Properties

Label 210.3.w.a.17.7
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.7
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-0.897104 + 2.86273i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.28576 - 2.57532i) q^{5} +(2.27330 - 3.58219i) q^{6} +(-1.16075 - 6.90309i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-7.39041 - 5.13633i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-0.897104 + 2.86273i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.28576 - 2.57532i) q^{5} +(2.27330 - 3.58219i) q^{6} +(-1.16075 - 6.90309i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-7.39041 - 5.13633i) q^{9} +(-6.79709 + 1.94926i) q^{10} +(7.83418 + 4.52306i) q^{11} +(-4.41656 + 4.06128i) q^{12} +(-15.3607 - 15.3607i) q^{13} +(-0.941098 + 9.85466i) q^{14} +(3.52767 + 14.5793i) q^{15} +(2.00000 + 3.46410i) q^{16} +(25.1750 - 6.74562i) q^{17} +(8.21546 + 9.72143i) q^{18} +(-0.500582 - 0.867034i) q^{19} +(9.99847 - 0.174832i) q^{20} +(20.8030 + 2.86989i) q^{21} +(-9.04613 - 9.04613i) q^{22} +(3.42602 - 12.7861i) q^{23} +(7.51966 - 3.93125i) q^{24} +(11.7354 - 22.0744i) q^{25} +(15.3607 + 26.6055i) q^{26} +(21.3339 - 16.5489i) q^{27} +(4.89262 - 13.1173i) q^{28} +8.69269 q^{29} +(0.517496 - 21.2069i) q^{30} +(29.5586 + 17.0656i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(-19.9764 + 18.3694i) q^{33} -36.8588 q^{34} +(-22.7524 - 26.5957i) q^{35} +(-7.66423 - 16.2868i) q^{36} +(4.54478 - 16.9613i) q^{37} +(0.366452 + 1.36762i) q^{38} +(57.7536 - 30.1933i) q^{39} +(-13.7222 - 3.42087i) q^{40} -18.4160 q^{41} +(-27.3669 - 11.5348i) q^{42} +(24.0320 - 24.0320i) q^{43} +(9.04613 + 15.6684i) q^{44} +(-44.9012 - 2.98037i) q^{45} +(-9.36005 + 16.2121i) q^{46} +(-8.15043 + 30.4178i) q^{47} +(-11.7110 + 2.61779i) q^{48} +(-46.3053 + 16.0255i) q^{49} +(-24.1107 + 25.8587i) q^{50} +(-3.27373 + 78.1207i) q^{51} +(-11.2448 - 41.9662i) q^{52} +(-48.0000 + 12.8616i) q^{53} +(-35.1999 + 14.7975i) q^{54} +(45.2237 - 0.790777i) q^{55} +(-11.4847 + 16.1277i) q^{56} +(2.93115 - 0.655210i) q^{57} +(-11.8744 - 3.18175i) q^{58} +(78.7190 + 45.4484i) q^{59} +(-8.46917 + 28.7797i) q^{60} +(56.9490 - 32.8795i) q^{61} +(-34.1313 - 34.1313i) q^{62} +(-26.8782 + 56.9786i) q^{63} +8.00000i q^{64} +(-105.391 - 26.2735i) q^{65} +(34.0119 - 17.7813i) q^{66} +(-13.1252 + 3.51690i) q^{67} +(50.3500 + 13.4912i) q^{68} +(33.5295 + 21.2782i) q^{69} +(21.3456 + 44.6583i) q^{70} -86.5925i q^{71} +(4.50816 + 25.0535i) q^{72} +(-100.506 + 26.9306i) q^{73} +(-12.4166 + 21.5061i) q^{74} +(52.6651 + 53.3984i) q^{75} -2.00233i q^{76} +(22.1296 - 59.3302i) q^{77} +(-89.9444 + 20.1056i) q^{78} +(-69.3172 + 40.0203i) q^{79} +(17.4927 + 9.69565i) q^{80} +(28.2363 + 75.9191i) q^{81} +(25.1568 + 6.74074i) q^{82} +(-11.6859 + 11.6859i) q^{83} +(33.1619 + 25.7738i) q^{84} +(90.5218 - 93.7439i) q^{85} +(-41.6247 + 24.0320i) q^{86} +(-7.79825 + 24.8848i) q^{87} +(-6.62222 - 24.7145i) q^{88} +(-62.2002 + 35.9113i) q^{89} +(60.2453 + 20.5062i) q^{90} +(-88.2064 + 123.866i) q^{91} +(18.7201 - 18.7201i) q^{92} +(-75.3714 + 69.3084i) q^{93} +(22.2674 - 38.5682i) q^{94} +(-4.37826 - 2.42674i) q^{95} +(16.9557 + 0.710545i) q^{96} +(5.41316 - 5.41316i) q^{97} +(69.1200 - 4.94228i) q^{98} +(-34.6658 - 73.6662i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −0.897104 + 2.86273i −0.299035 + 0.954242i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 4.28576 2.57532i 0.857151 0.515064i
\(6\) 2.27330 3.58219i 0.378883 0.597032i
\(7\) −1.16075 6.90309i −0.165821 0.986156i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −7.39041 5.13633i −0.821156 0.570703i
\(10\) −6.79709 + 1.94926i −0.679709 + 0.194926i
\(11\) 7.83418 + 4.52306i 0.712198 + 0.411188i 0.811874 0.583832i \(-0.198447\pi\)
−0.0996765 + 0.995020i \(0.531781\pi\)
\(12\) −4.41656 + 4.06128i −0.368046 + 0.338440i
\(13\) −15.3607 15.3607i −1.18159 1.18159i −0.979332 0.202260i \(-0.935171\pi\)
−0.202260 0.979332i \(-0.564829\pi\)
\(14\) −0.941098 + 9.85466i −0.0672213 + 0.703904i
\(15\) 3.52767 + 14.5793i 0.235178 + 0.971952i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 25.1750 6.74562i 1.48088 0.396801i 0.574235 0.818690i \(-0.305299\pi\)
0.906648 + 0.421889i \(0.138633\pi\)
\(18\) 8.21546 + 9.72143i 0.456414 + 0.540080i
\(19\) −0.500582 0.867034i −0.0263464 0.0456333i 0.852552 0.522643i \(-0.175054\pi\)
−0.878898 + 0.477010i \(0.841721\pi\)
\(20\) 9.99847 0.174832i 0.499924 0.00874161i
\(21\) 20.8030 + 2.86989i 0.990618 + 0.136662i
\(22\) −9.04613 9.04613i −0.411188 0.411188i
\(23\) 3.42602 12.7861i 0.148957 0.555916i −0.850590 0.525829i \(-0.823755\pi\)
0.999547 0.0300867i \(-0.00957834\pi\)
\(24\) 7.51966 3.93125i 0.313319 0.163802i
\(25\) 11.7354 22.0744i 0.469417 0.882977i
\(26\) 15.3607 + 26.6055i 0.590796 + 1.02329i
\(27\) 21.3339 16.5489i 0.790143 0.612922i
\(28\) 4.89262 13.1173i 0.174736 0.468473i
\(29\) 8.69269 0.299748 0.149874 0.988705i \(-0.452113\pi\)
0.149874 + 0.988705i \(0.452113\pi\)
\(30\) 0.517496 21.2069i 0.0172499 0.706896i
\(31\) 29.5586 + 17.0656i 0.953502 + 0.550504i 0.894167 0.447734i \(-0.147769\pi\)
0.0593347 + 0.998238i \(0.481102\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) −19.9764 + 18.3694i −0.605344 + 0.556650i
\(34\) −36.8588 −1.08408
\(35\) −22.7524 26.5957i −0.650068 0.759876i
\(36\) −7.66423 16.2868i −0.212895 0.452411i
\(37\) 4.54478 16.9613i 0.122832 0.458414i −0.876921 0.480634i \(-0.840407\pi\)
0.999753 + 0.0222195i \(0.00707326\pi\)
\(38\) 0.366452 + 1.36762i 0.00964346 + 0.0359899i
\(39\) 57.7536 30.1933i 1.48086 0.774188i
\(40\) −13.7222 3.42087i −0.343054 0.0855217i
\(41\) −18.4160 −0.449172 −0.224586 0.974454i \(-0.572103\pi\)
−0.224586 + 0.974454i \(0.572103\pi\)
\(42\) −27.3669 11.5348i −0.651594 0.274637i
\(43\) 24.0320 24.0320i 0.558885 0.558885i −0.370105 0.928990i \(-0.620678\pi\)
0.928990 + 0.370105i \(0.120678\pi\)
\(44\) 9.04613 + 15.6684i 0.205594 + 0.356099i
\(45\) −44.9012 2.98037i −0.997804 0.0662304i
