Properties

Label 210.3.w.a.17.4
Level 210
Weight 3
Character 210.17
Analytic conductor 5.722
Analytic rank 0
Dimension 64
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 210.w (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.72208555157\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 17.4
Character \(\chi\) \(=\) 210.17
Dual form 210.3.w.a.173.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.44741 + 1.73499i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.38913 + 2.39490i) q^{5} +(3.97827 - 1.47423i) q^{6} +(5.69479 + 4.07055i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(2.97959 - 8.49247i) q^{9} +O(q^{10})\) \(q+(-1.36603 - 0.366025i) q^{2} +(-2.44741 + 1.73499i) q^{3} +(1.73205 + 1.00000i) q^{4} +(4.38913 + 2.39490i) q^{5} +(3.97827 - 1.47423i) q^{6} +(5.69479 + 4.07055i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(2.97959 - 8.49247i) q^{9} +(-5.11906 - 4.87803i) q^{10} +(-12.1554 - 7.01794i) q^{11} +(-5.97403 + 0.557691i) q^{12} +(7.32665 + 7.32665i) q^{13} +(-6.28930 - 7.64491i) q^{14} +(-14.8971 + 1.75381i) q^{15} +(2.00000 + 3.46410i) q^{16} +(8.77125 - 2.35025i) q^{17} +(-7.17866 + 10.5103i) q^{18} +(13.9857 + 24.2240i) q^{19} +(5.20729 + 8.53722i) q^{20} +(-20.9998 - 0.0818625i) q^{21} +(14.0359 + 14.0359i) q^{22} +(-8.52605 + 31.8197i) q^{23} +(8.36480 + 1.42482i) q^{24} +(13.5289 + 21.0231i) q^{25} +(-7.32665 - 12.6901i) q^{26} +(7.44210 + 25.9541i) q^{27} +(5.79312 + 12.7452i) q^{28} -4.58689 q^{29} +(20.9918 + 3.05698i) q^{30} +(-31.4105 - 18.1349i) q^{31} +(-1.46410 - 5.46410i) q^{32} +(41.9254 - 3.91384i) q^{33} -12.8420 q^{34} +(15.2466 + 31.5046i) q^{35} +(13.6533 - 11.7298i) q^{36} +(-9.81415 + 36.6269i) q^{37} +(-10.2383 - 38.2097i) q^{38} +(-30.6430 - 5.21960i) q^{39} +(-3.98845 - 13.5681i) q^{40} -53.2920 q^{41} +(28.6564 + 7.79830i) q^{42} +(16.6145 - 16.6145i) q^{43} +(-14.0359 - 24.3109i) q^{44} +(33.4165 - 30.1387i) q^{45} +(23.2936 - 40.3457i) q^{46} +(-4.62343 + 17.2549i) q^{47} +(-10.9050 - 5.00808i) q^{48} +(15.8613 + 46.3618i) q^{49} +(-10.7858 - 33.6700i) q^{50} +(-17.3891 + 20.9701i) q^{51} +(5.36348 + 20.0168i) q^{52} +(78.9680 - 21.1594i) q^{53} +(-0.666244 - 38.1780i) q^{54} +(-36.5444 - 59.9137i) q^{55} +(-3.24848 - 19.5307i) q^{56} +(-76.2571 - 35.0208i) q^{57} +(6.26580 + 1.67892i) q^{58} +(8.07299 + 4.66094i) q^{59} +(-27.5564 - 11.8594i) q^{60} +(92.7811 - 53.5672i) q^{61} +(36.2697 + 36.2697i) q^{62} +(51.5372 - 36.2342i) q^{63} +8.00000i q^{64} +(14.6110 + 49.7042i) q^{65} +(-58.7037 - 9.99934i) q^{66} +(-90.5133 + 24.2530i) q^{67} +(17.5425 + 4.70050i) q^{68} +(-34.3402 - 92.6683i) q^{69} +(-9.29572 - 48.6168i) q^{70} +31.9798i q^{71} +(-22.9441 + 11.0257i) q^{72} +(-63.8772 + 17.1159i) q^{73} +(26.8128 - 46.4411i) q^{74} +(-69.5855 - 27.9795i) q^{75} +55.9428i q^{76} +(-40.6558 - 89.4450i) q^{77} +(39.9486 + 18.3462i) q^{78} +(46.9255 - 27.0925i) q^{79} +(0.482065 + 19.9942i) q^{80} +(-63.2440 - 50.6082i) q^{81} +(72.7983 + 19.5062i) q^{82} +(-37.9054 + 37.9054i) q^{83} +(-36.2909 - 21.1416i) q^{84} +(44.1267 + 10.6908i) q^{85} +(-28.7771 + 16.6145i) q^{86} +(11.2260 - 7.95822i) q^{87} +(10.2750 + 