Properties

Label 210.3.w.a.17.6
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.6
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-1.37229 - 2.66774i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.92543 - 0.860317i) q^{5} +(0.898127 + 4.14649i) q^{6} +(1.68496 + 6.79418i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-5.23363 + 7.32183i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-1.37229 - 2.66774i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.92543 - 0.860317i) q^{5} +(0.898127 + 4.14649i) q^{6} +(1.68496 + 6.79418i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-5.23363 + 7.32183i) q^{9} +(-7.04316 - 0.627617i) q^{10} +(13.7602 + 7.94448i) q^{11} +(0.290856 - 5.99295i) q^{12} +(5.32844 + 5.32844i) q^{13} +(0.185142 - 9.89776i) q^{14} +(-9.05423 - 11.9591i) q^{15} +(2.00000 + 3.46410i) q^{16} +(-16.9844 + 4.55096i) q^{17} +(9.82924 - 8.08616i) q^{18} +(5.62474 + 9.74233i) q^{19} +(9.39141 + 3.43532i) q^{20} +(15.8128 - 13.8186i) q^{21} +(-15.8890 - 15.8890i) q^{22} +(10.4778 - 39.1036i) q^{23} +(-2.59089 + 8.08006i) q^{24} +(23.5197 - 8.47486i) q^{25} +(-5.32844 - 9.22913i) q^{26} +(26.7148 + 3.91425i) q^{27} +(-3.87574 + 13.4528i) q^{28} +22.8488 q^{29} +(7.99096 + 19.6506i) q^{30} +(36.0825 + 20.8322i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(2.31070 - 47.6108i) q^{33} +24.8669 q^{34} +(14.1443 + 32.0147i) q^{35} +(-16.3867 + 7.44815i) q^{36} +(7.72790 - 28.8409i) q^{37} +(-4.11759 - 15.3671i) q^{38} +(6.90269 - 21.5270i) q^{39} +(-11.5715 - 8.13022i) q^{40} -55.0717 q^{41} +(-26.6587 + 13.0887i) q^{42} +(-14.2521 + 14.2521i) q^{43} +(15.8890 + 27.5205i) q^{44} +(-19.4788 + 40.5657i) q^{45} +(-28.6258 + 49.5814i) q^{46} +(6.77411 - 25.2813i) q^{47} +(6.49672 - 10.0892i) q^{48} +(-43.3218 + 22.8959i) q^{49} +(-35.2305 + 2.96807i) q^{50} +(35.4483 + 39.0647i) q^{51} +(3.90069 + 14.5576i) q^{52} +(-59.0583 + 15.8246i) q^{53} +(-35.0603 - 15.1252i) q^{54} +(74.6098 + 27.2918i) q^{55} +(10.2184 - 16.9583i) q^{56} +(18.2712 - 28.3746i) q^{57} +(-31.2120 - 8.36322i) q^{58} +(-10.7056 - 6.18085i) q^{59} +(-3.72324 - 29.7681i) q^{60} +(14.5577 - 8.40486i) q^{61} +(-41.6644 - 41.6644i) q^{62} +(-58.5643 - 23.2212i) q^{63} +8.00000i q^{64} +(30.8290 + 21.6607i) q^{65} +(-20.5832 + 64.1918i) q^{66} +(103.766 - 27.8041i) q^{67} +(-33.9688 - 9.10191i) q^{68} +(-118.697 + 25.7096i) q^{69} +(-7.60331 - 48.9100i) q^{70} +34.7786i q^{71} +(25.1109 - 4.17640i) q^{72} +(-56.8067 + 15.2213i) q^{73} +(-21.1130 + 36.5688i) q^{74} +(-54.8846 - 51.1144i) q^{75} +22.4989i q^{76} +(-30.7907 + 106.876i) q^{77} +(-17.3087 + 26.8799i) q^{78} +(40.5584 - 23.4164i) q^{79} +(12.8311 + 15.3416i) q^{80} +(-26.2183 - 76.6394i) q^{81} +(75.2293 + 20.1576i) q^{82} +(-75.6892 + 75.6892i) q^{83} +(41.2072 - 8.12176i) q^{84} +(-79.7402 + 37.0274i) q^{85} +(24.6854 - 14.2521i) q^{86} +(-31.3552 - 60.9544i) q^{87} +(-11.6315 - 43.4094i) q^{88} +(116.275 - 67.1315i) q^{89} +(41.4566 - 48.2841i) q^{90} +(-27.2242 + 45.1806i) q^{91} +(57.2517 - 57.2517i) q^{92} +(6.05917 - 124.846i) q^{93} +(-18.5072 + 32.0554i) q^{94} +(36.0857 + 43.1461i) q^{95} +(-12.5676 + 11.4042i) q^{96} +(-75.7669 + 75.7669i) q^{97} +(67.5592 - 15.4195i) q^{98} +(-130.184 + 59.1716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −1.37229 2.66774i −0.457431 0.889245i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 4.92543 0.860317i 0.985086 0.172063i
\(6\) 0.898127 + 4.14649i 0.149688 + 0.691081i
\(7\) 1.68496 + 6.79418i 0.240709 + 0.970597i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) −5.23363 + 7.32183i −0.581514 + 0.813536i
\(10\) −7.04316 0.627617i −0.704316 0.0627617i
\(11\) 13.7602 + 7.94448i 1.25093 + 0.722225i 0.971294 0.237881i \(-0.0764528\pi\)
0.279636 + 0.960106i \(0.409786\pi\)
\(12\) 0.290856 5.99295i 0.0242380 0.499412i
\(13\) 5.32844 + 5.32844i 0.409880 + 0.409880i 0.881697 0.471817i \(-0.156402\pi\)
−0.471817 + 0.881697i \(0.656402\pi\)
\(14\) 0.185142 9.89776i 0.0132244 0.706983i
\(15\) −9.05423 11.9591i −0.603615 0.797276i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −16.9844 + 4.55096i −0.999083 + 0.267703i −0.721061 0.692872i \(-0.756345\pi\)
−0.278021 + 0.960575i \(0.589679\pi\)
\(18\) 9.82924 8.08616i 0.546069 0.449231i
\(19\) 5.62474 + 9.74233i 0.296039 + 0.512754i 0.975226 0.221211i \(-0.0710009\pi\)
−0.679187 + 0.733965i \(0.737668\pi\)
\(20\) 9.39141 + 3.43532i 0.469571 + 0.171766i
\(21\) 15.8128 13.8186i 0.752991 0.658030i
\(22\) −15.8890 15.8890i −0.722225 0.722225i
\(23\) 10.4778 39.1036i 0.455556 1.70016i −0.230893 0.972979i \(-0.574165\pi\)
0.686449 0.727178i \(-0.259168\pi\)
\(24\) −2.59089 + 8.08006i −0.107954 + 0.336669i
\(25\) 23.5197 8.47486i 0.940788 0.338995i
\(26\) −5.32844 9.22913i −0.204940 0.354966i
\(27\) 26.7148 + 3.91425i 0.989436 + 0.144972i
\(28\) −3.87574 + 13.4528i −0.138419 + 0.480458i
\(29\) 22.8488 0.787888 0.393944 0.919134i \(-0.371110\pi\)
0.393944 + 0.919134i \(0.371110\pi\)
\(30\) 7.99096 + 19.6506i 0.266365 + 0.655019i
\(31\) 36.0825 + 20.8322i 1.16395 + 0.672007i 0.952248 0.305327i \(-0.0987658\pi\)
0.211703 + 0.977334i \(0.432099\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 2.31070 47.6108i 0.0700211 1.44275i
\(34\) 24.8669 0.731379
\(35\) 14.1443 + 32.0147i 0.404123 + 0.914705i
\(36\) −16.3867 + 7.44815i −0.455187 + 0.206893i
\(37\) 7.72790 28.8409i 0.208862 0.779484i −0.779375 0.626557i \(-0.784463\pi\)
0.988238 0.152927i \(-0.0488699\pi\)
\(38\) −4.11759 15.3671i −0.108358 0.404396i
\(39\) 6.90269 21.5270i 0.176992 0.551975i
\(40\) −11.5715 8.13022i −0.289287 0.203256i
\(41\) −55.0717 −1.34321 −0.671606 0.740909i \(-0.734395\pi\)
−0.671606 + 0.740909i \(0.734395\pi\)
\(42\) −26.6587 + 13.0887i −0.634731 + 0.311636i
\(43\) −14.2521 + 14.2521i −0.331445 + 0.331445i −0.853135 0.521690i \(-0.825302\pi\)
0.521690 + 0.853135i \(0.325302\pi\)
\(44\) 15.8890 + 27.5205i 0.361113 + 0.625465i
\(45\) −19.4788 + 40.5657i −0.432862 + 0.901460i