\(46\) −9.36005 + 16.2121i −0.203479 + 0.352437i
\(47\) −8.15043 + 30.4178i −0.173413 + 0.647188i 0.823403 + 0.567457i \(0.192073\pi\)
−0.996816 + 0.0797306i \(0.974594\pi\)
\(48\) −11.7110 + 2.61779i −0.243979 + 0.0545374i
\(49\) −46.3053 + 16.0255i −0.945007 + 0.327051i
\(50\) −24.1107 + 25.8587i −0.482214 + 0.517175i
\(51\) −3.27373 + 78.1207i −0.0641908 + 1.53178i
\(52\) −11.2448 41.9662i −0.216246 0.807042i
\(53\) −48.0000 + 12.8616i −0.905660 + 0.242671i −0.681445 0.731869i \(-0.738648\pi\)
−0.224214 + 0.974540i \(0.571982\pi\)
\(54\) −35.1999 + 14.7975i −0.651850 + 0.274027i
\(55\) 45.2237 0.790777i 0.822249 0.0143778i
\(56\) −11.4847 + 16.1277i −0.205084 + 0.287994i
\(57\) 2.93115 0.655210i 0.0514238 0.0114949i
\(58\) −11.8744 3.18175i −0.204732 0.0548577i
\(59\) 78.7190 + 45.4484i 1.33422 + 0.770312i 0.985943 0.167079i \(-0.0534336\pi\)
0.348277 + 0.937392i \(0.386767\pi\)
\(60\) −8.46917 + 28.7797i −0.141153 + 0.479662i
\(61\) 56.9490 32.8795i 0.933589 0.539008i 0.0456445 0.998958i \(-0.485466\pi\)
0.887945 + 0.459950i \(0.152133\pi\)
\(62\) −34.1313 34.1313i −0.550504 0.550504i
\(63\) −26.8782 + 56.9786i −0.426637 + 0.904423i
\(64\) 8.00000i 0.125000i
\(65\) −105.391 26.2735i −1.62140 0.404207i
\(66\) 34.0119 17.7813i 0.515332 0.269413i
\(67\) −13.1252 + 3.51690i −0.195899 + 0.0524910i −0.355434 0.934701i \(-0.615667\pi\)
0.159535 + 0.987192i \(0.449000\pi\)
\(68\) 50.3500 + 13.4912i 0.740441 + 0.198401i
\(69\) 33.5295 + 21.2782i 0.485935 + 0.308380i
\(70\) 21.3456 + 44.6583i 0.304937 + 0.637976i
\(71\) 86.5925i 1.21961i −0.792551 0.609806i \(-0.791247\pi\)
0.792551 0.609806i \(-0.208753\pi\)
\(72\) 4.50816 + 25.0535i 0.0626133 + 0.347965i
\(73\) −100.506 + 26.9306i −1.37680 + 0.368913i −0.869958 0.493126i \(-0.835854\pi\)
−0.506843 + 0.862039i \(0.669187\pi\)
\(74\) −12.4166 + 21.5061i −0.167791 + 0.290623i
\(75\) 52.6651 + 53.3984i 0.702201 + 0.711978i
\(76\) 2.00233i 0.0263464i
\(77\) 22.1296 59.3302i 0.287398 0.770521i
\(78\) −89.9444 + 20.1056i −1.15313 + 0.257764i
\(79\) −69.3172 + 40.0203i −0.877433 + 0.506586i −0.869811 0.493385i \(-0.835760\pi\)
−0.00762204 + 0.999971i \(0.502426\pi\)
\(80\) 17.4927 + 9.69565i 0.218659 + 0.121196i
\(81\) 28.2363 + 75.9191i 0.348596 + 0.937273i
\(82\) 25.1568 + 6.74074i 0.306790 + 0.0822041i
\(83\) −11.6859 + 11.6859i −0.140794 + 0.140794i −0.773991 0.633197i \(-0.781742\pi\)
0.633197 + 0.773991i \(0.281742\pi\)
\(84\) 33.1619 + 25.7738i 0.394785 + 0.306831i
\(85\) 90.5218 93.7439i 1.06496 1.10287i
\(86\) −41.6247 + 24.0320i −0.484008 + 0.279442i
\(87\) −7.79825 + 24.8848i −0.0896351 + 0.286032i
\(88\) −6.62222 24.7145i −0.0752525 0.280846i
\(89\) −62.2002 + 35.9113i −0.698879 + 0.403498i −0.806930 0.590648i \(-0.798872\pi\)
0.108051 + 0.994145i \(0.465539\pi\)
\(90\) 60.2453 + 20.5062i 0.669392 + 0.227847i
\(91\) −88.2064 + 123.866i −0.969301 + 1.36117i
\(92\) 18.7201 18.7201i 0.203479 0.203479i
\(93\) −75.3714 + 69.3084i −0.810445 + 0.745252i
\(94\) 22.2674 38.5682i 0.236887 0.410301i
\(95\) −4.37826 2.42674i −0.0460870 0.0255446i
\(96\) 16.9557 + 0.710545i 0.176622 + 0.00740151i
\(97\) 5.41316 5.41316i 0.0558058 0.0558058i −0.678653 0.734459i \(-0.737436\pi\)
0.734459 + 0.678653i \(0.237436\pi\)
\(98\) 69.1200 4.94228i 0.705306 0.0504314i
\(99\) −34.6658 73.6662i −0.350160 0.744103i
\(100\) 42.4008 26.4986i 0.424008 0.264986i
\(101\) 77.7709 134.703i 0.770009 1.33370i −0.167548 0.985864i \(-0.553585\pi\)
0.937557 0.347831i \(-0.113082\pi\)
\(102\) 33.0662 105.517i 0.324178 1.03448i
\(103\) −15.4924 + 57.8186i −0.150412 + 0.561345i 0.849043 + 0.528324i \(0.177179\pi\)
−0.999455 + 0.0330210i \(0.989487\pi\)
\(104\) 61.4428i 0.590796i
\(105\) 96.5474 41.2747i 0.919499 0.393092i
\(106\) 70.2768 0.662989
\(107\) −93.8880 25.1572i −0.877458 0.235114i −0.208148 0.978097i \(-0.566744\pi\)
−0.669310 + 0.742983i \(0.733410\pi\)
\(108\) 53.5002 7.32966i 0.495373 0.0678673i
\(109\) −180.188 104.032i −1.65310 0.954419i −0.975786 0.218726i \(-0.929810\pi\)
−0.677315 0.735693i \(-0.736857\pi\)
\(110\) −62.0662 15.4728i −0.564238 0.140662i
\(111\) 44.4785 + 28.2265i 0.400707 + 0.254293i
\(112\) 21.5915 17.8271i 0.192781 0.159171i
\(113\) 36.4626 + 36.4626i 0.322678 + 0.322678i 0.849794 0.527115i \(-0.176726\pi\)
−0.527115 + 0.849794i \(0.676726\pi\)
\(114\) −4.24386 0.177843i −0.0372268 0.00156003i
\(115\) −18.2452 63.6211i −0.158654 0.553227i
\(116\) 15.0562 + 8.69269i 0.129795 + 0.0749370i
\(117\) 34.6242 + 192.419i 0.295934 + 1.64461i
\(118\) −90.8969 90.8969i −0.770312 0.770312i
\(119\) −75.7874 165.955i −0.636869 1.39458i
\(120\) 22.1032 36.2139i 0.184193 0.301783i
\(121\) −19.5838 33.9201i −0.161850 0.280332i
\(122\) −89.8285 + 24.0695i −0.736299 + 0.197291i
\(123\) 16.5211 52.7201i 0.134318 0.428618i
\(124\) 34.1313 + 59.1171i 0.275252 + 0.476751i
\(125\) −6.55354 124.828i −0.0524283 0.998625i
\(126\) 57.5719 67.9962i 0.456920 0.539652i
\(127\) −18.3314 18.3314i −0.144342 0.144342i 0.631243 0.775585i \(-0.282545\pi\)
−0.775585 + 0.631243i \(0.782545\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 47.2379 + 90.3564i 0.366185 + 0.700437i
\(130\) 134.350 + 74.4660i 1.03346 + 0.572815i
\(131\) 82.2663 + 142.489i 0.627987 + 1.08771i 0.987955 + 0.154741i \(0.0494544\pi\)
−0.359968 + 0.932965i \(0.617212\pi\)
\(132\) −52.9695 + 11.8404i −0.401284 + 0.0897003i
\(133\) −5.40416 + 4.46197i −0.0406328 + 0.0335486i
\(134\) 19.2167 0.143408
\(135\) 48.8130 125.866i 0.361578 0.932342i
\(136\) −63.8413 36.8588i −0.469421 0.271020i
\(137\) 60.3021 + 225.051i 0.440162 + 1.64271i 0.728404 + 0.685148i \(0.240262\pi\)
−0.288243 + 0.957557i \(0.593071\pi\)
\(138\) −38.0138 41.3392i −0.275463 0.299559i
\(139\) 254.372 1.83002 0.915008 0.403436i \(-0.132184\pi\)
0.915008 + 0.403436i \(0.132184\pi\)
\(140\) −12.8126 68.8174i −0.0915184 0.491553i
\(141\) −79.7661 50.6204i −0.565717 0.359010i
\(142\) −31.6950 + 118.288i −0.223205 + 0.833011i
\(143\) −50.8610 189.816i −0.355671 1.32738i
\(144\) 3.01194 35.8738i 0.0209163 0.249123i