38.3467i) q^{88} +(91.9135 - 53.0663i) q^{89} +(-56.6793 + 28.9389i) q^{90} +(11.9002 + 71.5472i) q^{91} +(-46.5872 + 46.5872i) q^{92} +(108.338 - 10.1136i) q^{93} +(12.6314 - 21.8783i) q^{94} +(3.37101 + 139.816i) q^{95} +(13.0634 + 10.8327i) q^{96} +(59.6232 - 59.6232i) q^{97} +(-4.69727 - 69.1371i) q^{98} +(-95.8179 + 82.3190i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + O(q^{10}) \) \( 64q - 32q^{2} - 6q^{3} - 12q^{5} + 4q^{7} - 128q^{8} - 16q^{9} + 24q^{10} + 12q^{12} - 16q^{14} - 44q^{15} + 128q^{16} - 20q^{18} + 36q^{21} + 16q^{22} - 12q^{23} - 16q^{25} + 8q^{28} - 112q^{29} + 26q^{30} + 128q^{32} + 30q^{33} + 16q^{36} - 32q^{37} + 24q^{38} + 64q^{39} - 136q^{42} + 32q^{43} - 16q^{44} - 114q^{45} - 24q^{46} - 96q^{47} + 40q^{50} - 84q^{51} + 56q^{53} - 72q^{54} - 316q^{57} + 56q^{58} + 672q^{59} + 8q^{60} + 600q^{61} - 210q^{63} + 28q^{65} + 16q^{67} + 24q^{72} - 624q^{73} - 64q^{74} + 48q^{75} + 208q^{77} - 8q^{78} - 48q^{80} - 64q^{81} - 192q^{82} + 160q^{84} - 152q^{85} + 60q^{87} - 16q^{88} + 144q^{89} - 232q^{91} + 48q^{92} - 170q^{93} + 136q^{95} - 48q^{96} + 128q^{98} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/210\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(71\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.683013 0.183013i
\(3\) −2.44741 + 1.73499i −0.815802 + 0.578331i
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) 4.38913 + 2.39490i 0.877825 + 0.478981i
\(6\) 3.97827 1.47423i 0.663045 0.245705i
\(7\) 5.69479 + 4.07055i 0.813541 + 0.581507i
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 2.97959 8.49247i 0.331066 0.943608i
\(10\) −5.11906 4.87803i −0.511906 0.487803i
\(11\) −12.1554 7.01794i −1.10504 0.637995i −0.167499 0.985872i \(-0.553569\pi\)
−0.937540 + 0.347877i \(0.886903\pi\)
\(12\) −5.97403 + 0.557691i −0.497835 + 0.0464743i
\(13\) 7.32665 + 7.32665i 0.563588 + 0.563588i 0.930325 0.366736i \(-0.119525\pi\)
−0.366736 + 0.930325i \(0.619525\pi\)
\(14\) −6.28930 7.64491i −0.449236 0.546065i
\(15\) −14.8971 + 1.75381i −0.993141 + 0.116920i
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) 8.77125 2.35025i 0.515956 0.138250i 0.00856047 0.999963i \(-0.497275\pi\)
0.507395 + 0.861713i \(0.330608\pi\)
\(18\) −7.17866 + 10.5103i −0.398814 + 0.583907i
\(19\) 13.9857 + 24.2240i 0.736090 + 1.27495i 0.954243 + 0.299031i \(0.0966633\pi\)
−0.218153 + 0.975914i \(0.570003\pi\)
\(20\) 5.20729 + 8.53722i 0.260364 + 0.426861i
\(21\) −20.9998 0.0818625i −0.999992 0.00389822i
\(22\) 14.0359 + 14.0359i 0.637995 + 0.637995i
\(23\) −8.52605 + 31.8197i −0.370698 + 1.38346i 0.488832 + 0.872378i \(0.337423\pi\)
−0.859530 + 0.511086i \(0.829243\pi\)
\(24\) 8.36480 + 1.42482i 0.348533 + 0.0593677i
\(25\) 13.5289 + 21.0231i 0.541155 + 0.840923i
\(26\) −7.32665 12.6901i −0.281794 0.488082i
\(27\) 7.44210 + 25.9541i 0.275633 + 0.961263i
\(28\) 5.79312 + 12.7452i 0.206897 + 0.455185i
\(29\) −4.58689 −0.158169 −0.0790843 0.996868i \(-0.525200\pi\)
−0.0790843 + 0.996868i \(0.525200\pi\)
\(30\) 20.9918 + 3.05698i 0.699726 + 0.101899i
\(31\) −31.4105 18.1349i −1.01324 0.584995i −0.101103 0.994876i \(-0.532237\pi\)
−0.912139 + 0.409881i \(0.865570\pi\)