\(46\) −28.6258 + 49.5814i −0.622301 + 1.07786i
\(47\) 6.77411 25.2813i 0.144130 0.537900i −0.855663 0.517534i \(-0.826850\pi\)
0.999793 0.0203662i \(-0.00648320\pi\)
\(48\) 6.49672 10.0892i 0.135348 0.210192i
\(49\) −43.3218 + 22.8959i −0.884118 + 0.467263i
\(50\) −35.2305 + 2.96807i −0.704611 + 0.0593614i
\(51\) 35.4483 + 39.0647i 0.695065 + 0.765974i
\(52\) 3.90069 + 14.5576i 0.0750132 + 0.279953i
\(53\) −59.0583 + 15.8246i −1.11431 + 0.298578i −0.768578 0.639756i \(-0.779035\pi\)
−0.345730 + 0.938334i \(0.612369\pi\)
\(54\) −35.0603 15.1252i −0.649265 0.280097i
\(55\) 74.6098 + 27.2918i 1.35654 + 0.496214i
\(56\) 10.2184 16.9583i 0.182472 0.302827i
\(57\) 18.2712 28.3746i 0.320547 0.497801i
\(58\) −31.2120 8.36322i −0.538138 0.144194i
\(59\) −10.7056 6.18085i −0.181450 0.104760i 0.406524 0.913640i \(-0.366741\pi\)
−0.587974 + 0.808880i \(0.700074\pi\)
\(60\) −3.72324 29.7681i −0.0620541 0.496134i
\(61\) 14.5577 8.40486i 0.238650 0.137785i −0.375906 0.926658i \(-0.622668\pi\)
0.614556 + 0.788873i \(0.289335\pi\)
\(62\) −41.6644 41.6644i −0.672007 0.672007i
\(63\) −58.5643 23.2212i −0.929592 0.368591i
\(64\) 8.00000i 0.125000i
\(65\) 30.8290 + 21.6607i 0.474292 + 0.333242i
\(66\) −20.5832 + 64.1918i −0.311867 + 0.972603i
\(67\) 103.766 27.8041i 1.54875 0.414987i 0.619671 0.784862i \(-0.287266\pi\)
0.929082 + 0.369875i \(0.120600\pi\)
\(68\) −33.9688 9.10191i −0.499541 0.133852i
\(69\) −118.697 + 25.7096i −1.72024 + 0.372603i
\(70\) −7.60331 48.9100i −0.108619 0.698715i
\(71\) 34.7786i 0.489840i 0.969543 + 0.244920i \(0.0787617\pi\)
−0.969543 + 0.244920i \(0.921238\pi\)
\(72\) 25.1109 4.17640i 0.348763 0.0580055i
\(73\) −56.8067 + 15.2213i −0.778175 + 0.208511i −0.625980 0.779839i \(-0.715301\pi\)
−0.152195 + 0.988351i \(0.548634\pi\)
\(74\) −21.1130 + 36.5688i −0.285311 + 0.494173i
\(75\) −54.8846 51.1144i −0.731795 0.681525i
\(76\) 22.4989i 0.296039i
\(77\) −30.7907 + 106.876i −0.399880 + 1.38800i
\(78\) −17.3087 + 26.8799i −0.221906 + 0.344614i
\(79\) 40.5584 23.4164i 0.513398 0.296410i −0.220831 0.975312i \(-0.570877\pi\)
0.734229 + 0.678902i \(0.237544\pi\)
\(80\) 12.8311 + 15.3416i 0.160389 + 0.191769i
\(81\) −26.2183 76.6394i −0.323682 0.946166i
\(82\) 75.2293 + 20.1576i 0.917431 + 0.245825i
\(83\) −75.6892 + 75.6892i −0.911918 + 0.911918i −0.996423 0.0845048i \(-0.973069\pi\)
0.0845048 + 0.996423i \(0.473069\pi\)
\(84\) 41.2072 8.12176i 0.490562 0.0966876i
\(85\) −79.7402 + 37.0274i −0.938120 + 0.435616i
\(86\) 24.6854 14.2521i 0.287040 0.165722i
\(87\) −31.3552 60.9544i −0.360404 0.700626i
\(88\) −11.6315 43.4094i −0.132176 0.493289i
\(89\) 116.275 67.1315i 1.30646 0.754286i 0.324958 0.945728i \(-0.394650\pi\)
0.981504 + 0.191442i \(0.0613163\pi\)
\(90\) 41.4566 48.2841i 0.460629 0.536490i
\(91\) −27.2242 + 45.1806i −0.299167 + 0.496490i
\(92\) 57.2517 57.2517i 0.622301 0.622301i
\(93\) 6.05917 124.846i 0.0651524 1.34243i
\(94\) −18.5072 + 32.0554i −0.196885 + 0.341015i
\(95\) 36.0857 + 43.1461i 0.379850 + 0.454169i
\(96\) −12.5676 + 11.4042i −0.130913 + 0.118794i
\(97\) −75.7669 + 75.7669i −0.781102 + 0.781102i −0.980017 0.198915i \(-0.936258\pi\)
0.198915 + 0.980017i \(0.436258\pi\)
\(98\) 67.5592 15.4195i 0.689379 0.157342i
\(99\) −130.184 + 59.1716i −1.31499 + 0.597693i
\(100\) 49.2122 + 8.84081i 0.492122 + 0.0884081i
\(101\) −39.6447 + 68.6665i −0.392521 + 0.679867i −0.992781 0.119938i \(-0.961730\pi\)
0.600260 + 0.799805i \(0.295064\pi\)
\(102\) −34.1246 66.3383i −0.334555 0.650375i
\(103\) 12.9252 48.2373i 0.125487 0.468323i −0.874370 0.485260i \(-0.838725\pi\)
0.999857 + 0.0169370i \(0.00539146\pi\)
\(104\) 21.3138i 0.204940i
\(105\) 65.9965 81.6668i 0.628538 0.777779i
\(106\) 86.4673 0.815730
\(107\) 178.339 + 47.7857i 1.66672 + 0.446595i 0.964223 0.265094i \(-0.0854031\pi\)
0.702494 + 0.711690i \(0.252070\pi\)
\(108\) 42.3571 + 33.4944i 0.392195 + 0.310134i
\(109\) −70.6679 40.8002i −0.648330 0.374313i 0.139486 0.990224i \(-0.455455\pi\)
−0.787816 + 0.615911i \(0.788788\pi\)
\(110\) −91.9295 64.5904i −0.835722 0.587185i
\(111\) −87.5449 + 18.9622i −0.788692 + 0.170830i
\(112\) −20.1658 + 19.4252i −0.180052 + 0.173440i
\(113\) 56.2695 + 56.2695i 0.497960 + 0.497960i 0.910803 0.412842i \(-0.135464\pi\)
−0.412842 + 0.910803i \(0.635464\pi\)
\(114\) −35.3447 + 32.0728i −0.310041 + 0.281340i
\(115\) 17.9661 201.616i 0.156227 1.75319i
\(116\) 39.5752 + 22.8488i 0.341166 + 0.196972i
\(117\) −66.9010 + 11.1268i −0.571803 + 0.0951011i
\(118\) 12.3617 + 12.3617i 0.104760 + 0.104760i
\(119\) −59.5381 107.727i −0.500320 0.905268i
\(120\) −5.80982 + 42.0267i −0.0484152 + 0.350223i
\(121\) 65.7294 + 113.847i 0.543218 + 0.940882i
\(122\) −22.9625 + 6.15279i −0.188217 + 0.0504327i
\(123\) 75.5744 + 146.917i 0.614426 + 1.19444i
\(124\) 41.6644 + 72.1649i 0.336004 + 0.581975i
\(125\) 108.554 61.9767i 0.868429 0.495814i
\(126\) 71.5007 + 53.1568i 0.567466 + 0.421879i
\(127\) 29.9204 + 29.9204i 0.235594 + 0.235594i 0.815023 0.579429i \(-0.196724\pi\)
−0.579429 + 0.815023i \(0.696724\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) 57.5790 + 18.4628i 0.446349 + 0.143123i
\(130\) −34.1848 40.8733i −0.262960 0.314410i
\(131\) −82.2110 142.394i −0.627565 1.08697i −0.988039 0.154205i \(-0.950718\pi\)
0.360474 0.932769i \(-0.382615\pi\)
\(132\) 51.6131 80.1537i 0.391008 0.607225i
\(133\) −56.7137 + 54.6309i −0.426419 + 0.410759i
\(134\) −151.925 −1.13377
\(135\) 134.949 3.70380i 0.999624 0.0274356i
\(136\) 43.0707 + 24.8669i 0.316696 + 0.182845i
\(137\) 9.26691 + 34.5846i 0.0676417 + 0.252442i 0.991464 0.130379i \(-0.0416193\pi\)
−0.923823 + 0.382821i \(0.874953\pi\)
\(138\) 171.553 + 8.32599i 1.24314 + 0.0603333i
\(139\) −29.1666 −0.209832 −0.104916 0.994481i \(-0.533457\pi\)
−0.104916 + 0.994481i \(0.533457\pi\)
\(140\) −7.51599 + 69.5953i −0.0536856 + 0.497109i
\(141\) −76.7399 + 16.6218i −0.544255 + 0.117885i
\(142\) 12.7299 47.5085i 0.0896469 0.334567i
\(143\) 30.9889 + 115.652i 0.216706 + 0.808757i