\(145\) 37.2548 22.3865i 0.256930 0.154390i
\(146\) 147.152 1.00789
\(147\) −4.33585 146.936i −0.0294956 0.999565i
\(148\) 24.8331 24.8331i 0.167791 0.167791i
\(149\) 56.7486 + 98.2914i 0.380863 + 0.659674i 0.991186 0.132479i \(-0.0422936\pi\)
−0.610323 + 0.792153i \(0.708960\pi\)
\(150\) −52.3967 92.2203i −0.349311 0.614802i
\(151\) 52.1826 90.3830i 0.345580 0.598563i −0.639879 0.768476i \(-0.721015\pi\)
0.985459 + 0.169913i \(0.0543488\pi\)
\(152\) −0.732903 + 2.73523i −0.00482173 + 0.0179949i
\(153\) −220.701 79.4542i −1.44249 0.519308i
\(154\) −51.9460 + 72.9465i −0.337312 + 0.473679i
\(155\) 170.630 2.98362i 1.10084 0.0192492i
\(156\) 130.226 + 5.45723i 0.834779 + 0.0349823i
\(157\) −52.0236 194.155i −0.331361 1.23666i −0.907761 0.419488i \(-0.862210\pi\)
0.576400 0.817168i \(-0.304457\pi\)
\(158\) 109.338 29.2969i 0.692010 0.185423i
\(159\) 6.24186 148.949i 0.0392570 0.936786i
\(160\) −20.3466 19.6473i −0.127166 0.122795i
\(161\) −92.2402 8.80873i −0.572920 0.0547126i
\(162\) −10.7831 114.043i −0.0665626 0.703967i
\(163\) 108.249 + 29.0052i 0.664103 + 0.177946i 0.575097 0.818085i \(-0.304964\pi\)
0.0890058 + 0.996031i \(0.471631\pi\)
\(164\) −31.8975 18.4160i −0.194497 0.112293i
\(165\) −38.3066 + 130.173i −0.232161 + 0.788925i
\(166\) 20.2405 11.6859i 0.121931 0.0703968i
\(167\) 226.123 + 226.123i 1.35403 + 1.35403i 0.881103 + 0.472925i \(0.156802\pi\)
0.472925 + 0.881103i \(0.343198\pi\)
\(168\) −35.8662 47.3457i −0.213489 0.281820i
\(169\) 302.902i 1.79232i
\(170\) −157.968 + 94.9232i −0.929222 + 0.558372i
\(171\) −0.753863 + 8.97889i −0.00440855 + 0.0525081i
\(172\) 65.6568 17.5927i 0.381725 0.102283i
\(173\) 107.227 + 28.7313i 0.619808 + 0.166077i 0.555040 0.831823i \(-0.312703\pi\)
0.0647675 + 0.997900i \(0.479369\pi\)
\(174\) 19.7611 31.1389i 0.113569 0.178959i
\(175\) −166.004 55.3879i −0.948592 0.316503i
\(176\) 36.1845i 0.205594i
\(177\) −200.726 + 184.579i −1.13404 + 1.04282i
\(178\) 98.1115 26.2889i 0.551188 0.147690i
\(179\) −97.3690 + 168.648i −0.543961 + 0.942168i 0.454711 + 0.890639i \(0.349743\pi\)
−0.998672 + 0.0515286i \(0.983591\pi\)
\(180\) −74.7908 50.0633i −0.415504 0.278130i
\(181\) 252.910i 1.39729i 0.715468 + 0.698645i \(0.246213\pi\)
−0.715468 + 0.698645i \(0.753787\pi\)
\(182\) 165.830 136.919i 0.911156 0.752299i
\(183\) 43.0359 + 192.526i 0.235169 + 1.05205i
\(184\) −32.4242 + 18.7201i −0.176218 + 0.101740i
\(185\) −24.2031 84.3964i −0.130828 0.456197i
\(186\) 128.328 67.0892i 0.689935 0.360695i
\(187\) 227.736 + 61.0218i 1.21784 + 0.326320i
\(188\) −44.5348 + 44.5348i −0.236887 + 0.236887i
\(189\) −139.002 128.061i −0.735459 0.677569i
\(190\) 5.09257 + 4.91754i 0.0268030 + 0.0258818i
\(191\) 34.4963 19.9164i 0.180609 0.104274i −0.406970 0.913442i \(-0.633415\pi\)
0.587579 + 0.809167i \(0.300081\pi\)
\(192\) −22.9018 7.17683i −0.119280 0.0373793i
\(193\) 0.418109 + 1.56040i 0.00216637 + 0.00808500i 0.967001 0.254774i \(-0.0820012\pi\)
−0.964834 + 0.262859i \(0.915335\pi\)
\(194\) −9.37587 + 5.41316i −0.0483292 + 0.0279029i
\(195\) 169.760 278.135i 0.870566 1.42634i
\(196\) −96.2287 18.5484i −0.490963 0.0946347i
\(197\) 61.6336 61.6336i 0.312861 0.312861i −0.533156 0.846017i \(-0.678994\pi\)
0.846017 + 0.533156i \(0.178994\pi\)
\(198\) 20.3907 + 113.318i 0.102983 + 0.572315i
\(199\) −95.7953 + 165.922i −0.481383 + 0.833781i −0.999772 0.0213648i \(-0.993199\pi\)
0.518388 + 0.855145i \(0.326532\pi\)
\(200\) −67.6197 + 20.6780i −0.338098 + 0.103390i
\(201\) 1.70679 40.7290i 0.00849150 0.202632i
\(202\) −155.542 + 155.542i −0.770009 + 0.770009i
\(203\) −10.0900 60.0065i −0.0497045 0.295598i
\(204\) −83.7910 + 132.035i −0.410740 + 0.647232i
\(205\) −78.9266 + 47.4272i −0.385008 + 0.231352i
\(206\) 42.3261 73.3110i 0.205467 0.355879i
\(207\) −90.9931 + 76.8971i −0.439580 + 0.371484i
\(208\) 22.4896 83.9324i 0.108123 0.403521i
\(209\) 9.05666i 0.0433333i
\(210\) −146.994 + 21.0435i −0.699970 + 0.100207i
\(211\) −339.969 −1.61123 −0.805614 0.592441i \(-0.798164\pi\)
−0.805614 + 0.592441i \(0.798164\pi\)
\(212\) −95.9999 25.7231i −0.452830 0.121335i
\(213\) 247.891 + 77.6825i 1.16381 + 0.364706i
\(214\) 119.045 + 68.7308i 0.556286 + 0.321172i
\(215\) 41.1052 164.886i 0.191187 0.766910i
\(216\) −75.7655 9.56994i −0.350766 0.0443053i
\(217\) 83.4957 223.854i 0.384773 1.03159i
\(218\) 208.063 + 208.063i 0.954419 + 0.954419i
\(219\) 13.0697 311.882i 0.0596792 1.42412i
\(220\) 79.1206 + 43.8541i 0.359639 + 0.199337i
\(221\) −490.323 283.088i −2.21866 1.28094i
\(222\) −50.4272 54.8384i −0.227149 0.247020i
\(223\) 214.803 + 214.803i 0.963244 + 0.963244i 0.999348 0.0361038i \(-0.0114947\pi\)
−0.0361038 + 0.999348i \(0.511495\pi\)
\(224\) −36.0197 + 16.4493i −0.160802 + 0.0734342i
\(225\) −200.111 + 102.862i −0.889382 + 0.457164i
\(226\) −36.4626 63.1551i −0.161339 0.279448i
\(227\) −115.836 + 31.0382i −0.510292 + 0.136732i −0.504772 0.863252i \(-0.668424\pi\)
−0.00551960 + 0.999985i \(0.501757\pi\)
\(228\) 5.73212 + 1.79630i 0.0251409 + 0.00787850i
\(229\) 3.87396 + 6.70989i 0.0169168 + 0.0293008i 0.874360 0.485278i \(-0.161282\pi\)
−0.857443 + 0.514579i \(0.827948\pi\)
\(230\) 1.63644 + 93.5862i 0.00711495 + 0.406897i
\(231\) 149.993 + 116.576i 0.649322 + 0.504660i
\(232\) −17.3854 17.3854i −0.0749370 0.0749370i
\(233\) −24.7867 + 92.5053i −0.106381 + 0.397018i −0.998498 0.0547853i \(-0.982553\pi\)
0.892117 + 0.451804i \(0.149219\pi\)
\(234\) 23.1328 275.523i 0.0988580 1.17745i
\(235\) 43.4049 + 151.353i 0.184702 + 0.644057i
\(236\) 90.8969 + 157.438i 0.385156 + 0.667110i
\(237\) −52.3825 234.339i −0.221023 0.988771i
\(238\) 42.7837 + 254.439i 0.179763 + 1.06907i
\(239\) −22.0230 −0.0921463 −0.0460732 0.998938i \(-0.514671\pi\)
−0.0460732 + 0.998938i \(0.514671\pi\)
\(240\) −43.4488 + 41.3788i −0.181037 + 0.172412i
\(241\) 245.178 + 141.553i 1.01733 + 0.587358i 0.913331 0.407218i \(-0.133501\pi\)
0.104004 + 0.994577i \(0.466835\pi\)
\(242\) 14.3363 + 53.5039i 0.0592411 + 0.221091i