\(32\) −1.46410 5.46410i −0.0457532 0.170753i
\(33\) 41.9254 3.91384i 1.27047 0.118601i
\(34\) −12.8420 −0.377706
\(35\) 15.2466 + 31.5046i 0.435617 + 0.900132i
\(36\) 13.6533 11.7298i 0.379258 0.325828i
\(37\) −9.81415 + 36.6269i −0.265247 + 0.989917i 0.696851 + 0.717216i \(0.254584\pi\)
−0.962099 + 0.272701i \(0.912083\pi\)
\(38\) −10.2383 38.2097i −0.269428 1.00552i
\(39\) −30.6430 5.21960i −0.785717 0.133836i
\(40\) −3.98845 13.5681i −0.0997112 0.339202i
\(41\) −53.2920 −1.29981 −0.649903 0.760017i \(-0.725190\pi\)
−0.649903 + 0.760017i \(0.725190\pi\)
\(42\) 28.6564 + 7.79830i 0.682294 + 0.185674i
\(43\) 16.6145 16.6145i 0.386383 0.386383i −0.487012 0.873395i \(-0.661913\pi\)
0.873395 + 0.487012i \(0.161913\pi\)
\(44\) −14.0359 24.3109i −0.318997 0.552520i
\(45\) 33.4165 30.1387i 0.742588 0.669749i
\(46\) 23.2936 40.3457i 0.506383 0.877081i
\(47\) −4.62343 + 17.2549i −0.0983708 + 0.367125i −0.997509 0.0705401i \(-0.977528\pi\)
0.899138 + 0.437665i \(0.144194\pi\)
\(48\) −10.9050 5.00808i −0.227188 0.104335i
\(49\) 15.8613 + 46.3618i 0.323699 + 0.946160i
\(50\) −10.7858 33.6700i −0.215716 0.673399i
\(51\) −17.3891 + 20.9701i −0.340963 + 0.411178i
\(52\) 5.36348 + 20.0168i 0.103144 + 0.384938i
\(53\) 78.9680 21.1594i 1.48996 0.399234i 0.580238 0.814447i \(-0.302959\pi\)
0.909724 + 0.415212i \(0.136293\pi\)
\(54\) −0.666244 38.1780i −0.0123378 0.706999i
\(55\) −36.5444 59.9137i −0.664444 1.08934i
\(56\) −3.24848 19.5307i −0.0580086 0.348762i
\(57\) −76.2571 35.0208i −1.33784 0.614399i
\(58\) 6.26580 + 1.67892i 0.108031 + 0.0289468i
\(59\) 8.07299 + 4.66094i 0.136830 + 0.0789990i 0.566853 0.823819i \(-0.308161\pi\)
−0.430022 + 0.902818i \(0.641494\pi\)
\(60\) −27.5564 11.8594i −0.459273 0.197657i
\(61\) 92.7811 53.5672i 1.52100 0.878151i 0.521309 0.853368i \(-0.325444\pi\)
0.999693 0.0247829i \(-0.00788946\pi\)
\(62\) 36.2697 + 36.2697i 0.584995 + 0.584995i
\(63\) 51.5372 36.2342i 0.818050 0.575147i
\(64\) 8.00000i 0.125000i
\(65\) 14.6110 + 49.7042i 0.224784 + 0.764680i
\(66\) −58.7037 9.99934i −0.889450 0.151505i
\(67\) −90.5133 + 24.2530i −1.35095 + 0.361985i −0.860484 0.509478i \(-0.829839\pi\)
−0.490462 + 0.871463i \(0.663172\pi\)
\(68\) 17.5425 + 4.70050i 0.257978 + 0.0691250i
\(69\) −34.3402 92.6683i −0.497684 1.34302i
\(70\) −9.29572 48.6168i −0.132796 0.694525i
\(71\) 31.9798i 0.450420i 0.974310 + 0.225210i \(0.0723068\pi\)
−0.974310 + 0.225210i \(0.927693\pi\)
\(72\) −22.9441 + 11.0257i −0.318668 + 0.153135i
\(73\) −63.8772 + 17.1159i −0.875031 + 0.234464i −0.668262 0.743926i \(-0.732961\pi\)
−0.206769 + 0.978390i \(0.566295\pi\)
\(74\) 26.8128 46.4411i 0.362335 0.627582i
\(75\) −69.5855 27.9795i −0.927807 0.373060i
\(76\) 55.9428i 0.736090i
\(77\) −40.6558 89.4450i −0.527997 1.16162i
\(78\) 39.9486 + 18.3462i 0.512161 + 0.235208i
\(79\) 46.9255 27.0925i 0.593994 0.342943i −0.172681 0.984978i \(-0.555243\pi\)
0.766675 + 0.642035i \(0.221910\pi\)
\(80\) 0.482065 + 19.9942i 0.00602581 + 0.249927i
\(81\) −63.2440 50.6082i −0.780791 0.624793i
\(82\) 72.7983 + 19.5062i 0.887784 + 0.237881i
\(83\) −37.9054 + 37.9054i −0.456692 + 0.456692i −0.897568 0.440876i \(-0.854668\pi\)
0.440876 + 0.897568i \(0.354668\pi\)