\(144\) −35.8308 3.48617i −0.248825 0.0242095i
\(145\) 112.540 19.6572i 0.776137 0.135567i
\(146\) 83.1709 0.569663
\(147\) 120.530 + 84.1513i 0.819934 + 0.572458i
\(148\) 42.2260 42.2260i 0.285311 0.285311i
\(149\) −62.7849 108.747i −0.421375 0.729843i 0.574699 0.818365i \(-0.305119\pi\)
−0.996074 + 0.0885216i \(0.971786\pi\)
\(150\) 56.2646 + 89.9127i 0.375097 + 0.599418i
\(151\) −93.1064 + 161.265i −0.616599 + 1.06798i 0.373503 + 0.927629i \(0.378157\pi\)
−0.990102 + 0.140352i \(0.955177\pi\)
\(152\) 8.23519 30.7341i 0.0541788 0.202198i
\(153\) 55.5687 148.175i 0.363194 0.968463i
\(154\) 81.1801 134.725i 0.527144 0.874836i
\(155\) 195.644 + 71.5653i 1.26222 + 0.461711i
\(156\) 33.4828 30.3832i 0.214634 0.194764i
\(157\) −27.2585 101.730i −0.173621 0.647962i −0.996782 0.0801548i \(-0.974459\pi\)
0.823162 0.567807i \(-0.192208\pi\)
\(158\) −63.9748 + 17.1420i −0.404904 + 0.108494i
\(159\) 123.261 + 135.836i 0.775227 + 0.854314i
\(160\) −11.9122 25.6535i −0.0744512 0.160334i
\(161\) 283.332 + 5.29983i 1.75982 + 0.0329182i
\(162\) 7.76285 + 114.288i 0.0479188 + 0.705481i
\(163\) −197.007 52.7878i −1.20863 0.323852i −0.402406 0.915461i \(-0.631826\pi\)
−0.806225 + 0.591610i \(0.798493\pi\)
\(164\) −95.3870 55.0717i −0.581628 0.335803i
\(165\) −29.5792 236.492i −0.179268 1.43328i
\(166\) 131.098 75.6892i 0.789744 0.455959i
\(167\) −168.308 168.308i −1.00783 1.00783i −0.999969 0.00786180i \(-0.997497\pi\)
−0.00786180 0.999969i \(-0.502503\pi\)
\(168\) −59.2629 3.98837i −0.352755 0.0237403i
\(169\) 112.215i 0.663997i
\(170\) 122.480 21.3934i 0.720471 0.125844i
\(171\) −100.769 9.80439i −0.589295 0.0573356i
\(172\) −38.9375 + 10.4333i −0.226381 + 0.0606586i
\(173\) −140.288 37.5901i −0.810914 0.217284i −0.170544 0.985350i \(-0.554552\pi\)
−0.640370 + 0.768066i \(0.721219\pi\)
\(174\) 20.5211 + 94.7421i 0.117937 + 0.544495i
\(175\) 97.2096 + 145.517i 0.555483 + 0.831528i
\(176\) 63.5558i 0.361113i
\(177\) −1.79774 + 37.0415i −0.0101567 + 0.209274i
\(178\) −183.407 + 49.1437i −1.03037 + 0.276088i
\(179\) 53.3572 92.4174i 0.298085 0.516298i −0.677613 0.735419i \(-0.736985\pi\)
0.975698 + 0.219120i \(0.0703188\pi\)
\(180\) −74.3039 + 50.7831i −0.412800 + 0.282128i
\(181\) 16.9570i 0.0936850i −0.998902 0.0468425i \(-0.985084\pi\)
0.998902 0.0468425i \(-0.0149159\pi\)
\(182\) 53.7261 51.7531i 0.295199 0.284358i
\(183\) −42.3993 27.3020i −0.231690 0.149191i
\(184\) −99.1628 + 57.2517i −0.538928 + 0.311150i
\(185\) 13.2509 148.702i 0.0716264 0.803796i
\(186\) −53.9739 + 168.326i −0.290182 + 0.904976i
\(187\) −269.864 72.3099i −1.44313 0.386684i
\(188\) 37.0144 37.0144i 0.196885 0.196885i
\(189\) 18.4192 + 188.100i 0.0974563 + 0.995240i
\(190\) −33.5015 72.1470i −0.176323 0.379721i
\(191\) −30.1768 + 17.4226i −0.157994 + 0.0912178i −0.576912 0.816806i \(-0.695743\pi\)
0.418919 + 0.908024i \(0.362409\pi\)
\(192\) 21.3419 10.9783i 0.111156 0.0571788i
\(193\) −50.1378 187.117i −0.259781 0.969517i −0.965368 0.260893i \(-0.915983\pi\)
0.705586 0.708624i \(-0.250684\pi\)
\(194\) 131.232 75.7669i 0.676454 0.390551i
\(195\) 15.4786 111.968i 0.0793776 0.574197i
\(196\) −97.9314 3.66498i −0.499650 0.0186989i
\(197\) −48.4192 + 48.4192i −0.245783 + 0.245783i −0.819237 0.573455i \(-0.805603\pi\)
0.573455 + 0.819237i \(0.305603\pi\)
\(198\) 199.493 33.1793i 1.00754 0.167572i
\(199\) 30.8142 53.3717i 0.154845 0.268200i −0.778157 0.628069i \(-0.783845\pi\)
0.933003 + 0.359870i \(0.117179\pi\)
\(200\) −63.9891 30.0897i −0.319946 0.150448i
\(201\) −216.572 238.666i −1.07747 1.18739i
\(202\) 79.2893 79.2893i 0.392521 0.392521i
\(203\) 38.4993 + 155.239i 0.189652 + 0.764722i
\(204\) 22.3336 + 103.110i 0.109479 + 0.505443i
\(205\) −271.252 + 47.3791i −1.32318 + 0.231118i
\(206\) −35.3122 + 61.1625i −0.171418 + 0.296905i
\(207\) 231.473 + 281.370i 1.11823 + 1.35928i
\(208\) −7.80137 + 29.1151i −0.0375066 + 0.139977i
\(209\) 178.742i 0.855227i
\(210\) −120.045 + 87.4025i −0.571643 + 0.416202i
\(211\) 312.769 1.48232 0.741158 0.671331i \(-0.234277\pi\)
0.741158 + 0.671331i \(0.234277\pi\)
\(212\) −118.117 31.6492i −0.557154 0.149289i
\(213\) 92.7802 47.7265i 0.435588 0.224068i
\(214\) −226.124 130.553i −1.05666 0.610061i
\(215\) −57.9365 + 82.4592i −0.269472 + 0.383531i
\(216\) −45.6010 61.2580i −0.211116 0.283602i
\(217\) −80.7403 + 280.252i −0.372075 + 1.29149i
\(218\) 81.6003 + 81.6003i 0.374313 + 0.374313i
\(219\) 118.562 + 130.657i 0.541379 + 0.596609i
\(220\) 101.936 + 121.881i 0.463347 + 0.554003i
\(221\) −114.750 66.2508i −0.519230 0.299778i
\(222\) 126.529 + 6.14084i 0.569951 + 0.0276615i
\(223\) 128.865 + 128.865i 0.577870 + 0.577870i 0.934316 0.356446i \(-0.116012\pi\)
−0.356446 + 0.934316i \(0.616012\pi\)
\(224\) 34.6571 19.1542i 0.154719 0.0855097i
\(225\) −61.0419 + 216.561i −0.271297 + 0.962496i
\(226\) −56.2695 97.4616i −0.248980 0.431246i
\(227\) −365.528 + 97.9428i −1.61025 + 0.431466i −0.948118 0.317918i \(-0.897016\pi\)
−0.662135 + 0.749384i \(0.730350\pi\)
\(228\) 60.0212 30.8751i 0.263251 0.135417i
\(229\) −78.9305 136.712i −0.344675 0.596994i 0.640620 0.767858i \(-0.278677\pi\)
−0.985295 + 0.170864i \(0.945344\pi\)
\(230\) −98.3388 + 268.837i −0.427560 + 1.16886i
\(231\) 327.370 64.5231i 1.41719 0.279321i
\(232\) −45.6975 45.6975i −0.196972 0.196972i
\(233\) −23.7904 + 88.7869i −0.102105 + 0.381060i −0.998001 0.0632042i \(-0.979868\pi\)
0.895896 + 0.444264i \(0.146535\pi\)
\(234\) 95.4611 + 9.28791i 0.407953 + 0.0396919i
\(235\) 11.6154 130.349i 0.0494274 0.554677i
\(236\) −12.3617 21.4111i −0.0523801 0.0907250i
\(237\) −118.127 76.0650i −0.498425 0.320949i
\(238\) 41.8998 + 168.950i 0.176049 + 0.709875i
\(239\) −77.3170 −0.323502 −0.161751 0.986832i \(-0.551714\pi\)
−0.161751 + 0.986832i \(0.551714\pi\)
\(240\) 23.3192 55.2830i 0.0971634 0.230346i
\(241\) −372.723 215.192i −1.54657 0.892912i −0.998400 0.0565436i \(-0.981992\pi\)
−0.548168 0.836368i \(-0.684675\pi\)
\(242\) −48.1173 179.576i −0.198832 0.742050i