\(243\) −242.667 + 12.7254i −0.998628 + 0.0523678i
\(244\) 131.518 0.539008
\(245\) −157.183 + 187.932i −0.641562 + 0.767071i
\(246\) −41.8651 + 65.9698i −0.170183 + 0.268170i
\(247\) −5.62895 + 21.0075i −0.0227893 + 0.0850507i
\(248\) −24.9858 93.2484i −0.100749 0.376002i
\(249\) −22.9700 43.9369i −0.0922491 0.176453i
\(250\) −36.7380 + 172.917i −0.146952 + 0.691668i
\(251\) −457.677 −1.82341 −0.911707 0.410841i \(-0.865235\pi\)
−0.911707 + 0.410841i \(0.865235\pi\)
\(252\) −103.533 + 71.8117i −0.410845 + 0.284967i
\(253\) 84.6722 84.6722i 0.334673 0.334673i
\(254\) 18.3314 + 31.7510i 0.0721710 + 0.125004i
\(255\) 187.156 + 343.237i 0.733943 + 1.34603i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −4.46476 + 16.6627i −0.0173726 + 0.0648355i −0.974068 0.226256i \(-0.927352\pi\)
0.956695 + 0.291091i \(0.0940182\pi\)
\(258\) −31.4555 140.719i −0.121920 0.545424i
\(259\) −122.361 11.6852i −0.472436 0.0451166i
\(260\) −156.269 150.898i −0.601035 0.580377i
\(261\) −64.2426 44.6485i −0.246140 0.171067i
\(262\) −60.2231 224.756i −0.229859 0.857847i
\(263\) 77.8737 20.8662i 0.296098 0.0793392i −0.107712 0.994182i \(-0.534352\pi\)
0.403810 + 0.914843i \(0.367686\pi\)
\(264\) 76.6916 + 3.21384i 0.290499 + 0.0121736i
\(265\) −172.594 + 178.737i −0.651296 + 0.674479i
\(266\) 9.01542 4.11710i 0.0338926 0.0154778i
\(267\) −47.0042 210.278i −0.176046 0.787560i
\(268\) −26.2505 7.03380i −0.0979496 0.0262455i
\(269\) 324.065 + 187.099i 1.20470 + 0.695534i 0.961597 0.274466i \(-0.0885010\pi\)
0.243104 + 0.970000i \(0.421834\pi\)
\(270\) −112.750 + 154.070i −0.417593 + 0.570628i
\(271\) 360.726 208.265i 1.33109 0.768506i 0.345624 0.938373i \(-0.387667\pi\)
0.985467 + 0.169867i \(0.0543339\pi\)
\(272\) 73.7175 + 73.7175i 0.271020 + 0.271020i
\(273\) −275.465 363.632i −1.00903 1.33198i
\(274\) 329.497i 1.20254i
\(275\) 191.781 119.855i 0.697387 0.435835i
\(276\) 36.7967 + 70.3844i 0.133321 + 0.255016i
\(277\) −137.721 + 36.9022i −0.497187 + 0.133221i −0.498694 0.866778i \(-0.666187\pi\)
0.00150717 + 0.999999i \(0.499520\pi\)
\(278\) −347.479 93.1067i −1.24992 0.334916i
\(279\) −130.795 277.944i −0.468799 0.996217i
\(280\) −7.68663 + 98.6961i −0.0274522 + 0.352486i
\(281\) 62.0801i 0.220926i 0.993880 + 0.110463i \(0.0352333\pi\)
−0.993880 + 0.110463i \(0.964767\pi\)
\(282\) 90.4342 + 98.3452i 0.320689 + 0.348742i
\(283\) 39.5986 10.6104i 0.139924 0.0374926i −0.188177 0.982135i \(-0.560258\pi\)
0.328101 + 0.944642i \(0.393591\pi\)
\(284\) 86.5925 149.983i 0.304903 0.528108i
\(285\) 10.8748 10.3567i 0.0381573 0.0363394i
\(286\) 277.910i 0.971712i
\(287\) 21.3763 + 127.128i 0.0744820 + 0.442953i
\(288\) −17.2451 + 47.9020i −0.0598788 + 0.166327i
\(289\) 337.996 195.142i 1.16954 0.675233i
\(290\) −59.0850 + 16.9443i −0.203741 + 0.0584287i
\(291\) 10.6402 + 20.3526i 0.0365644 + 0.0699401i
\(292\) −201.013 53.8612i −0.688400 0.184456i
\(293\) 368.013 368.013i 1.25602 1.25602i 0.303038 0.952978i \(-0.401999\pi\)
0.952978 0.303038i \(-0.0980009\pi\)
\(294\) −47.8594 + 202.305i −0.162787 + 0.688114i
\(295\) 454.415 7.94585i 1.54039 0.0269351i
\(296\) −43.0122 + 24.8331i −0.145312 + 0.0838957i
\(297\) 241.985 33.1525i 0.814764 0.111625i
\(298\) −41.5428 155.040i −0.139406 0.520268i
\(299\) −249.029 + 143.777i −0.832873 + 0.480859i
\(300\) 37.8203 + 145.154i 0.126068 + 0.483846i
\(301\) −193.790 138.000i −0.643822 0.458473i
\(302\) −104.365 + 104.365i −0.345580 + 0.345580i
\(303\) 315.850 + 343.480i 1.04241 + 1.13360i
\(304\) 2.00233 3.46813i 0.00658661 0.0114083i
\(305\) 159.394 287.575i 0.522604 0.942870i
\(306\) 272.401 + 189.319i 0.890201 + 0.618689i
\(307\) −50.8387 + 50.8387i −0.165598 + 0.165598i −0.785042 0.619443i \(-0.787358\pi\)
0.619443 + 0.785042i \(0.287358\pi\)
\(308\) 97.6598 80.6332i 0.317077 0.261796i
\(309\) −151.620 96.2199i −0.490681 0.311391i
\(310\) −234.177 58.3793i −0.755411 0.188320i
\(311\) −49.3893 + 85.5448i −0.158808 + 0.275064i −0.934439 0.356123i \(-0.884098\pi\)
0.775631 + 0.631187i \(0.217432\pi\)
\(312\) −175.894 55.1206i −0.563762 0.176668i
\(313\) −98.5456 + 367.777i −0.314842 + 1.17501i 0.609294 + 0.792944i \(0.291453\pi\)
−0.924136 + 0.382063i \(0.875214\pi\)
\(314\) 284.262i 0.905295i
\(315\) 31.5451 + 313.417i 0.100143 + 0.994973i
\(316\) −160.081 −0.506586
\(317\) 195.717 + 52.4421i 0.617402 + 0.165432i 0.553947 0.832552i \(-0.313121\pi\)
0.0634558 + 0.997985i \(0.479788\pi\)
\(318\) −63.0456 + 201.183i −0.198257 + 0.632652i
\(319\) 68.1001 + 39.3176i 0.213480 + 0.123253i
\(320\) 20.6026 + 34.2861i 0.0643831 + 0.107144i
\(321\) 156.246 246.207i 0.486746 0.767000i
\(322\) 122.778 + 45.7952i 0.381299 + 0.142221i
\(323\) −18.4508 18.4508i −0.0571233 0.0571233i
\(324\) −27.0125 + 159.732i −0.0833718 + 0.493000i
\(325\) −519.343 + 158.814i −1.59798 + 0.488658i
\(326\) −137.254 79.2436i −0.421024 0.243078i
\(327\) 459.462 422.502i 1.40508 1.29206i
\(328\) 36.8321 + 36.8321i 0.112293 + 0.112293i
\(329\) 219.438 + 20.9558i 0.666983 + 0.0636954i
\(330\) 99.9743 163.798i 0.302952 0.496357i
\(331\) −260.425 451.069i −0.786782 1.36275i −0.927929 0.372758i \(-0.878412\pi\)
0.141147 0.989989i \(-0.454921\pi\)
\(332\) −31.9264 + 8.55465i −0.0961639 + 0.0257670i
\(333\) −120.707 + 102.008i −0.362483 + 0.306330i
\(334\) −226.123 391.656i −0.677014 1.17262i
\(335\) −47.1945 + 48.8743i −0.140879 + 0.145893i
\(336\) 31.6643 + 77.8034i 0.0942391 + 0.231558i
\(337\) 319.919 + 319.919i 0.949314 + 0.949314i 0.998776 0.0494620i \(-0.0157507\pi\)
−0.0494620 + 0.998776i \(0.515751\pi\)
\(338\) 110.870 413.772i 0.328017 1.22418i
\(339\) −137.093 + 71.6718i −0.404405 + 0.211421i
\(340\) 250.532 71.8473i 0.736860 0.211316i
\(341\) 154.378 + 267.390i 0.452721 + 0.784136i
\(342\) 4.31630 11.9895i 0.0126207 0.0350569i
\(343\) 164.374 + 301.048i 0.479225 + 0.877692i
\(344\) −96.1282 −0.279442
\(345\) 198.498 + 4.84379i 0.575355 + 0.0140400i
\(346\) −135.958 78.4955i −0.392943 0.226865i
\(347\) 56.7622 + 211.839i 0.163580 + 0.610488i 0.998217 + 0.0596883i \(0.0190107\pi\)