\(84\) −36.2909 21.1416i −0.432035 0.251686i
\(85\) 44.1267 + 10.6908i 0.519138 + 0.125774i
\(86\) −28.7771 + 16.6145i −0.334617 + 0.193191i
\(87\) 11.2260 7.95822i 0.129034 0.0914738i
\(88\) 10.2750 + 38.3467i 0.116761 + 0.435759i
\(89\) 91.9135 53.0663i 1.03274 0.596251i 0.114969 0.993369i \(-0.463323\pi\)
0.917767 + 0.397118i \(0.129990\pi\)
\(90\) −56.6793 + 28.9389i −0.629770 + 0.321544i
\(91\) 11.9002 + 71.5472i 0.130772 + 0.786233i
\(92\) −46.5872 + 46.5872i −0.506383 + 0.506383i
\(93\) 108.338 10.1136i 1.16493 0.108749i
\(94\) 12.6314 21.8783i 0.134377 0.232748i
\(95\) 3.37101 + 139.816i 0.0354843 + 1.47175i
\(96\) 13.0634 + 10.8327i 0.136077 + 0.112840i
\(97\) 59.6232 59.6232i 0.614672 0.614672i −0.329488 0.944160i \(-0.606876\pi\)
0.944160 + 0.329488i \(0.106876\pi\)
\(98\) −4.69727 69.1371i −0.0479314 0.705480i
\(99\) −95.8179 + 82.3190i −0.967858 + 0.831505i
\(100\) 2.40962 + 49.9419i 0.0240962 + 0.499419i
\(101\) 60.3990 104.614i 0.598010 1.03578i −0.395104 0.918636i \(-0.629292\pi\)
0.993114 0.117148i \(-0.0373751\pi\)
\(102\) 31.4296 22.2808i 0.308133 0.218439i
\(103\) 33.2542 124.106i 0.322856 1.20491i −0.593594 0.804765i \(-0.702291\pi\)
0.916450 0.400150i \(-0.131042\pi\)
\(104\) 29.3066i 0.281794i
\(105\) −91.9749 50.6519i −0.875952 0.482399i
\(106\) −115.617 −1.09073
\(107\) 94.0731 + 25.2068i 0.879188 + 0.235578i 0.670057 0.742310i \(-0.266270\pi\)
0.209131 + 0.977888i \(0.432936\pi\)
\(108\) −13.0640 + 52.3959i −0.120963 + 0.485147i
\(109\) 2.94309 + 1.69919i 0.0270008 + 0.0155889i 0.513440 0.858126i \(-0.328371\pi\)
−0.486439 + 0.873715i \(0.661704\pi\)
\(110\) 27.9907 + 95.2199i 0.254461 + 0.865635i
\(111\) −39.5283 106.668i −0.356110 0.960977i
\(112\) −2.71122 + 27.8684i −0.0242073 + 0.248825i
\(113\) −29.7534 29.7534i −0.263304 0.263304i 0.563091 0.826395i \(-0.309612\pi\)
−0.826395 + 0.563091i \(0.809612\pi\)
\(114\) 91.3507 + 75.7513i 0.801322 + 0.664485i
\(115\) −113.627 + 119.241i −0.988061 + 1.03688i
\(116\) −7.94472 4.58689i −0.0684890 0.0395421i
\(117\) 84.0518 40.3909i 0.718391 0.345221i
\(118\) −9.32188 9.32188i −0.0789990 0.0789990i
\(119\) 59.5172 + 22.3196i 0.500145 + 0.187560i
\(120\) 33.3019 + 26.2866i 0.277515 + 0.219055i
\(121\) 38.0030 + 65.8232i 0.314075 + 0.543993i
\(122\) −146.348 + 39.2139i −1.19958 + 0.321426i
\(123\) 130.427 92.4614i 1.06038 0.751718i
\(124\) −36.2697 62.8210i −0.292498 0.506621i
\(125\) 9.03171 + 124.673i 0.0722537 + 0.997386i
\(126\) −83.6637 + 30.6330i −0.663998 + 0.243119i
\(127\) −78.4974 78.4974i −0.618090 0.618090i 0.326951 0.945041i \(-0.393979\pi\)
−0.945041 + 0.326951i \(0.893979\pi\)
\(128\) 2.92820 10.9282i 0.0228766 0.0853766i
\(129\) −11.8363 + 69.4883i −0.0917546 + 0.538669i
\(130\) −1.76596 73.2452i −0.0135843 0.563425i
\(131\) 3.56339 + 6.17197i 0.0272015 + 0.0471143i 0.879306 0.476258i \(-0.158007\pi\)
−0.852104 + 0.523372i \(0.824674\pi\)
\(132\) 76.5307 + 35.1464i 0.579778 + 0.266261i
\(133\) −18.9591 + 194.880i −0.142550 + 1.46526i
\(134\) 132.521 0.988961
\(135\) −29.4932 + 131.739i −0.218468 + 0.975844i
\(136\) −22.2430 12.8420i −0.163551 0.0944265i
\(137\) 34.5562 + 128.965i 0.252235 + 0.941353i 0.969608 + 0.244664i \(0.0786777\pi\)