\(243\) −168.475 + 175.115i −0.693311 + 0.720638i
\(244\) 33.6195 0.137785
\(245\) −193.681 + 150.043i −0.790534 + 0.612419i
\(246\) −49.4614 228.354i −0.201062 0.928269i
\(247\) −21.9403 + 81.8824i −0.0888273 + 0.331508i
\(248\) −30.5005 113.829i −0.122986 0.458989i
\(249\) 305.787 + 98.0511i 1.22806 + 0.393780i
\(250\) −170.972 + 44.9284i −0.683888 + 0.179714i
\(251\) −17.9306 −0.0714367 −0.0357184 0.999362i \(-0.511372\pi\)
−0.0357184 + 0.999362i \(0.511372\pi\)
\(252\) −78.2151 98.7846i −0.310377 0.392002i
\(253\) 454.834 454.834i 1.79776 1.79776i
\(254\) −29.9204 51.8237i −0.117797 0.204030i
\(255\) 208.206 + 161.913i 0.816495 + 0.634955i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −39.1745 + 146.201i −0.152430 + 0.568876i 0.846882 + 0.531781i \(0.178477\pi\)
−0.999312 + 0.0370950i \(0.988190\pi\)
\(258\) −71.8965 46.2961i −0.278669 0.179442i
\(259\) 208.972 + 3.90890i 0.806840 + 0.0150923i
\(260\) 31.7367 + 68.3464i 0.122064 + 0.262871i
\(261\) −119.582 + 167.295i −0.458168 + 0.640975i
\(262\) 60.1826 + 224.605i 0.229705 + 0.857270i
\(263\) −427.661 + 114.591i −1.62609 + 0.435709i −0.952782 0.303655i \(-0.901793\pi\)
−0.673306 + 0.739364i \(0.735126\pi\)
\(264\) −99.8430 + 90.6002i −0.378193 + 0.343183i
\(265\) −277.273 + 128.752i −1.04631 + 0.485856i
\(266\) 97.4686 53.8686i 0.366423 0.202514i
\(267\) −338.653 218.067i −1.26836 0.816732i
\(268\) 207.533 + 55.6082i 0.774376 + 0.207493i
\(269\) 53.4816 + 30.8776i 0.198817 + 0.114787i 0.596103 0.802908i \(-0.296715\pi\)
−0.397287 + 0.917694i \(0.630048\pi\)
\(270\) −185.700 44.3353i −0.687777 0.164205i
\(271\) 100.182 57.8400i 0.369675 0.213432i −0.303642 0.952786i \(-0.598203\pi\)
0.673316 + 0.739355i \(0.264869\pi\)
\(272\) −49.7338 49.7338i −0.182845 0.182845i
\(273\) 157.889 + 10.6259i 0.578349 + 0.0389226i
\(274\) 50.6354i 0.184801i
\(275\) 390.965 + 70.2357i 1.42169 + 0.255402i
\(276\) −231.298 74.1663i −0.838037 0.268718i
\(277\) 361.333 96.8189i 1.30445 0.349527i 0.461320 0.887234i \(-0.347376\pi\)
0.843132 + 0.537707i \(0.180709\pi\)
\(278\) 39.8424 + 10.6757i 0.143318 + 0.0384019i
\(279\) −341.372 + 155.161i −1.22356 + 0.556134i
\(280\) 35.7407 92.3179i 0.127645 0.329707i
\(281\) 236.224i 0.840656i −0.907372 0.420328i \(-0.861915\pi\)
0.907372 0.420328i \(-0.138085\pi\)
\(282\) 110.913 + 5.38293i 0.393307 + 0.0190884i
\(283\) −22.9106 + 6.13887i −0.0809561 + 0.0216921i −0.299070 0.954231i \(-0.596676\pi\)
0.218114 + 0.975923i \(0.430010\pi\)
\(284\) −34.7786 + 60.2384i −0.122460 + 0.212107i
\(285\) 65.5822 155.476i 0.230113 0.545531i
\(286\) 169.327i 0.592051i
\(287\) −92.7937 374.167i −0.323323 1.30372i
\(288\) 47.6698 + 17.8772i 0.165520 + 0.0620735i
\(289\) 17.4774 10.0906i 0.0604754 0.0349155i
\(290\) −160.927 14.3403i −0.554922 0.0494492i
\(291\) 306.100 + 98.1518i 1.05189 + 0.337291i
\(292\) −113.613 30.4426i −0.389087 0.104256i
\(293\) −89.0653 + 89.0653i −0.303977 + 0.303977i −0.842568 0.538591i \(-0.818957\pi\)
0.538591 + 0.842568i \(0.318957\pi\)
\(294\) −133.846 159.070i −0.455258 0.541054i
\(295\) −58.0469 21.2332i −0.196769 0.0719769i
\(296\) −73.1376 + 42.2260i −0.247087 + 0.142655i
\(297\) 336.505 + 266.096i 1.13301 + 0.895946i
\(298\) 45.9617 + 171.532i 0.154234 + 0.575609i
\(299\) 264.191 152.531i 0.883583 0.510137i
\(300\) −43.9486 143.417i −0.146495 0.478058i
\(301\) −120.846 72.8172i −0.401481 0.241918i
\(302\) 186.213 186.213i 0.616599 0.616599i
\(303\) 237.588 + 11.5309i 0.784120 + 0.0380557i
\(304\) −22.4989 + 38.9693i −0.0740097 + 0.128189i
\(305\) 64.4718 53.9218i 0.211383 0.176793i
\(306\) −130.144 + 182.071i −0.425307 + 0.595003i
\(307\) 79.6418 79.6418i 0.259419 0.259419i −0.565398 0.824818i \(-0.691278\pi\)
0.824818 + 0.565398i \(0.191278\pi\)
\(308\) −160.207 + 154.323i −0.520152 + 0.501050i
\(309\) −146.422 + 31.7148i −0.473856 + 0.102637i
\(310\) −241.060 169.371i −0.777613 0.546357i
\(311\) 53.4146 92.5167i 0.171751 0.297481i −0.767281 0.641311i \(-0.778391\pi\)
0.939032 + 0.343829i \(0.111724\pi\)
\(312\) −56.8595 + 29.2487i −0.182242 + 0.0937458i
\(313\) −34.8889 + 130.207i −0.111466 + 0.415998i −0.998998 0.0447483i \(-0.985751\pi\)
0.887532 + 0.460746i \(0.152418\pi\)
\(314\) 148.943i 0.474341i
\(315\) −308.432 63.9906i −0.979149 0.203145i
\(316\) 93.6657 0.296410
\(317\) 317.743 + 85.1391i 1.00235 + 0.268578i 0.722428 0.691447i \(-0.243026\pi\)
0.279917 + 0.960024i \(0.409693\pi\)
\(318\) −118.658 230.672i −0.373140 0.725384i
\(319\) 314.404 + 181.521i 0.985593 + 0.569033i
\(320\) 6.88254 + 39.4034i 0.0215079 + 0.123136i
\(321\) −117.253 541.336i −0.365275 1.68641i
\(322\) −385.098 110.946i −1.19596 0.344554i
\(323\) −139.870 139.870i −0.433033 0.433033i
\(324\) 31.2280 158.962i 0.0963829 0.490622i
\(325\) 170.481 + 80.1655i 0.524557 + 0.246663i
\(326\) 249.795 + 144.219i 0.766241 + 0.442390i
\(327\) −11.8670 + 244.513i −0.0362904 + 0.747747i
\(328\) 110.143 + 110.143i 0.335803 + 0.335803i
\(329\) 183.180 + 3.42645i 0.556778 + 0.0104148i
\(330\) −46.1560 + 333.880i −0.139867 + 1.01176i
\(331\) −275.493 477.168i −0.832305 1.44160i −0.896206 0.443639i \(-0.853687\pi\)
0.0639004 0.997956i \(-0.479646\pi\)
\(332\) −206.787 + 55.4084i −0.622852 + 0.166893i
\(333\) 170.723 + 207.525i 0.512682 + 0.623198i
\(334\) 168.308 + 291.518i 0.503915 + 0.872807i
\(335\) 487.174 226.219i 1.45425 0.675281i
\(336\) 79.4948 + 27.1399i 0.236592 + 0.0807736i
\(337\) 174.856 + 174.856i 0.518861 + 0.518861i 0.917227 0.398366i \(-0.130423\pi\)
−0.398366 + 0.917227i \(0.630423\pi\)
\(338\) −41.0737 + 153.289i −0.121520 + 0.453518i
\(339\) 72.8940 227.330i 0.215026 0.670591i
\(340\) −175.141 15.6069i −0.515122 0.0459026i
\(341\) 331.002 + 573.313i 0.970681 + 1.68127i
\(342\) 134.065 + 50.2772i 0.392003 + 0.147009i
\(343\) −228.554 255.758i −0.666339 0.745649i
\(344\) 57.0085 0.165722
\(345\) −562.514 + 228.748i −1.63047 + 0.663037i
\(346\) 177.878 + 102.698i 0.514099 + 0.296815i
\(347\) −32.4333 121.043i −0.0934678 0.348827i 0.903315 0.428978i \(-0.141126\pi\)