−0.834637 + 0.550800i \(0.814323\pi\)
\(348\) −38.3918 + 35.3035i −0.110321 + 0.101447i
\(349\) 236.118 0.676555 0.338277 0.941046i \(-0.390156\pi\)
0.338277 + 0.941046i \(0.390156\pi\)
\(350\) 206.492 + 136.423i 0.589976 + 0.389780i
\(351\) −581.906 73.5005i −1.65785 0.209403i
\(352\) 13.2444 49.4290i 0.0376263 0.140423i
\(353\) −70.0392 261.390i −0.198411 0.740481i −0.991357 0.131189i \(-0.958121\pi\)
0.792946 0.609292i \(-0.208546\pi\)
\(354\) 341.757 178.669i 0.965415 0.504715i
\(355\) −223.004 371.114i −0.628179 1.04539i
\(356\) −143.645 −0.403498
\(357\) 543.074 68.0795i 1.52122 0.190699i
\(358\) 194.738 194.738i 0.543961 0.543961i
\(359\) 25.7908 + 44.6709i 0.0718405 + 0.124431i 0.899708 0.436492i \(-0.143779\pi\)
−0.827867 + 0.560924i \(0.810446\pi\)
\(360\) 83.8417 + 95.7631i 0.232893 + 0.266009i
\(361\) 179.999 311.767i 0.498612 0.863621i
\(362\) 92.5713 345.481i 0.255722 0.954367i
\(363\) 114.673 25.6332i 0.315903 0.0706148i
\(364\) −276.644 + 126.336i −0.760011 + 0.347077i
\(365\) −361.391 + 374.255i −0.990113 + 1.02535i
\(366\) 11.6812 278.747i 0.0319158 0.761604i
\(367\) 178.215 + 665.106i 0.485598 + 1.81228i 0.577352 + 0.816496i \(0.304086\pi\)
−0.0917533 + 0.995782i \(0.529247\pi\)
\(368\) 51.1443 13.7041i 0.138979 0.0372393i
\(369\) 136.102 + 94.5908i 0.368840 + 0.256344i
\(370\) 2.17082 + 124.147i 0.00586707 + 0.335531i
\(371\) 144.500 + 316.419i 0.389489 + 0.852882i
\(372\) −199.855 + 44.6743i −0.537246 + 0.120092i
\(373\) −539.199 144.478i −1.44557 0.387340i −0.551091 0.834445i \(-0.685788\pi\)
−0.894482 + 0.447105i \(0.852455\pi\)
\(374\) −288.758 166.715i −0.772080 0.445761i
\(375\) 363.228 + 93.2228i 0.968608 + 0.248594i
\(376\) 77.1365 44.5348i 0.205150 0.118444i
\(377\) −133.526 133.526i −0.354180 0.354180i
\(378\) 143.007 + 225.812i 0.378324 + 0.597387i
\(379\) 205.024i 0.540962i −0.962725 0.270481i \(-0.912817\pi\)
0.962725 0.270481i \(-0.0871827\pi\)
\(380\) −5.15664 8.58149i −0.0135701 0.0225829i
\(381\) 68.9231 36.0327i 0.180900 0.0945739i
\(382\) −54.4127 + 14.5798i −0.142442 + 0.0381671i
\(383\) −14.1827 3.80025i −0.0370306 0.00992232i 0.240256 0.970710i \(-0.422769\pi\)
−0.277287 + 0.960787i \(0.589435\pi\)
\(384\) 28.6576 + 18.1864i 0.0746291 + 0.0473604i
\(385\) −57.9521 311.266i −0.150525 0.808482i
\(386\) 2.28459i 0.00591863i
\(387\) −301.043 + 54.1702i −0.777889 + 0.139975i
\(388\) 14.7890 3.96271i 0.0381161 0.0102132i
\(389\) 106.806 184.994i 0.274567 0.475563i −0.695459 0.718566i \(-0.744799\pi\)
0.970026 + 0.243002i \(0.0781323\pi\)
\(390\) −333.702 + 317.803i −0.855645 + 0.814881i
\(391\) 345.000i 0.882353i
\(392\) 124.662 + 60.5597i 0.318014 + 0.154489i
\(393\) −481.710 + 107.678i −1.22572 + 0.273990i
\(394\) −106.753 + 61.6336i −0.270946 + 0.156430i
\(395\) −194.012 + 350.032i −0.491169 + 0.886156i
\(396\) 13.6232 162.259i 0.0344021 0.409746i
\(397\) −498.188 133.489i −1.25488 0.336245i −0.430661 0.902514i \(-0.641720\pi\)
−0.824220 + 0.566269i \(0.808386\pi\)
\(398\) 191.591 191.591i 0.481383 0.481383i
\(399\) −7.92530 19.4735i −0.0198629 0.0488057i
\(400\) 99.9389 3.49611i 0.249847 0.00874028i
\(401\) −37.5169 + 21.6604i −0.0935583 + 0.0540159i −0.546049 0.837753i \(-0.683869\pi\)
0.452491 + 0.891769i \(0.350536\pi\)
\(402\) −17.2394 + 55.0121i −0.0428840 + 0.136846i
\(403\) −191.900 716.180i −0.476178 1.77712i
\(404\) 269.406 155.542i 0.666848 0.385005i
\(405\) 316.530 + 252.653i 0.781556 + 0.623836i
\(406\) −8.18068 + 85.6636i −0.0201494 + 0.210994i
\(407\) 112.322 112.322i 0.275975 0.275975i
\(408\) 162.789 149.694i 0.398992 0.366897i
\(409\) 179.671 311.199i 0.439293 0.760877i −0.558342 0.829611i \(-0.688562\pi\)
0.997635 + 0.0687334i \(0.0218958\pi\)
\(410\) 125.175 35.8976i 0.305306 0.0875552i
\(411\) −698.356 29.2653i −1.69916 0.0712051i
\(412\) −84.6523 + 84.6523i −0.205467 + 0.205467i
\(413\) 222.362 596.159i 0.538407 1.44348i
\(414\) 152.445 71.7377i 0.368225 0.173279i
\(415\) −19.9879 + 80.1777i −0.0481637 + 0.193199i
\(416\) −61.4428 + 106.422i −0.147699 + 0.255822i
\(417\) −228.198 + 728.198i −0.547238 + 1.74628i
\(418\) −3.31497 + 12.3716i −0.00793054 + 0.0295972i
\(419\) 281.779i 0.672504i −0.941772 0.336252i \(-0.890841\pi\)
0.941772 0.336252i \(-0.109159\pi\)
\(420\) 208.500 + 25.0575i 0.496428 + 0.0596607i
\(421\) 577.752 1.37233 0.686166 0.727445i \(-0.259292\pi\)
0.686166 + 0.727445i \(0.259292\pi\)
\(422\) 464.406 + 124.437i 1.10049 + 0.294875i
\(423\) 216.471 182.937i 0.511752 0.432475i
\(424\) 121.723 + 70.2768i 0.287083 + 0.165747i
\(425\) 146.534 634.886i 0.344785 1.49385i
\(426\) −310.191 196.851i −0.728148 0.462090i
\(427\) −293.073 354.959i −0.686355 0.831286i
\(428\) −137.462 137.462i −0.321172 0.321172i
\(429\) 589.018 + 24.6834i 1.37300 + 0.0575371i
\(430\) −116.503 + 210.193i −0.270938 + 0.488820i
\(431\) −102.754 59.3253i −0.238409 0.137646i 0.376036 0.926605i \(-0.377287\pi\)
−0.614445 + 0.788959i \(0.710620\pi\)
\(432\) 99.9948 + 40.8049i 0.231469 + 0.0944558i
\(433\) 26.5938 + 26.5938i 0.0614175 + 0.0614175i 0.737148 0.675731i \(-0.236172\pi\)
−0.675731 + 0.737148i \(0.736172\pi\)
\(434\) −195.994 + 275.229i −0.451598 + 0.634168i
\(435\) 30.6650 + 126.733i 0.0704942 + 0.291341i
\(436\) −208.063 360.376i −0.477209 0.826551i
\(437\) −12.8010 + 3.43001i −0.0292928 + 0.00784898i
\(438\) −132.010 + 421.255i −0.301393 + 0.961769i
\(439\) −130.238 225.578i −0.296669 0.513845i 0.678703 0.734413i \(-0.262542\pi\)
−0.975372 + 0.220568i \(0.929209\pi\)
\(440\) −92.0290 88.8659i −0.209157 0.201968i
\(441\) 424.527 + 119.405i 0.962647 + 0.270759i
\(442\) 566.176 + 566.176i 1.28094 + 1.28094i
\(443\) −62.8734 + 234.647i −0.141926 + 0.529676i 0.857947 + 0.513739i \(0.171740\pi\)
−0.999873 + 0.0159375i \(0.994927\pi\)
\(444\) 48.8125 + 93.3683i 0.109938 + 0.210289i
\(445\) −174.092 + 314.093i −0.391218 + 0.705826i
\(446\) −214.803 372.051i −0.481622 0.834194i
\(447\) −332.291 + 74.2780i −0.743380 + 0.166170i
\(448\) 55.2247 9.28597i 0.123269 0.0207276i