−0.717373 + 0.696689i \(0.754656\pi\)
\(138\) 12.9906 + 139.157i 0.0941351 + 1.00838i
\(139\) 176.979 1.27323 0.636615 0.771182i \(-0.280334\pi\)
0.636615 + 0.771182i \(0.280334\pi\)
\(140\) −5.09677 + 69.8142i −0.0364055 + 0.498673i
\(141\) −18.6217 50.2513i −0.132069 0.356392i
\(142\) 11.7054 43.6852i 0.0824326 0.307643i
\(143\) −37.6406 140.477i −0.263221 0.982354i
\(144\) 35.3780 6.66332i 0.245680 0.0462731i
\(145\) −20.1324 10.9852i −0.138844 0.0757597i
\(146\) 93.5228 0.640567
\(147\) −119.256 85.9471i −0.811268 0.584674i
\(148\) −53.6255 + 53.6255i −0.362335 + 0.362335i
\(149\) −26.7783 46.3813i −0.179720 0.311284i 0.762065 0.647501i \(-0.224186\pi\)
−0.941785 + 0.336217i \(0.890853\pi\)
\(150\) 84.8144 + 63.6908i 0.565429 + 0.424605i
\(151\) 40.7500 70.5810i 0.269867 0.467424i −0.698960 0.715161i \(-0.746353\pi\)
0.968827 + 0.247737i \(0.0796868\pi\)
\(152\) 20.4765 76.4193i 0.134714 0.502759i
\(153\) 6.17534 81.4923i 0.0403617 0.532630i
\(154\) 22.7977 + 137.065i 0.148037 + 0.890034i
\(155\) −94.4334 154.821i −0.609248 0.998847i
\(156\) −47.8556 39.6836i −0.306767 0.254382i
\(157\) 15.6803 + 58.5197i 0.0998746 + 0.372737i 0.997713 0.0675872i \(-0.0215301\pi\)
−0.897839 + 0.440324i \(0.854863\pi\)
\(158\) −74.0180 + 19.8331i −0.468468 + 0.125526i
\(159\) −156.555 + 188.795i −0.984625 + 1.18739i
\(160\) 6.65987 27.4890i 0.0416242 0.171806i
\(161\) −178.078 + 146.501i −1.10607 + 0.909942i
\(162\) 67.8691 + 92.2810i 0.418945 + 0.569636i
\(163\) 175.291 + 46.9691i 1.07541 + 0.288154i 0.752712 0.658350i \(-0.228745\pi\)
0.322693 + 0.946504i \(0.395412\pi\)
\(164\) −92.3045 53.2920i −0.562832 0.324951i
\(165\) 193.389 + 83.2289i 1.17205 + 0.504417i
\(166\) 65.6541 37.9054i 0.395506 0.228346i
\(167\) −39.9775 39.9775i −0.239386 0.239386i 0.577210 0.816596i \(-0.304142\pi\)
−0.816596 + 0.577210i \(0.804142\pi\)
\(168\) 41.8360 + 42.1634i 0.249024 + 0.250973i
\(169\) 61.6404i 0.364736i
\(170\) −56.3652 30.7553i −0.331560 0.180914i
\(171\) 247.393 46.5956i 1.44674 0.272489i
\(172\) 45.3916 12.1626i 0.263904 0.0707130i
\(173\) −11.2771 3.02168i −0.0651853 0.0174664i 0.226079 0.974109i \(-0.427409\pi\)
−0.291264 + 0.956643i \(0.594076\pi\)
\(174\) −18.2479 + 6.76214i −0.104873 + 0.0388629i
\(175\) −8.53136 + 174.792i −0.0487506 + 0.998811i
\(176\) 56.1435i 0.318997i
\(177\) −27.8446 + 2.59937i −0.157314 + 0.0146857i
\(178\) −144.980 + 38.8472i −0.814494 + 0.218243i
\(179\) −39.1237 + 67.7642i −0.218568 + 0.378571i −0.954370 0.298625i \(-0.903472\pi\)
0.735802 + 0.677196i \(0.236805\pi\)
\(180\) 88.0177 18.7853i 0.488987 0.104363i
\(181\) 94.0811i 0.519785i 0.965638 + 0.259893i \(0.0836872\pi\)
−0.965638 + 0.259893i \(0.916313\pi\)
\(182\) 9.93206 102.091i 0.0545718 0.560940i
\(183\) −134.134 + 292.075i −0.732974 + 1.59604i
\(184\) 80.6914 46.5872i 0.438540 0.253191i
\(185\) −130.793 + 137.256i −0.706992 + 0.741926i
\(186\) −151.694 25.8390i −0.815562 0.138919i
\(187\) −123.112 32.9878i −0.658354 0.176405i
\(188\) −25.2629 + 25.2629i −0.134377 + 0.134377i
\(189\) −63.2662 + 178.097i −0.334742 + 0.942310i
\(190\) 46.5715 192.227i 0.245113 1.01172i
