 0.172095i \(0.944946\pi\)
\(752\) −244.667 + 65.5584i −0.325355 + 0.0871787i
\(753\) −64.9059 + 984.357i −0.0861964 + 1.30725i
\(754\) 147.526 + 255.522i 0.195658 + 0.338889i
\(755\) −1268.65 397.102i −1.68033 0.525962i
\(756\) 213.733 + 311.772i 0.282716 + 0.412397i
\(757\) 787.928 + 787.928i 1.04086 + 1.04086i 0.999129 + 0.0417273i \(0.0132861\pi\)
0.0417273 + 0.999129i \(0.486714\pi\)
\(758\) 272.245 1016.03i 0.359162 1.34041i
\(759\) −345.457 394.230i −0.455148 0.519408i
\(760\) 239.455