\(449\) −50.5826 −0.112656 −0.0563280 0.998412i \(-0.517939\pi\)
−0.0563280 + 0.998412i \(0.517939\pi\)
\(450\) 311.007 67.2663i 0.691126 0.149481i
\(451\) −144.274 83.2969i −0.319899 0.184694i
\(452\) 26.6925 + 99.6178i 0.0590542 + 0.220393i
\(453\) 211.928 + 230.468i 0.467833 + 0.508758i
\(454\) 169.596 0.373560
\(455\) −59.0360 + 758.020i −0.129749 + 1.66598i
\(456\) −7.17273 4.55189i −0.0157297 0.00998221i
\(457\) 33.4156 124.709i 0.0731194 0.272885i −0.919681 0.392667i \(-0.871553\pi\)
0.992800 + 0.119781i \(0.0382193\pi\)
\(458\) −2.83593 10.5838i −0.00619199 0.0231088i
\(459\) 425.448 560.529i 0.926901 1.22120i
\(460\) 32.0195 128.440i 0.0696077 0.279218i
\(461\) 320.833 0.695951 0.347975 0.937504i \(-0.386869\pi\)
0.347975 + 0.937504i \(0.386869\pi\)
\(462\) −162.225 214.148i −0.351136 0.463523i
\(463\) 47.6951 47.6951i 0.103013 0.103013i −0.653722 0.756735i \(-0.726793\pi\)
0.756735 + 0.653722i \(0.226793\pi\)
\(464\) 17.3854 + 30.1124i 0.0374685 + 0.0648974i
\(465\) −144.532 + 491.145i −0.310821 + 1.05622i
\(466\) 67.7186 117.292i 0.145319 0.251700i
\(467\) −48.4328 + 180.754i −0.103711 + 0.387053i −0.998196 0.0600447i \(-0.980876\pi\)
0.894485 + 0.447098i \(0.147542\pi\)
\(468\) −132.448 + 367.904i −0.283009 + 0.786120i
\(469\) 39.5126 + 86.5225i 0.0842485 + 0.184483i
\(470\) −3.89306 222.640i −0.00828310 0.473702i
\(471\) 602.483 + 25.2477i 1.27916 + 0.0536044i
\(472\) −66.5411 248.335i −0.140977 0.526133i
\(473\) 296.970 79.5728i 0.627843 0.168230i
\(474\) −14.2181 + 339.286i −0.0299960 + 0.715793i
\(475\) −25.0138 + 0.875045i −0.0526606 + 0.00184220i
\(476\) 34.6877 363.231i 0.0728733 0.763090i
\(477\) 420.801 + 151.491i 0.882181 + 0.317592i
\(478\) 30.0839 + 8.06097i 0.0629371 + 0.0168639i
\(479\) 9.08244 + 5.24375i 0.0189613 + 0.0109473i 0.509451 0.860500i \(-0.329849\pi\)
−0.490489 + 0.871447i \(0.663182\pi\)
\(480\) 74.4978 40.6211i 0.155204 0.0846273i
\(481\) −330.349 + 190.727i −0.686796 + 0.396522i
\(482\) −283.107 283.107i −0.587358 0.587358i
\(483\) 107.966 256.156i 0.223532 0.530344i
\(484\) 78.3352i 0.161850i
\(485\) 9.25886 37.1401i 0.0190904 0.0765776i
\(486\) 336.147 + 71.4389i 0.691659 + 0.146994i
\(487\) −641.241 + 171.820i −1.31672 + 0.352813i −0.847747 0.530401i \(-0.822041\pi\)
−0.468970 + 0.883214i \(0.655375\pi\)
\(488\) −179.657 48.1389i −0.368149 0.0986453i
\(489\) −180.144 + 283.866i −0.368393 + 0.580503i
\(490\) 283.504 199.188i 0.578579 0.406505i
\(491\) 141.943i 0.289089i 0.989498 + 0.144544i \(0.0461717\pi\)
−0.989498 + 0.144544i \(0.953828\pi\)
\(492\) 81.3354 74.7927i 0.165316 0.152018i
\(493\) 218.839 58.6376i 0.443892 0.118940i
\(494\) 15.3786 26.6365i 0.0311307 0.0539200i
\(495\) −338.283 226.440i −0.683401 0.457454i
\(496\) 136.525i 0.275252i
\(497\) −597.756 + 100.512i −1.20273 + 0.202237i
\(498\) 15.2956 + 68.4265i 0.0307141 + 0.137403i
\(499\) 230.967 133.349i 0.462860 0.267232i −0.250386 0.968146i \(-0.580558\pi\)
0.713246 + 0.700914i \(0.247224\pi\)
\(500\) 113.477 222.762i 0.226954 0.445524i
\(501\) −850.183 + 444.472i −1.69697 + 0.887169i
\(502\) 625.198 + 167.521i 1.24542 + 0.333708i
\(503\) −554.413 + 554.413i −1.10221 + 1.10221i −0.108070 + 0.994143i \(0.534467\pi\)
−0.994143 + 0.108070i \(0.965533\pi\)
\(504\) 167.714 60.2010i 0.332765 0.119446i
\(505\) −13.5969 777.590i −0.0269245 1.53978i
\(506\) −146.657 + 84.6722i −0.289835 + 0.167336i
\(507\) −867.125 271.734i −1.71031 0.535965i
\(508\) −13.4195 50.0824i −0.0264164 0.0985874i
\(509\) −136.350 + 78.7219i −0.267879 + 0.154660i −0.627923 0.778275i \(-0.716095\pi\)
0.360044 + 0.932935i \(0.382762\pi\)
\(510\) −130.026 537.374i −0.254952 1.05368i
\(511\) 302.567 + 662.545i 0.592108 + 1.29657i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −25.0278 10.2131i −0.0487871 0.0199086i
\(514\) 12.1980 21.1275i 0.0237314 0.0411040i
\(515\) 82.5046 + 287.694i 0.160203 + 0.558630i
\(516\) −8.53793 + 203.740i −0.0165464 + 0.394845i
\(517\) −201.434 + 201.434i −0.389620 + 0.389620i
\(518\) 162.871 + 60.7495i 0.314423 + 0.117277i
\(519\) −178.444 + 281.186i −0.343822 + 0.541784i
\(520\) 158.235 + 263.329i 0.304298 + 0.506402i
\(521\) −204.683 + 354.522i −0.392866 + 0.680464i −0.992826 0.119566i \(-0.961850\pi\)
0.599960 + 0.800030i \(0.295183\pi\)
\(522\) 71.4145 + 84.5054i 0.136809 + 0.161888i
\(523\) −110.134 + 411.024i −0.210581 + 0.785897i 0.777095 + 0.629383i \(0.216692\pi\)
−0.987676 + 0.156514i \(0.949974\pi\)
\(524\) 329.065i 0.627987i
\(525\) 307.483 425.534i 0.585682 0.810541i
\(526\) −114.015 −0.216759
\(527\) 859.255 + 230.237i 1.63047 + 0.436882i
\(528\) −103.586 32.4613i −0.196186 0.0614797i
\(529\) 306.381 + 176.889i 0.579171 + 0.334384i
\(530\) 301.189 180.985i 0.568282 0.341482i
\(531\) −348.327 740.209i −0.655984 1.39399i
\(532\) −13.8223 + 2.32420i −0.0259817 + 0.00436879i
\(533\) 282.883 + 282.883i 0.530737 + 0.530737i
\(534\) −12.7583 + 304.450i −0.0238920 + 0.570132i
\(535\) −467.169 + 133.974i −0.873214 + 0.250419i
\(536\) 33.2843 + 19.2167i 0.0620976 + 0.0358520i
\(537\) −395.443 430.036i −0.736393 0.800811i
\(538\) −374.197 374.197i −0.695534 0.695534i
\(539\) −435.248 83.8956i −0.807511 0.155650i
\(540\) 210.413 169.194i 0.389653 0.313321i
\(541\) −31.4934 54.5481i −0.0582132 0.100828i 0.835450 0.549566i \(-0.185207\pi\)
−0.893663 + 0.448738i \(0.851874\pi\)
\(542\) −568.991 + 152.461i −1.04980 + 0.281293i
\(543\) −724.011 226.886i −1.33335 0.417838i
\(544\) −73.7175 127.683i −0.135510 0.234711i
\(545\) −1040.16 + 18.1881i −1.90855 + 0.0333726i
\(546\) 243.193 + 597.557i 0.445409 + 1.09443i
\(547\) 283.231 + 283.231i 0.517790 + 0.517790i 0.916902 0.399112i \(-0.130682\pi\)
−0.399112 + 0.916902i \(0.630682\pi\)
\(548\) −120.604 + 450.101i −0.220081 + 0.821353i
\(549\) −589.756 49.5156i −1.07424 0.0901924i
\(550\) −305.848 + 93.5278i −0.556087 + 0.170050i
\(551\) −4.35141 7.53686i −0.00789729 0.0136785i
\(552\) −24.5027 109.615i −0.0443889 0.198579i
\(553\) 356.724 + 432.050i 0.645070 + 0.781283i