\(191\) −125.517 + 72.4674i −0.657158 + 0.379410i −0.791193 0.611566i \(-0.790540\pi\)
0.134035 + 0.990977i \(0.457207\pi\)
\(192\) −13.8799 19.5792i −0.0722914 0.101975i
\(193\) −58.1535 217.032i −0.301313 1.12452i −0.936073 0.351807i \(-0.885567\pi\)
0.634759 0.772710i \(-0.281099\pi\)
\(194\) −103.270 + 59.6232i −0.532322 + 0.307336i
\(195\) −121.995 96.2964i −0.625618 0.493828i
\(196\) −18.8893 + 96.1623i −0.0963742 + 0.490624i
\(197\) 218.003 218.003i 1.10661 1.10661i 0.113020 0.993593i \(-0.463948\pi\)
0.993593 0.113020i \(-0.0360525\pi\)
\(198\) 161.021 77.3781i 0.813235 0.390798i
\(199\) 85.5652 148.203i 0.429976 0.744740i −0.566895 0.823790i \(-0.691855\pi\)
0.996871 + 0.0790503i \(0.0251888\pi\)
\(200\) 14.9884 69.1039i 0.0749420 0.345519i
\(201\) 179.444 216.397i 0.892757 1.07660i
\(202\) −120.798 + 120.798i −0.598010 + 0.598010i
\(203\) −26.1214 18.6711i −0.128677 0.0919761i
\(204\) −51.0889 + 18.9321i −0.250436 + 0.0928044i
\(205\) −233.906 127.629i −1.14100 0.622582i
\(206\) −90.8521 + 157.360i −0.441029 + 0.763885i
\(207\) 244.823 + 167.217i 1.18272 + 0.807811i
\(208\) −10.7270 + 40.0336i −0.0515719 + 0.192469i
\(209\) 392.604i 1.87849i
\(210\) 107.100 + 102.857i 0.510001 + 0.489795i
\(211\) −136.203 −0.645510 −0.322755 0.946483i \(-0.604609\pi\)
−0.322755 + 0.946483i \(0.604609\pi\)
\(212\) 157.936 + 42.3188i 0.744981 + 0.199617i
\(213\) −55.4848 78.2676i −0.260492 0.367454i
\(214\) −119.280 68.8663i −0.557383 0.321805i
\(215\) 112.713 33.1329i 0.524247 0.154107i
\(216\) 37.0240 66.7924i 0.171407 0.309224i
\(217\) −105.057 231.132i −0.484135 1.06513i
\(218\) −3.39838 3.39838i −0.0155889 0.0155889i
\(219\) 126.638 152.716i 0.578254 0.697333i
\(220\) −3.38310 140.318i −0.0153777 0.637809i
\(221\) 81.4833 + 47.0444i 0.368703 + 0.212871i
\(222\) 14.9532 + 160.180i 0.0673569 + 0.721532i
\(223\) −253.892 253.892i −1.13853 1.13853i −0.988714 0.149814i \(-0.952132\pi\)
−0.149814 0.988714i \(-0.547868\pi\)
\(224\) 13.9041 37.0766i 0.0620721 0.165521i
\(225\) 218.848 52.2533i 0.972659 0.232237i
\(226\) 29.7534 + 51.5344i 0.131652 + 0.228028i
\(227\) 18.1203 4.85532i 0.0798251 0.0213891i −0.218685 0.975795i \(-0.570177\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(228\) −97.0605 136.915i −0.425704 0.600504i
\(229\) −156.509 271.082i −0.683446 1.18376i −0.973923 0.226881i \(-0.927147\pi\)
0.290477 0.956882i \(-0.406186\pi\)
\(230\) 198.863 121.297i 0.864621 0.527376i
\(231\) 254.688 + 148.371i 1.10254 + 0.642298i
\(232\) 9.17377 + 9.17377i 0.0395421 + 0.0395421i
\(233\) −58.3274 + 217.681i −0.250332 + 0.934253i 0.720296 + 0.693667i \(0.244006\pi\)
−0.970628 + 0.240585i \(0.922661\pi\)
\(234\) −129.601 + 24.4099i −0.553850 + 0.104316i
\(235\) −61.6165 + 64.6611i −0.262198 + 0.275154i
\(236\) 9.32188 + 16.1460i 0.0394995 + 0.0684152i
\(237\) −67.8406 + 147.722i −0.286247 + 0.623299i
\(238\) −73.1325 52.2740i −0.307279 0.219639i
\(239\) 349.115 1.46073 0.730367 0.683055i \(-0.239349\pi\)
0.730367 + 0.683055i \(0.239349\pi\)
\(240\) −35.8696 48.0975i −0.149457 0.200406i
\(241\) −169.737 97.9974i −0.704301 0.406628i 0.104646 0.994509i \(-0.466629\pi\)
−0.808947 + 0.587881i \(0.799962\pi\)
\(242\) −27.8201 103.826i −0.114959 0.429034i