−0.996783 + 0.0801515i \(0.974460\pi\)
\(348\) 6.64569 136.931i 0.0190968 0.393481i
\(349\) 82.2163 0.235577 0.117788 0.993039i \(-0.462420\pi\)
0.117788 + 0.993039i \(0.462420\pi\)
\(350\) −79.5277 234.362i −0.227222 0.669604i
\(351\) 121.491 + 163.205i 0.346129 + 0.464971i
\(352\) 23.2630 86.8189i 0.0660882 0.246644i
\(353\) −108.630 405.413i −0.307734 1.14848i −0.930566 0.366124i \(-0.880685\pi\)
0.622832 0.782356i \(-0.285982\pi\)
\(354\) 16.0139 49.9416i 0.0452370 0.141078i
\(355\) 29.9207 + 171.300i 0.0842836 + 0.482534i
\(356\) 268.526 0.754286
\(357\) −205.683 + 306.665i −0.576144 + 0.859005i
\(358\) −106.714 + 106.714i −0.298085 + 0.298085i
\(359\) −222.108 384.703i −0.618687 1.07160i −0.989726 0.142979i \(-0.954332\pi\)
0.371039 0.928617i \(-0.379002\pi\)
\(360\) 120.089 42.1739i 0.333580 0.117150i
\(361\) 117.225 203.039i 0.324722 0.562435i
\(362\) −6.20669 + 23.1637i −0.0171455 + 0.0639880i
\(363\) 213.513 331.580i 0.588190 0.913443i
\(364\) −92.3342 + 51.0309i −0.253665 + 0.140195i
\(365\) −266.702 + 123.843i −0.730692 + 0.339297i
\(366\) 47.9253 + 52.8145i 0.130943 + 0.144302i
\(367\) 144.420 + 538.984i 0.393516 + 1.46862i 0.824293 + 0.566163i \(0.191573\pi\)
−0.430777 + 0.902458i \(0.641761\pi\)
\(368\) 156.414 41.9111i 0.425039 0.113889i
\(369\) 288.225 403.225i 0.781097 1.09275i
\(370\) −72.5299 + 198.281i −0.196027 + 0.535895i
\(371\) −207.026 374.589i −0.558023 1.00967i
\(372\) 135.341 210.181i 0.363820 0.565003i
\(373\) 297.089 + 79.6048i 0.796485 + 0.213418i 0.634040 0.773300i \(-0.281395\pi\)
0.162445 + 0.986718i \(0.448062\pi\)
\(374\) 342.174 + 197.554i 0.914905 + 0.528220i
\(375\) −314.305 204.542i −0.838146 0.545446i
\(376\) −64.1108 + 37.0144i −0.170507 + 0.0984425i
\(377\) 121.748 + 121.748i 0.322939 + 0.322939i
\(378\) 43.6884 263.692i 0.115578 0.697597i
\(379\) 7.39316i 0.0195070i 0.999952 + 0.00975351i \(0.00310469\pi\)
−0.999952 + 0.00975351i \(0.996895\pi\)
\(380\) 19.3562 + 110.817i 0.0509374 + 0.291624i
\(381\) 38.7602 120.879i 0.101733 0.317269i
\(382\) 47.5994 12.7542i 0.124606 0.0333880i
\(383\) 159.487 + 42.7344i 0.416415 + 0.111578i 0.460942 0.887430i \(-0.347512\pi\)
−0.0445273 + 0.999008i \(0.514178\pi\)
\(384\) −33.1719 + 7.18502i −0.0863852 + 0.0187110i
\(385\) −59.7106 + 552.898i −0.155092 + 1.43610i
\(386\) 273.958i 0.709736i
\(387\) −29.7613 178.942i −0.0769025 0.462382i
\(388\) −206.999 + 55.4652i −0.533503 + 0.142952i
\(389\) −209.686 + 363.187i −0.539038 + 0.933641i 0.459918 + 0.887961i \(0.347879\pi\)
−0.998956 + 0.0456801i \(0.985455\pi\)
\(390\) −62.1275 + 147.286i −0.159301 + 0.377657i
\(391\) 711.835i 1.82055i
\(392\) 132.435 + 40.8518i 0.337845 + 0.104214i
\(393\) −267.051 + 414.723i −0.679519 + 1.05527i
\(394\) 83.8645 48.4192i 0.212854 0.122891i
\(395\) 179.622 150.229i 0.454739 0.380327i
\(396\) −284.657 27.6958i −0.718831 0.0699388i
\(397\) −291.896 78.2133i −0.735255 0.197011i −0.128287 0.991737i \(-0.540948\pi\)
−0.606968 + 0.794726i \(0.707614\pi\)
\(398\) −61.6284 + 61.6284i −0.154845 + 0.154845i
\(399\) 223.569 + 76.3275i 0.560322 + 0.191297i
\(400\) 76.3972 + 64.5249i 0.190993 + 0.161312i
\(401\) −322.132 + 185.983i −0.803320 + 0.463797i −0.844631 0.535349i \(-0.820180\pi\)
0.0413104 + 0.999146i \(0.486847\pi\)
\(402\) 208.485 + 405.295i 0.518619 + 1.00820i
\(403\) 81.2600 + 303.266i 0.201638 + 0.752522i
\(404\) −137.333 + 79.2893i −0.339933 + 0.196261i
\(405\) −195.070 354.926i −0.481655 0.876361i
\(406\) 4.23026 226.152i 0.0104193 0.557024i
\(407\) 335.464 335.464i 0.824235 0.824235i
\(408\) 7.23268 149.026i 0.0177272 0.365260i
\(409\) 148.294 256.853i 0.362577 0.628001i −0.625807 0.779978i \(-0.715230\pi\)
0.988384 + 0.151976i \(0.0485637\pi\)
\(410\) 387.879 + 34.5639i 0.946045 + 0.0843023i
\(411\) 79.5456 72.1818i 0.193542 0.175625i
\(412\) 70.6243 70.6243i 0.171418 0.171418i
\(413\) 23.9554 83.1500i 0.0580033 0.201332i
\(414\) −213.209 469.084i −0.514998 1.13305i
\(415\) −307.685 + 437.919i −0.741410 + 1.05523i
\(416\) 21.3138 36.9165i 0.0512350 0.0887416i
\(417\) 40.0252 + 77.8089i 0.0959836 + 0.186592i
\(418\) 65.4242 244.167i 0.156517 0.584131i
\(419\) 564.525i 1.34732i −0.739044 0.673658i \(-0.764722\pi\)
0.739044 0.673658i \(-0.235278\pi\)
\(420\) 195.976 75.4545i 0.466610 0.179653i
\(421\) −576.949 −1.37043 −0.685213 0.728343i \(-0.740291\pi\)
−0.685213 + 0.728343i \(0.740291\pi\)
\(422\) −427.250 114.481i −1.01244 0.271283i
\(423\) 149.652 + 181.912i 0.353788 + 0.430051i
\(424\) 149.766 + 86.4673i 0.353221 + 0.203932i
\(425\) −360.899 + 250.978i −0.849175 + 0.590536i
\(426\) −144.209 + 31.2356i −0.338519 + 0.0733231i
\(427\) 81.6333 + 84.7454i 0.191179 + 0.198467i
\(428\) 261.106 + 261.106i 0.610061 + 0.610061i
\(429\) 266.004 241.379i 0.620055 0.562655i
\(430\) 109.325 91.4351i 0.254244 0.212640i
\(431\) 443.346 + 255.966i 1.02864 + 0.593888i 0.916596 0.399815i \(-0.130925\pi\)
0.112048 + 0.993703i \(0.464259\pi\)
\(432\) 39.8702 + 100.371i 0.0922920 + 0.232341i
\(433\) 545.122 + 545.122i 1.25894 + 1.25894i 0.951599 + 0.307343i \(0.0994400\pi\)
0.307343 + 0.951599i \(0.400560\pi\)
\(434\) 212.873 353.279i 0.490490 0.814006i
\(435\) −206.878 273.251i −0.475581 0.628164i
\(436\) −81.6003 141.336i −0.187157 0.324165i
\(437\) 439.895 117.869i 1.00662 0.269724i
\(438\) −114.135 221.878i −0.260582 0.506570i
\(439\) −135.516 234.721i −0.308693 0.534673i 0.669383 0.742917i \(-0.266558\pi\)
−0.978077 + 0.208245i \(0.933225\pi\)
\(440\) −94.6361 203.803i −0.215082 0.463189i
\(441\) 59.0906 437.023i 0.133992 0.990982i
\(442\) 132.502 + 132.502i 0.299778 + 0.299778i
\(443\) 29.6092 110.503i 0.0668380 0.249443i −0.924421 0.381374i \(-0.875451\pi\)
0.991259 + 0.131931i \(0.0421177\pi\)
\(444\) −170.594 54.7014i −0.384221 0.123201i
\(445\) 514.951 430.685i 1.15719 0.967831i
\(446\) −128.865 223.201i −0.288935 0.500450i
\(447\) −203.948 + 316.726i −0.456260 + 0.708559i
\(448\) −54.3535 + 13.4797i −0.121325 + 0.0300886i