\(554\) 201.637 0.363966
\(555\) 263.317 + 6.42552i 0.474444 + 0.0115775i
\(556\) 440.585 + 254.372i 0.792420 + 0.457504i
\(557\) −54.2162 202.338i −0.0973361 0.363263i 0.900027 0.435834i \(-0.143546\pi\)
−0.997363 + 0.0725705i \(0.976880\pi\)
\(558\) 76.9346 + 427.553i 0.137876 + 0.766225i
\(559\) −738.298 −1.32075
\(560\) 46.6254 132.008i 0.0832596 0.235728i
\(561\) −378.992 + 597.204i −0.675565 + 1.06453i
\(562\) 22.7229 84.8031i 0.0404322 0.150895i
\(563\) 189.279 + 706.397i 0.336196 + 1.25470i 0.902566 + 0.430551i \(0.141681\pi\)
−0.566370 + 0.824151i \(0.691653\pi\)
\(564\) −87.5386 167.443i −0.155210 0.296885i
\(565\) 250.173 + 62.3670i 0.442784 + 0.110384i
\(566\) −57.9764 −0.102432
\(567\) 491.301 283.040i 0.866493 0.499189i
\(568\) −173.185 + 173.185i −0.304903 + 0.304903i
\(569\) −37.1577 64.3590i −0.0653035 0.113109i 0.831525 0.555487i \(-0.187468\pi\)
−0.896829 + 0.442378i \(0.854135\pi\)
\(570\) −18.6461 + 10.1671i −0.0327125 + 0.0178370i
\(571\) 320.383 554.920i 0.561092 0.971839i −0.436310 0.899797i \(-0.643715\pi\)
0.997402 0.0720429i \(-0.0229519\pi\)
\(572\) 101.722 379.632i 0.177836 0.663691i
\(573\) 26.0685 + 116.620i 0.0454948 + 0.203526i
\(574\) 17.3313 181.484i 0.0301939 0.316174i
\(575\) −242.039 225.677i −0.420938 0.392482i
\(576\) 41.0906 59.1233i 0.0713379 0.102645i
\(577\) −215.109 802.797i −0.372805 1.39133i −0.856525 0.516106i \(-0.827381\pi\)
0.483719 0.875223i \(-0.339286\pi\)
\(578\) −533.139 + 142.854i −0.922385 + 0.247152i
\(579\) −4.84210 0.202913i −0.00836287 0.000350455i
\(580\) 86.9137 1.51976i 0.149851 0.00262028i
\(581\) 94.2330 + 67.1043i 0.162191 + 0.115498i
\(582\) −7.08527 31.6967i −0.0121740 0.0544617i
\(583\) −434.214 116.347i −0.744792 0.199566i
\(584\) 254.874 + 147.152i 0.436428 + 0.251972i
\(585\) 643.933 + 735.494i 1.10074 + 1.25725i
\(586\) −637.417 + 368.013i −1.08774 + 0.628008i
\(587\) 62.0401 + 62.0401i 0.105690 + 0.105690i 0.757974 0.652284i \(-0.226189\pi\)
−0.652284 + 0.757974i \(0.726189\pi\)
\(588\) 139.426 258.837i 0.237119 0.440198i
\(589\) 34.1710i 0.0580153i
\(590\) −623.651 155.473i −1.05704 0.263514i
\(591\) 121.148 + 231.732i 0.204989 + 0.392101i
\(592\) 67.8453 18.1791i 0.114604 0.0307079i
\(593\) 441.882 + 118.402i 0.745164 + 0.199666i 0.611372 0.791343i \(-0.290618\pi\)
0.133792 + 0.991009i \(0.457285\pi\)
\(594\) −342.692 43.2854i −0.576923 0.0728711i
\(595\) −752.195 516.068i −1.26419 0.867340i
\(596\) 226.994i 0.380863i
\(597\) −389.052 423.085i −0.651678 0.708686i
\(598\) 392.806 105.252i 0.656866 0.176007i
\(599\) −369.179 + 639.437i −0.616326 + 1.06751i 0.373824 + 0.927500i \(0.378046\pi\)
−0.990150 + 0.140008i \(0.955287\pi\)
\(600\) 1.46652 212.127i 0.00244420 0.353545i
\(601\) 975.970i 1.62391i 0.583720 + 0.811955i \(0.301597\pi\)
−0.583720 + 0.811955i \(0.698403\pi\)
\(602\) 214.211 + 259.444i 0.355832 + 0.430970i
\(603\) 115.065 + 41.4242i 0.190821 + 0.0686969i
\(604\) 180.766 104.365i 0.299281 0.172790i
\(605\) −171.287 94.9389i −0.283118 0.156924i
\(606\) −305.737 584.811i −0.504516 0.965035i
\(607\) −316.958 84.9286i −0.522171 0.139915i −0.0119003 0.999929i \(-0.503788\pi\)
−0.510271 + 0.860014i \(0.670455\pi\)
\(608\) −4.00466 + 4.00466i −0.00658661 + 0.00658661i
\(609\) 180.834 + 24.9471i 0.296936 + 0.0409640i
\(610\) −322.996 + 334.493i −0.529502 + 0.548349i
\(611\) 592.435 342.043i 0.969615 0.559808i
\(612\) −302.812 358.320i −0.494790 0.585490i
\(613\) 12.9285 + 48.2499i 0.0210906 + 0.0787110i 0.975669 0.219249i \(-0.0703606\pi\)
−0.954578 + 0.297960i \(0.903694\pi\)
\(614\) 88.0552 50.8387i 0.143412 0.0827992i
\(615\) −64.9658 268.493i −0.105635 0.436573i
\(616\) −162.920 + 74.4011i −0.264480 + 0.120781i
\(617\) 788.450 788.450i 1.27788 1.27788i 0.336022 0.941854i \(-0.390918\pi\)
0.941854 0.336022i \(-0.109082\pi\)
\(618\) 171.898 + 186.936i 0.278153 + 0.302485i
\(619\) −428.784 + 742.675i −0.692704 + 1.19980i 0.278245 + 0.960510i \(0.410247\pi\)
−0.970949 + 0.239288i \(0.923086\pi\)
\(620\) 298.524 + 165.463i 0.481490 + 0.266875i
\(621\) −138.505 329.473i −0.223036 0.530553i
\(622\) 98.7787 98.7787i 0.158808 0.158808i
\(623\) 320.098 + 387.690i 0.513800 + 0.622295i
\(624\) 220.100 + 139.678i 0.352724 + 0.223842i
\(625\) −349.559 518.105i −0.559295 0.828969i
\(626\) 269.232 466.323i 0.430082 0.744925i
\(627\) 25.9267 + 8.12476i 0.0413505 + 0.0129582i
\(628\) 104.047 388.310i 0.165680 0.618328i
\(629\) 457.659i 0.727598i
\(630\) 71.6269 439.681i 0.113694 0.697907i
\(631\) 373.933 0.592604 0.296302 0.955094i \(-0.404246\pi\)
0.296302 + 0.955094i \(0.404246\pi\)
\(632\) 218.675 + 58.5938i 0.346005 + 0.0927117i
\(633\) 304.988 973.238i 0.481813 1.53750i
\(634\) −248.159 143.274i −0.391417 0.225985i
\(635\) −125.773 31.3547i −0.198068 0.0493775i
\(636\) 159.760 251.745i 0.251195 0.395826i
\(637\) 957.444 + 465.120i 1.50305 + 0.730172i
\(638\) −78.6352 78.6352i −0.123253 0.123253i
\(639\) −444.767 + 639.954i −0.696037 + 1.00149i
\(640\) −15.5941 54.3767i −0.0243657 0.0849636i
\(641\) 18.2627 + 10.5440i 0.0284909 + 0.0164492i 0.514178 0.857684i \(-0.328097\pi\)
−0.485687 + 0.874133i \(0.661430\pi\)
\(642\) −303.554 + 279.135i −0.472825 + 0.434790i
\(643\) −114.721 114.721i −0.178416 0.178416i 0.612249 0.790665i \(-0.290265\pi\)
−0.790665 + 0.612249i \(0.790265\pi\)
\(644\) −150.956 107.497i −0.234404 0.166921i
\(645\) 435.147 + 265.593i 0.674647 + 0.411772i
\(646\) 18.4508 + 31.9578i 0.0285617 + 0.0494703i
\(647\) −728.662 + 195.244i −1.12622 + 0.301769i −0.773396 0.633923i \(-0.781444\pi\)
−0.352819 + 0.935691i \(0.614777\pi\)
\(648\) 95.3657 208.311i 0.147169 0.321467i
\(649\) 411.132 + 712.102i 0.633486 + 1.09723i
\(650\) 767.565 26.8513i 1.18087 0.0413098i
\(651\) 565.929 + 439.846i 0.869323 + 0.675646i
\(652\) 158.487 + 158.487i 0.243078 + 0.243078i
\(653\) 145.275 542.173i 0.222473 0.830280i −0.760928 0.648836i \(-0.775256\pi\)
0.983401 0.181444i \(-0.0580772\pi\)
\(654\) −782.283 + 408.974i −1.19615 + 0.625342i