\(243\) 242.589 + 14.1308i 0.998308 + 0.0581516i
\(244\) 214.269 0.878151
\(245\) −41.4151 + 241.474i −0.169041 + 0.985609i
\(246\) −212.010 + 78.5649i −0.861830 + 0.319369i
\(247\) −75.0121 + 279.949i −0.303693 + 1.13340i
\(248\) 26.5513 + 99.0907i 0.107062 + 0.399559i
\(249\) 27.0043 158.536i 0.108451 0.636689i
\(250\) 33.2960 173.613i 0.133184 0.694451i
\(251\) 325.764 1.29787 0.648933 0.760846i \(-0.275216\pi\)
0.648933 + 0.760846i \(0.275216\pi\)
\(252\) 125.499 11.2224i 0.498013 0.0445332i
\(253\) 326.946 326.946i 1.29228 1.29228i
\(254\) 78.4974 + 135.961i 0.309045 + 0.535281i
\(255\) −126.544 + 50.3950i −0.496253 + 0.197627i
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 58.8466 219.618i 0.228975 0.854547i −0.751798 0.659394i \(-0.770813\pi\)
0.980773 0.195153i \(-0.0625203\pi\)
\(258\) 41.6032 90.5904i 0.161253 0.351126i
\(259\) −204.981 + 168.634i −0.791433 + 0.651095i
\(260\) −24.3973 + 100.701i −0.0938356 + 0.387312i
\(261\) −13.6671 + 38.9540i −0.0523642 + 0.149249i
\(262\) −2.60858 9.73537i −0.00995643 0.0371579i
\(263\) −491.050 + 131.577i −1.86711 + 0.500291i −0.867114 + 0.498110i \(0.834027\pi\)
−0.999998 + 0.00218051i \(0.999306\pi\)
\(264\) −91.6784 76.0230i −0.347267 0.287966i
\(265\) 397.275 + 96.2494i 1.49915 + 0.363205i
\(266\) 97.2297 259.271i 0.365525 0.974704i
\(267\) −132.880 + 289.344i −0.497678 + 1.08369i
\(268\) −181.027 48.5060i −0.675473 0.180992i
\(269\) 131.175 + 75.7340i 0.487640 + 0.281539i 0.723595 0.690225i \(-0.242488\pi\)
−0.235955 + 0.971764i \(0.575822\pi\)
\(270\) 88.5083 169.163i 0.327808 0.626531i
\(271\) 151.089 87.2311i 0.557523 0.321886i −0.194628 0.980877i \(-0.562350\pi\)
0.752151 + 0.658991i \(0.229017\pi\)
\(272\) 25.6840 + 25.6840i 0.0944265 + 0.0944265i
\(273\) −153.259 154.458i −0.561387 0.565781i
\(274\) 188.818i 0.689119i
\(275\) −16.9106 350.489i −0.0614931 1.27451i
\(276\) 33.1893 194.846i 0.120251 0.705965i
\(277\) −166.813 + 44.6974i −0.602213 + 0.161362i −0.547029 0.837114i \(-0.684241\pi\)
−0.0551838 + 0.998476i \(0.517574\pi\)
\(278\) −241.758 64.7788i −0.869633 0.233017i
\(279\) −247.600 + 212.718i −0.887456 + 0.762431i
\(280\) 32.5161 93.5024i 0.116129 0.333937i
\(281\) 388.064i 1.38101i 0.723328 + 0.690505i \(0.242612\pi\)
−0.723328 + 0.690505i \(0.757388\pi\)
\(282\) 7.04444 + 75.4605i 0.0249803 + 0.267591i
\(283\) 271.424 72.7278i 0.959095 0.256989i 0.254878 0.966973i \(-0.417965\pi\)
0.704217 + 0.709985i \(0.251298\pi\)
\(284\) −31.9798 + 55.3907i −0.112605 + 0.195038i
\(285\) −250.831 336.339i −0.880108 1.18014i
\(286\) 205.672i 0.719133i
\(287\) −303.487 216.928i −1.05745 0.755846i
\(288\) −50.7661 3.84697i −0.176271 0.0133575i
\(289\) −178.870 + 103.271i −0.618928 + 0.357338i
\(290\) 23.4806 + 22.3750i 0.0809675 + 0.0771551i
\(291\) −42.4763 + 249.368i −0.145967 + 0.856935i
\(292\) −127.754 34.2317i −0.437515 0.117232i
\(293\) −214.301 + 214.301i −0.731402 + 0.731402i −0.970897 0.239496i \(-0.923018\pi\)
0.239496 + 0.970897i \(0.423018\pi\)
\(294\) 131.449 + 161.057i 0.447104 + 0.547812i
\(295\) 24.2709 + 39.7915i 0.0822741 + 0.134886i
\(296\) 92.8821 53.6255i 0.313791 0.181167i