\(449\) 113.813 0.253482 0.126741 0.991936i \(-0.459548\pi\)
0.126741 + 0.991936i \(0.459548\pi\)
\(450\) 162.652 273.486i 0.361449 0.607746i
\(451\) −757.799 437.516i −1.68026 0.970101i
\(452\) 41.1921 + 153.731i 0.0911330 + 0.340113i
\(453\) 557.982 + 27.0806i 1.23175 + 0.0597805i
\(454\) 535.169 1.17879
\(455\) −95.2210 + 245.955i −0.209277 + 0.540561i
\(456\) −93.2916 + 20.2069i −0.204587 + 0.0443134i
\(457\) 178.486 666.119i 0.390560 1.45759i −0.438652 0.898657i \(-0.644544\pi\)
0.829212 0.558934i \(-0.188789\pi\)
\(458\) 57.7812 + 215.642i 0.126160 + 0.470835i
\(459\) −471.548 + 55.0965i −1.02734 + 0.120036i
\(460\) 232.734 331.244i 0.505944 0.720095i
\(461\) 195.653 0.424410 0.212205 0.977225i \(-0.431935\pi\)
0.212205 + 0.977225i \(0.431935\pi\)
\(462\) −470.813 31.6855i −1.01908 0.0685833i
\(463\) 478.759 478.759i 1.03404 1.03404i 0.0346360 0.999400i \(-0.488973\pi\)
0.999400 0.0346360i \(-0.0110272\pi\)
\(464\) 45.6975 + 79.1504i 0.0984860 + 0.170583i
\(465\) −77.5635 620.135i −0.166803 1.33362i
\(466\) 64.9965 112.577i 0.139478 0.241582i
\(467\) −26.7812 + 99.9487i −0.0573472 + 0.214023i −0.988653 0.150214i \(-0.952004\pi\)
0.931306 + 0.364237i \(0.118670\pi\)
\(468\) −127.003 47.6287i −0.271373 0.101771i
\(469\) 363.749 + 658.159i 0.775584 + 1.40332i
\(470\) −63.5781 + 173.809i −0.135273 + 0.369806i
\(471\) −233.982 + 212.322i −0.496778 + 0.450789i
\(472\) 9.04940 + 33.7728i 0.0191724 + 0.0715526i
\(473\) −309.338 + 82.8870i −0.653992 + 0.175237i
\(474\) 133.523 + 147.144i 0.281693 + 0.310431i
\(475\) 214.857 + 181.468i 0.452331 + 0.382038i
\(476\) 4.60390 246.127i 0.00967205 0.517073i
\(477\) 193.224 515.235i 0.405082 1.08016i
\(478\) 105.617 + 28.3000i 0.220956 + 0.0592050i
\(479\) 170.076 + 98.1933i 0.355064 + 0.204997i 0.666914 0.745135i \(-0.267615\pi\)
−0.311849 + 0.950132i \(0.600948\pi\)
\(480\) −52.0896 + 66.9826i −0.108520 + 0.139547i
\(481\) 194.855 112.499i 0.405103 0.233886i
\(482\) 430.383 + 430.383i 0.892912 + 0.892912i
\(483\) −374.675 763.127i −0.775725 1.57997i
\(484\) 262.918i 0.543218i
\(485\) −308.001 + 438.368i −0.635054 + 0.903852i
\(486\) 294.237 177.546i 0.605426 0.365320i
\(487\) −93.4744 + 25.0464i −0.191939 + 0.0514299i −0.353508 0.935431i \(-0.615011\pi\)
0.161569 + 0.986861i \(0.448345\pi\)
\(488\) −45.9250 12.3056i −0.0941087 0.0252163i
\(489\) 129.527 + 598.002i 0.264881 + 1.22291i
\(490\) 319.492 134.070i 0.652025 0.273612i
\(491\) 54.8531i 0.111717i −0.998439 0.0558585i \(-0.982210\pi\)
0.998439 0.0558585i \(-0.0177896\pi\)
\(492\) −16.0179 + 330.042i −0.0325568 + 0.670816i
\(493\) −388.072 + 103.984i −0.787165 + 0.210920i
\(494\) 59.9421 103.823i 0.121340 0.210168i
\(495\) −590.306 + 403.445i −1.19254 + 0.815041i
\(496\) 166.658i 0.336004i
\(497\) −236.292 + 58.6007i −0.475437 + 0.117909i
\(498\) −381.823 245.866i −0.766713 0.493707i
\(499\) −617.735 + 356.650i −1.23795 + 0.714729i −0.968674 0.248335i \(-0.920117\pi\)
−0.269272 + 0.963064i \(0.586783\pi\)
\(500\) 249.997 + 1.20671i 0.499994 + 0.00241343i
\(501\) −218.033 + 679.968i −0.435196 + 1.35722i
\(502\) 24.4937 + 6.56306i 0.0487922 + 0.0130738i
\(503\) −662.424 + 662.424i −1.31695 + 1.31695i −0.400767 + 0.916180i \(0.631256\pi\)
−0.916180 + 0.400767i \(0.868744\pi\)
\(504\) 70.6861 + 163.571i 0.140250 + 0.324546i
\(505\) −136.192 + 372.319i −0.269687 + 0.737266i
\(506\) −787.796 + 454.834i −1.55691 + 0.898882i
\(507\) −299.361 + 153.992i −0.590456 + 0.303733i
\(508\) 21.9033 + 81.7441i 0.0431167 + 0.160914i
\(509\) −330.632 + 190.890i −0.649572 + 0.375030i −0.788292 0.615301i \(-0.789034\pi\)
0.138721 + 0.990332i \(0.455701\pi\)
\(510\) −225.150 297.387i −0.441472 0.583111i
\(511\) −199.134 360.308i −0.389694 0.705104i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 112.130 + 282.281i 0.218576 + 0.550255i
\(514\) 107.027 185.376i 0.208223 0.360653i
\(515\) 22.1625 248.709i 0.0430340 0.482931i
\(516\) 81.2669 + 89.5576i 0.157494 + 0.173561i
\(517\) 294.060 294.060i 0.568781 0.568781i
\(518\) −284.030 81.8286i −0.548320 0.157970i
\(519\) 92.2358 + 425.836i 0.177718 + 0.820493i
\(520\) −18.3366 104.979i −0.0352627 0.201883i
\(521\) 389.610 674.824i 0.747812 1.29525i −0.201058 0.979579i \(-0.564438\pi\)
0.948870 0.315668i \(-0.102229\pi\)
\(522\) 224.586 184.759i 0.430241 0.353944i
\(523\) −56.6393 + 211.381i −0.108297 + 0.404170i −0.998698 0.0510066i \(-0.983757\pi\)
0.890401 + 0.455176i \(0.150424\pi\)
\(524\) 328.844i 0.627565i
\(525\) 254.802 459.022i 0.485337 0.874327i
\(526\) 626.139 1.19038
\(527\) −707.646 189.613i −1.34278 0.359797i
\(528\) 169.550 87.2172i 0.321118 0.165184i
\(529\) −961.181 554.938i −1.81698 1.04903i
\(530\) 425.889 74.3893i 0.803564 0.140357i
\(531\) 101.284 46.0359i 0.190742 0.0866966i
\(532\) −152.862 + 37.9099i −0.287334 + 0.0712592i
\(533\) −293.446 293.446i −0.550555 0.550555i
\(534\) 382.790 + 421.841i 0.716835 + 0.789964i
\(535\) 919.505 + 81.9373i 1.71870 + 0.153154i
\(536\) −263.141 151.925i −0.490935 0.283441i
\(537\) −319.767 15.5193i −0.595469 0.0288999i
\(538\) −61.7553 61.7553i −0.114787 0.114787i
\(539\) −778.014 29.1163i −1.44344 0.0540191i
\(540\) 237.443 + 128.534i 0.439709 + 0.238026i
\(541\) 280.957 + 486.632i 0.519329 + 0.899504i 0.999748 + 0.0224649i \(0.00715140\pi\)
−0.480419 + 0.877039i \(0.659515\pi\)
\(542\) −158.022 + 42.3418i −0.291553 + 0.0781215i
\(543\) −45.2368 + 23.2699i −0.0833089 + 0.0428544i
\(544\) 49.7338 + 86.1414i 0.0914224 + 0.158348i
\(545\) −383.171 140.161i −0.703066 0.257177i
\(546\) −211.792 72.3067i −0.387897 0.132430i
\(547\) −706.567 706.567i −1.29171 1.29171i −0.933727 0.357987i \(-0.883463\pi\)
−0.357987 0.933727i \(-0.616537\pi\)
\(548\) −18.5338 + 69.1692i −0.0338208 + 0.126221i
\(549\) −14.6504 + 150.577i −0.0266856 + 0.274274i
\(550\) −508.360 239.047i −0.924291 0.434631i
\(551\) 128.518 + 222.600i 0.233245 + 0.403993i
\(552\) 288.813 + 185.974i 0.523211 + 0.336910i
\(553\) 227.435 + 236.105i 0.411274 + 0.426954i