\(655\) 719.530 + 398.813i 1.09852 + 0.608875i
\(656\) −36.8321 63.7950i −0.0561464 0.0972485i
\(657\) 881.108 + 317.206i 1.34111 + 0.482809i
\(658\) −292.087 108.946i −0.443901 0.165571i
\(659\) −69.2421 −0.105072 −0.0525358 0.998619i \(-0.516730\pi\)
−0.0525358 + 0.998619i \(0.516730\pi\)
\(660\) −196.522 + 187.159i −0.297760 + 0.283574i
\(661\) 576.339 + 332.749i 0.871920 + 0.503403i 0.867986 0.496589i \(-0.165414\pi\)
0.00393407 + 0.999992i \(0.498748\pi\)
\(662\) 190.644 + 711.494i 0.287982 + 1.07476i
\(663\) 1250.27 1149.70i 1.88578 1.73409i
\(664\) 46.7435 0.0703968
\(665\) −11.6699 + 33.0404i −0.0175488 + 0.0496848i
\(666\) 202.226 95.1634i 0.303642 0.142888i
\(667\) 29.7813 111.145i 0.0446497 0.166635i
\(668\) 165.533 + 617.778i 0.247804 + 0.924818i
\(669\) −807.625 + 422.223i −1.20721 + 0.631125i
\(670\) 82.3581 49.4892i 0.122923 0.0738645i
\(671\) 594.864 0.886534
\(672\) −14.7763 117.871i −0.0219885 0.175404i
\(673\) 331.687 331.687i 0.492848 0.492848i −0.416355 0.909202i \(-0.636692\pi\)
0.909202 + 0.416355i \(0.136692\pi\)
\(674\) −319.919 554.116i −0.474657 0.822130i
\(675\) −114.945 665.141i −0.170289 0.985394i
\(676\) −302.902 + 524.641i −0.448080 + 0.776097i
\(677\) 86.2431 321.864i 0.127390 0.475426i −0.872523 0.488572i \(-0.837518\pi\)
0.999914 + 0.0131458i \(0.00418455\pi\)
\(678\) 213.507 47.7258i 0.314907 0.0703921i
\(679\) −43.6508 31.0842i −0.0642870 0.0457794i
\(680\) −368.531 + 6.44410i −0.541958 + 0.00947662i
\(681\) 15.0632 359.452i 0.0221193 0.527830i
\(682\) −113.012 421.768i −0.165707 0.618429i
\(683\) −308.844 + 82.7545i −0.452188 + 0.121163i −0.477723 0.878511i \(-0.658538\pi\)
0.0255353 + 0.999674i \(0.491871\pi\)
\(684\) −10.2846 + 14.7980i −0.0150360 + 0.0216345i
\(685\) 838.018 + 809.215i 1.22338 + 1.18134i
\(686\) −114.348 471.405i −0.166688 0.687179i
\(687\) −22.6839 + 5.07061i −0.0330188 + 0.00738080i
\(688\) 131.314 + 35.1854i 0.190863 + 0.0511415i
\(689\) 934.875 + 539.750i 1.35686 + 0.783382i
\(690\) −269.380 79.2719i −0.390406 0.114887i
\(691\) 606.389 350.099i 0.877553 0.506656i 0.00770241 0.999970i \(-0.497548\pi\)
0.869851 + 0.493315i \(0.164215\pi\)
\(692\) 156.991 + 156.991i 0.226865 + 0.226865i
\(693\) −468.286 + 324.809i −0.675738 + 0.468700i
\(694\) 310.155i 0.446909i
\(695\) 1090.18 655.090i 1.56860 0.942576i
\(696\) 65.3661 34.1731i 0.0939168 0.0490993i
\(697\) −463.624 + 124.228i −0.665170 + 0.178232i
\(698\) −322.543 86.4251i −0.462096 0.123818i
\(699\) −242.581 153.944i −0.347040 0.220235i
\(700\) −232.139 261.938i −0.331627 0.374198i
\(701\) 722.146i 1.03017i −0.857141 0.515083i \(-0.827761\pi\)
0.857141 0.515083i \(-0.172239\pi\)
\(702\) 767.995 + 313.396i 1.09401 + 0.446433i
\(703\) −16.9811 + 4.55007i −0.0241552 + 0.00647236i
\(704\) −36.1845 + 62.6734i −0.0513984 + 0.0890247i
\(705\) −472.222 11.5233i −0.669819 0.0163451i
\(706\) 382.701i 0.542070i
\(707\) −1020.14 380.504i −1.44291 0.538195i
\(708\) −532.246 + 118.975i −0.751760 + 0.168043i
\(709\) 185.418 107.051i 0.261520 0.150989i −0.363508 0.931591i \(-0.618421\pi\)
0.625028 + 0.780603i \(0.285088\pi\)
\(710\) 168.791 + 588.577i 0.237734 + 0.828981i
\(711\) 717.840 + 60.2695i 1.00962 + 0.0847672i
\(712\) 196.223 + 52.5778i 0.275594 + 0.0738452i
\(713\) 319.471 319.471i 0.448065 0.448065i
\(714\) −766.772 105.781i −1.07391 0.148152i
\(715\) −706.815 682.521i −0.988552 0.954575i
\(716\) −337.296 + 194.738i −0.471084 + 0.271980i
\(717\) 19.7569 63.0457i 0.0275549 0.0879299i
\(718\) −18.8801 70.4617i −0.0262955 0.0981360i
\(719\) −483.185 + 278.967i −0.672023 + 0.387993i −0.796843 0.604187i \(-0.793498\pi\)
0.124820 + 0.992179i \(0.460165\pi\)
\(720\) −79.4781 161.503i −0.110386 0.224310i
\(721\) 417.110 + 39.8330i 0.578516 + 0.0552469i
\(722\) −359.998 + 359.998i −0.498612 + 0.498612i
\(723\) −625.179 + 574.889i −0.864701 + 0.795143i
\(724\) −252.910 + 438.052i −0.349323 + 0.605044i
\(725\) 102.012 191.886i 0.140707 0.264671i
\(726\) −166.028 6.95759i −0.228689 0.00958345i
\(727\) 364.579 364.579i 0.501484 0.501484i −0.410415 0.911899i \(-0.634616\pi\)
0.911899 + 0.410415i \(0.134616\pi\)
\(728\) 424.145 71.3195i 0.582617 0.0979663i
\(729\) 181.268 706.104i 0.248653 0.968593i
\(730\) 630.656 378.963i 0.863913 0.519127i
\(731\) 442.896 767.118i 0.605877 1.04941i
\(732\) −117.985 + 376.500i −0.161182 + 0.514344i
\(733\) −25.6801 + 95.8396i −0.0350343 + 0.130750i −0.981228 0.192851i \(-0.938227\pi\)
0.946194 + 0.323600i \(0.104893\pi\)
\(734\) 973.782i 1.32668i
\(735\) −396.990 618.566i −0.540123 0.841586i
\(736\) −74.8804 −0.101740
\(737\) −118.733 31.8143i −0.161103 0.0431673i
\(738\) −151.296 179.030i −0.205008 0.242588i
\(739\) 134.441 + 77.6197i 0.181923 + 0.105033i 0.588196 0.808718i \(-0.299838\pi\)
−0.406273 + 0.913752i \(0.633172\pi\)
\(740\) 42.4754 170.382i 0.0573992 0.230246i
\(741\) −55.0890 34.9601i −0.0743442 0.0471796i
\(742\) −81.5736 485.127i −0.109937 0.653810i
\(743\) 302.142 + 302.142i 0.406652 + 0.406652i 0.880569 0.473918i \(-0.157161\pi\)
−0.473918 + 0.880569i \(0.657161\pi\)
\(744\) 289.360 + 12.1259i 0.388924 + 0.0162983i
\(745\) 496.343 + 275.107i 0.666232 + 0.369271i
\(746\) 683.677 + 394.721i 0.916457 + 0.529116i
\(747\) 146.386 26.3409i 0.195965 0.0352622i
\(748\) 333.429 + 333.429i 0.445761 + 0.445761i
\(749\) −64.6824 + 677.319i −0.0863584 + 0.904297i
\(750\) −462.057 260.295i −0.616076 0.347060i
\(751\) 159.170 + 275.691i 0.211944 + 0.367098i 0.952323 0.305092i \(-0.0986871\pi\)
−0.740379 + 0.672190i \(0.765354\pi\)
\(752\) −121.671 + 32.6017i −0.161797 + 0.0433533i
\(753\) 410.584 1310.20i 0.545264 1.73998i
\(754\) 133.526 + 231.274i 0.177090 + 0.306729i
\(755\) −9.12321 521.746i −0.0120837 0.691055i
\(756\) −112.698 360.809i −0.149071 0.477261i
\(757\) 315.962 + 315.962i 0.417387 + 0.417387i 0.884302 0.466915i \(-0.154635\pi\)
−0.466915 + 0.884302i \(0.654635\pi\)
\(758\) −75.0442 + 280.069i −0.0990028 + 0.369484i
\(759\) 166.434 + 318.353i 0.219280 + 0.419438i
\(760\) 3.90306 +