\(554\) −529.028 −0.954925
\(555\) −414.883 + 168.713i −0.747536 + 0.303988i
\(556\) −50.5181 29.1666i −0.0908599 0.0524580i
\(557\) −138.355 516.348i −0.248393 0.927016i −0.971648 0.236434i \(-0.924021\pi\)
0.723254 0.690582i \(-0.242645\pi\)
\(558\) 523.116 87.0036i 0.937484 0.155920i
\(559\) −151.883 −0.271705
\(560\) −82.6134 + 113.027i −0.147524 + 0.201833i
\(561\) 177.429 + 819.157i 0.316273 + 1.46017i
\(562\) −86.4641 + 322.689i −0.153851 + 0.574179i
\(563\) 45.3296 + 169.172i 0.0805144 + 0.300484i 0.994427 0.105427i \(-0.0336210\pi\)
−0.913913 + 0.405911i \(0.866954\pi\)
\(564\) −149.539 47.9501i −0.265140 0.0850178i
\(565\) 325.561 + 228.742i 0.576214 + 0.404853i
\(566\) 33.5434 0.0592640
\(567\) 476.525 307.266i 0.840433 0.541916i
\(568\) 69.5573 69.5573i 0.122460 0.122460i
\(569\) −3.43082 5.94235i −0.00602955 0.0104435i 0.862995 0.505213i \(-0.168586\pi\)
−0.869024 + 0.494769i \(0.835253\pi\)
\(570\) −146.495 + 188.380i −0.257009 + 0.330491i
\(571\) −282.742 + 489.723i −0.495169 + 0.857658i −0.999984 0.00556934i \(-0.998227\pi\)
0.504815 + 0.863227i \(0.331561\pi\)
\(572\) −61.9778 + 231.304i −0.108353 + 0.404378i
\(573\) 87.8903 + 56.5949i 0.153386 + 0.0987694i
\(574\) −10.1961 + 545.086i −0.0177632 + 0.949628i
\(575\) −84.9634 1008.50i −0.147762 1.75392i
\(576\) −58.5746 41.8690i −0.101692 0.0726893i
\(577\) 173.275 + 646.672i 0.300304 + 1.12075i 0.936913 + 0.349562i \(0.113670\pi\)
−0.636610 + 0.771186i \(0.719664\pi\)
\(578\) −27.5680 + 7.38681i −0.0476954 + 0.0127799i
\(579\) −430.375 + 390.533i −0.743307 + 0.674496i
\(580\) 214.582 + 78.4927i 0.369969 + 0.135332i
\(581\) −641.780 386.713i −1.10461 0.665599i
\(582\) −382.215 246.118i −0.656727 0.422884i
\(583\) −938.375 251.437i −1.60956 0.431281i
\(584\) 144.056 + 83.1709i 0.246671 + 0.142416i
\(585\) −319.943 + 112.360i −0.546912 + 0.192069i
\(586\) 154.266 89.0653i 0.263252 0.151989i
\(587\) −120.200 120.200i −0.204770 0.204770i 0.597270 0.802040i \(-0.296252\pi\)
−0.802040 + 0.597270i \(0.796252\pi\)
\(588\) 124.613 + 266.285i 0.211928 + 0.452865i
\(589\) 468.703i 0.795761i
\(590\) 71.5217 + 50.2517i 0.121223 + 0.0851724i
\(591\) 195.615 + 62.7243i 0.330990 + 0.106133i
\(592\) 115.364 30.9116i 0.194871 0.0522155i
\(593\) 578.491 + 155.006i 0.975534 + 0.261393i 0.711163 0.703028i \(-0.248169\pi\)
0.264371 + 0.964421i \(0.414836\pi\)
\(594\) −362.276 486.663i −0.609893 0.819298i
\(595\) −385.930 479.380i −0.648622 0.805680i
\(596\) 251.140i 0.421375i
\(597\) −184.668 8.96249i −0.309326 0.0150125i
\(598\) −416.722 + 111.660i −0.696860 + 0.186723i
\(599\) 312.822 541.824i 0.522241 0.904548i −0.477424 0.878673i \(-0.658430\pi\)
0.999665 0.0258747i \(-0.00823710\pi\)
\(600\) 7.54046 + 211.998i 0.0125674 + 0.353330i
\(601\) 564.677i 0.939563i 0.882783 + 0.469782i \(0.155667\pi\)
−0.882783 + 0.469782i \(0.844333\pi\)
\(602\) 138.426 + 143.703i 0.229943 + 0.238709i
\(603\) −339.498 + 905.276i −0.563015 + 1.50129i
\(604\) −322.530 + 186.213i −0.533990 + 0.308299i
\(605\) 421.690 + 504.196i 0.697008 + 0.833381i
\(606\) −320.331 102.715i −0.528599 0.169496i
\(607\) 432.927 + 116.002i 0.713224 + 0.191108i 0.597146 0.802132i \(-0.296301\pi\)
0.116078 + 0.993240i \(0.462968\pi\)
\(608\) 44.9979 44.9979i 0.0740097 0.0740097i
\(609\) 361.303 315.739i 0.593273 0.518454i
\(610\) −107.807 + 50.0602i −0.176733 + 0.0820658i
\(611\) 170.805 98.6145i 0.279550 0.161398i
\(612\) 244.423 201.078i 0.399384 0.328558i
\(613\) 157.847 + 589.092i 0.257499 + 0.960998i 0.966683 + 0.255975i \(0.0823966\pi\)
−0.709185 + 0.705023i \(0.750937\pi\)
\(614\) −137.944 + 79.6418i −0.224664 + 0.129710i
\(615\) 498.632 + 658.610i 0.810783 + 1.07091i
\(616\) 275.333 152.170i 0.446969 0.247029i
\(617\) −717.965 + 717.965i −1.16364 + 1.16364i −0.179965 + 0.983673i \(0.557598\pi\)
−0.983673 + 0.179965i \(0.942402\pi\)
\(618\) 211.624 + 10.2708i 0.342434 + 0.0166193i
\(619\) 282.875 489.955i 0.456988 0.791526i −0.541812 0.840499i \(-0.682262\pi\)
0.998800 + 0.0489736i \(0.0155950\pi\)
\(620\) 267.300 + 319.599i 0.431129 + 0.515482i
\(621\) 432.973 1003.63i 0.697219 1.61615i
\(622\) −106.829 + 106.829i −0.171751 + 0.171751i
\(623\) 652.023 + 676.880i 1.04659 + 1.08649i
\(624\) 88.3772 19.1425i 0.141630 0.0306770i
\(625\) 481.353 398.653i 0.770165 0.637844i
\(626\) 95.3183 165.096i 0.152266 0.263732i
\(627\) 476.837 245.287i 0.760506 0.391207i
\(628\) 54.5170 203.460i 0.0868105 0.323981i
\(629\) 525.015i 0.834682i
\(630\) 397.904 + 200.307i 0.631593 + 0.317947i
\(631\) 1216.92 1.92856 0.964281 0.264880i \(-0.0853323\pi\)
0.964281 + 0.264880i \(0.0853323\pi\)
\(632\) −127.950 34.2840i −0.202452 0.0542469i
\(633\) −429.210 834.384i −0.678057 1.31814i
\(634\) −402.882 232.604i −0.635461 0.366884i
\(635\) 173.112 + 121.630i 0.272617 + 0.191543i
\(636\) 77.6587 + 358.536i 0.122105 + 0.563736i
\(637\) −352.837 108.838i −0.553904 0.170861i
\(638\) −363.043 363.043i −0.569033 0.569033i
\(639\) −254.643 182.018i −0.398503 0.284849i
\(640\) 5.02094 56.3453i 0.00784521 0.0880395i
\(641\) −14.4603 8.34866i −0.0225590 0.0130244i 0.488678 0.872464i \(-0.337479\pi\)
−0.511237 + 0.859440i \(0.670813\pi\)
\(642\) −37.9721 + 782.397i −0.0591466 + 1.21869i
\(643\) −838.779 838.779i −1.30448 1.30448i −0.925341 0.379137i \(-0.876221\pi\)
−0.379137 0.925341i \(-0.623779\pi\)
\(644\) 485.445 + 292.511i 0.753797 + 0.454210i
\(645\) 299.485 + 41.4012i 0.464318 + 0.0641878i
\(646\) 139.870 + 242.261i 0.216517 + 0.375018i
\(647\) 195.284 52.3263i 0.301830 0.0808752i −0.104725 0.994501i \(-0.533396\pi\)
0.406556 + 0.913626i \(0.366730\pi\)
\(648\) −100.842 + 205.715i −0.155621 + 0.317462i
\(649\) −98.2073 170.100i −0.151321 0.262096i
\(650\) −203.539 171.909i −0.313137 0.264475i
\(651\) 858.438 169.194i 1.31865 0.259899i
\(652\) −288.438 288.438i −0.442390 0.442390i
\(653\) 206.448 770.473i 0.316152 1.17990i −0.606759 0.794886i \(-0.707531\pi\)
0.922912 0.385011i \(-0.125802\pi\)
\(654\) 105.709 329.668i 0.161634 0.504079i
\(655\) −527.428 630.622i −0.805234 0.962782i
\(656\) −110.143 190.774i −0.167901 0.290814i
\(657\) 185.858 495.592i 0.282888 0.754326i
\(658\) −248.974 71.7291i −0.378380 0.109011i
\(659\) 897.874 1.36248 0.681240 0.732061i \(-0.261441\pi\)
0.681240 + 0.732061i \(0.261441\pi\)
\(660\) 185.259 439.195i 0.280695 0.665447i
\(661\) −373.944 215.897i −0.565725 0.326621i 0.189715 0.981839i \(-0.439244\pi\)
−0.755440 + 0.655218i \(0.772577\pi\)
\(662\) 201.675 + 752.661i 0.304645 + 1.13695i
\(663\) −19.2694 + 397.038i −0.0290640 + 0.598850i
\(664\) 302.757 0.455959
\(665\) −232.339 + 317.873i −0.349382 + 0.478004i
\(666\) −157.253 345.973i −0.236115 0.519480i
\(667\) 239.404 893.469i 0.358927 1.33953i
\(668\) −123.210 459.825i −0.184446 0.688361i
\(669\) 166.937 520.618i 0.249532 0.778203i
\(670\) −748.294 + 130.703i −1.11686 + 0.195080i
\(671\) 267.089 0.398046
\(672\) −98.6580 66.1710i −0.146813 0.0984687i
\(673\) 286.300 286.300i 0.425408 0.425408i −0.461653 0.887061i \(-0.652743\pi\)
0.887061 + 0.461653i \(0.152743\pi\)
\(674\) −174.856 302.860i −0.259430 0.449347i
\(675\) 661.496 134.342i 0.979994 0.199025i
\(676\) 112.215 194.363i 0.165999 0.287519i
\(677\) −26.5015 + 98.9049i −0.0391455 + 0.146093i −0.982733 0.185031i \(-0.940761\pi\)
0.943587 + 0.331124i \(0.107428\pi\)
\(678\) −182.784 + 283.858i −0.269592 + 0.418670i
\(679\) −642.439 387.110i −0.946154 0.570117i
\(680\) 233.535 + 85.4256i 0.343434 + 0.125626i
\(681\) 762.896 + 840.725i 1.12026 + 1.23454i
\(682\) −242.310 904.315i −0.355294 1.32597i
\(683\) 733.390 196.511i 1.07378 0.287718i 0.321733 0.946831i \(-0.395735\pi\)
0.752044 + 0.659113i \(0.229068\pi\)
\(684\) −164.733 117.751i −0.240838 0.172151i
\(685\) 75.3972 + 162.371i 0.110069 + 0.237039i
\(686\) 218.597 + 433.028i 0.318655 + 0.631236i
\(687\) −256.395 + 398.174i −0.373210 + 0.579584i
\(688\) −77.8751 20.8666i −0.113191 0.0303293i
\(689\) −399.009 230.368i −0.579113 0.334351i
\(690\) 852.135 106.581i 1.23498 0.154465i
\(691\) −651.620 + 376.213i −0.943010 + 0.544447i −0.890903 0.454194i \(-0.849927\pi\)
−0.0521077 + 0.998641i \(0.516594\pi\)
\(692\) −205.396 205.396i −0.296815 0.296815i
\(693\) −621.378 784.792i −0.896649 1.13246i
\(694\) 177.219i 0.255359i
\(695\) −143.658 + 25.0926i −0.206703 + 0.0361044i
\(696\) −59.1985 + 184.619i −0.0850554 + 0.265257i
\(697\) 935.360 250.629i 1.34198 0.359582i
\(698\) −112.310 30.0933i −0.160902 0.0431135i
\(699\) 269.507 58.3751i 0.385561 0.0835123i
\(700\) 22.8546 + 349.253i 0.0326494 + 0.498933i
\(701\) 306.359i 0.437032i 0.975833 + 0.218516i \(0.0701216\pi\)
−0.975833 + 0.218516i \(0.929878\pi\)
\(702\) −106.223 267.411i −0.151315 0.380927i
\(703\) 324.445 86.9348i 0.461515 0.123663i
\(704\) −63.5558 + 110.082i −0.0902781 + 0.156366i
\(705\) −363.677 + 147.890i −0.515854 + 0.209773i
\(706\) 593.567i 0.840746i
\(707\) −533.333 153.652i −0.754360 0.217330i
\(708\) −40.1553 + 62.3600i −0.0567165 + 0.0880792i
\(709\) 188.596 108.886i 0.266003 0.153577i −0.361067 0.932540i \(-0.617587\pi\)
0.627070 + 0.778963i \(0.284254\pi\)
\(710\) 21.8277 244.952i 0.0307432 0.345002i
\(711\) −40.8168 + 419.515i −0.0574076 + 0.590034i
\(712\) −366.813 98.2873i −0.515187 0.138044i
\(713\) 1192.68 1192.68i 1.67276 1.67276i
\(714\) 393.216 343.627i 0.550722 0.481270i
\(715\) 252.131 + 542.977i 0.352631 + 0.759408i
\(716\) 184.835 106.714i 0.258149 0.149043i
\(717\) 106.102 + 206.261i 0.147980 + 0.287673i
\(718\) 162.595 + 606.812i 0.226455 + 0.845142i
\(719\) −204.988 + 118.350i −0.285101 + 0.164603i −0.635731 0.771911i \(-0.719301\pi\)
0.350629 + 0.936514i \(0.385968\pi\)
\(720\) −179.481 + 13.6550i −0.249280 + 0.0189653i
\(721\) 349.511 + 6.53775i 0.484759 + 0.00906762i
\(722\) −234.449 + 234.449i −0.324722 + 0.324722i
\(723\) −62.5898 + 1289.63i −0.0865695 + 1.78372i
\(724\) 16.9570 29.3704i 0.0234212 0.0405668i
\(725\) 537.396 193.640i 0.741236 0.267090i
\(726\) −413.031 + 374.795i −0.568913 + 0.516247i
\(727\) −173.946 + 173.946i −0.239266 + 0.239266i −0.816546 0.577280i \(-0.804114\pi\)
0.577280 + 0.816546i \(0.304114\pi\)
\(728\) 144.809 35.9129i 0.198914 0.0493309i
\(729\) 698.357 + 209.137i 0.957966 + 0.286882i
\(730\) 409.652 71.5533i 0.561167 0.0980182i
\(731\) 177.203 306.925i 0.242412 0.419870i
\(732\) −46.1357 89.6878i −0.0630269 0.122524i
\(733\) 233.681 872.111i 0.318801 1.18978i −0.601597 0.798800i \(-0.705469\pi\)
0.920398 0.390983i \(-0.127865\pi\)
\(734\) 789.128i 1.07511i
\(735\) 666.060 + 310.787i 0.906205 + 0.422839i
\(736\) −229.007 −0.311150
\(737\) 1648.74 + 441.778i 2.23710 + 0.599428i
\(738\) −541.313 + 445.318i −0.733486 + 0.603412i
\(739\) −340.163 196.393i −0.460302 0.265756i 0.251869 0.967761i \(-0.418955\pi\)
−0.712171 + 0.702006i \(0.752288\pi\)
\(740\) 171.654 244.309i 0.231964 0.330147i
\(741\) 248.549 53.8356i 0.335424 0.0726527i
\(742\) 145.694 + 587.475i 0.196353 + 0.791745i
\(743\) 219.726 + 219.726i 0.295729 + 0.295729i 0.839338 0.543610i \(-0.182943\pi\)
−0.543610 + 0.839338i \(0.682943\pi\)
\(744\) −261.811 + 237.574i −0.351897 + 0.319320i
\(745\) −402.799 481.609i −0.540670 0.646455i
\(746\) −376.694 217.484i −0.504951 0.291534i
\(747\) −158.054 950.312i −0.211585 1.27217i
\(748\) −395.109 395.109i −0.528220 0.528220i
\(749\) −24.1708 + 1292.18i −0.0322707 + 1.72521i
\(750\) 354.481 + 394.453i 0.472641 + 0.525938i
\(751\) 189.018 + 327.389i 0.251688 + 0.435937i 0.963991 0.265936i \(-0.0856808\pi\)
−0.712302 + 0.701873i \(0.752347\pi\)
\(752\) 101.125 27.0964i 0.134475 0.0360325i
\(753\) 24.6061 + 47.8342i 0.0326774 + 0.0635248i
\(754\) −121.748 210.874i −0.161470 0.279674i
\(755\) −319.850 + 874.401i −0.423642 + 1.15815i
\(756\) −156.197 + 344.219i −0.206610 + 0.455316i
\(757\) −396.630 396.630i −0.523950 0.523950i 0.394812 0.918762i \(-0.370810\pi\)
−0.918762 + 0.394812i \(0.870810\pi\)
\(758\) 2.70608 10.0992i 0.00357003 0.0133235i
\(759\) −1837.54 589.212i −2.42101 0.776301i
\(760\) 14.1207 158.464i 0.0185799