\(297\) 91.6824 367.712i 0.308695 1.23809i
\(298\) 19.6031 + 73.1596i 0.0657821 + 0.245502i
\(299\) −295.599 + 170.664i −0.988625 + 0.570783i
\(300\) −92.5462 118.047i −0.308487 0.393491i
\(301\) 162.246 26.9859i 0.539023 0.0896541i
\(302\) −81.5000 + 81.5000i −0.269867 + 0.269867i
\(303\) 33.6840 + 360.825i 0.111168 + 1.19084i
\(304\) −55.9428 + 96.8958i −0.184022 + 0.318736i
\(305\) 535.516 12.9114i 1.75579 0.0423325i
\(306\) −38.2639 + 109.060i −0.125046 + 0.356406i
\(307\) 78.8782 78.8782i 0.256932 0.256932i −0.566873 0.823805i \(-0.691847\pi\)
0.823805 + 0.566873i \(0.191847\pi\)
\(308\) 19.0272 195.579i 0.0617765 0.634997i
\(309\) 133.937 + 361.434i 0.433453 + 1.16969i
\(310\) 72.3299 + 246.055i 0.233322 + 0.793725i
\(311\) 160.628 278.216i 0.516489 0.894586i −0.483328 0.875440i \(-0.660572\pi\)
0.999817 0.0191459i \(-0.00609470\pi\)
\(312\) 50.8468 + 71.7251i 0.162970 + 0.229888i
\(313\) −110.352 + 411.838i −0.352561 + 1.31578i 0.530964 + 0.847394i \(0.321830\pi\)
−0.883526 + 0.468383i \(0.844837\pi\)
\(314\) 85.6788i 0.272863i
\(315\) 312.981 35.6101i 0.993590 0.113048i
\(316\) 108.370 0.342943
\(317\) −91.8343 24.6069i −0.289698 0.0776243i 0.111043 0.993816i \(-0.464581\pi\)
−0.400741 + 0.916191i \(0.631247\pi\)
\(318\) 282.962 200.595i 0.889819 0.630802i
\(319\) 55.7556 + 32.1905i 0.174782 + 0.100911i
\(320\) −19.1592 + 35.1130i −0.0598726 + 0.109728i
\(321\) −273.969 + 101.525i −0.853485 + 0.316277i
\(322\) 296.881 134.943i 0.921992 0.419076i
\(323\) 179.604 + 179.604i 0.556051 + 0.556051i
\(324\) −58.9337 150.900i −0.181894 0.465741i
\(325\) −54.9074 + 253.150i −0.168946 + 0.778923i
\(326\) −222.260 128.322i −0.681780 0.393626i
\(327\) −10.1510 + 0.947624i −0.0310429 + 0.00289793i
\(328\) 106.584 + 106.584i 0.324951 + 0.324951i
\(329\) −96.5662 + 79.4429i −0.293514 + 0.241468i
\(330\) −233.710 184.478i −0.708214 0.559024i
\(331\) −304.012 526.564i −0.918465 1.59083i −0.801747 0.597664i \(-0.796096\pi\)
−0.116718 0.993165i \(-0.537238\pi\)
\(332\) −103.559 + 27.7487i −0.311926 + 0.0835804i
\(333\) 281.811 + 192.480i 0.846279 + 0.578017i
\(334\) 39.9775 + 69.2431i 0.119693 + 0.207315i
\(335\) −455.358 110.321i −1.35928 0.329317i
\(336\) −41.7161 72.9093i −0.124155 0.216992i
\(337\) 153.881 + 153.881i 0.456620 + 0.456620i 0.897544 0.440924i \(-0.145349\pi\)
−0.440924 + 0.897544i \(0.645349\pi\)
\(338\) −22.5620 + 84.2024i −0.0667514 + 0.249120i
\(339\) 124.441 + 21.1967i 0.367081 + 0.0625271i
\(340\) 65.7390 + 62.6437i 0.193350 + 0.184246i
\(341\) 254.539 + 440.874i 0.746448 + 1.29289i
\(342\) −355.000 26.9013i −1.03801 0.0786587i
\(343\) −98.3916 + 328.585i −0.286856 + 0.957974i
\(344\) −66.4578 −0.193191
\(345\) 71.2081 488.974i 0.206400 1.41732i
\(346\) 14.2987 + 8.25538i 0.0413258 + 0.0238595i
\(347\) 21.2896 + 79.4540i 0.0613534 + 0.228974i 0.989794 0.142508i \(-0.0455165\pi\)
−0.928440 + 0.371482i \(0.878850\pi\)
\(348\) 27.4022 2.55807i 0.0787419 0.00735076i
\(349\) 279.527 0.800938 0.400469 0.916310i \(-0.368847\pi\)
0.400469 + 0.916310i \(0.368847\pi\)
\(350\) 75.6323 235.648i 0.216092 0.673279i
\(351\) −135.631 + 244.682i −0.386413 + 0.697100i
\(352\) −20.5500 + 76.6935i −0.0583806 + 0.217879i
\(353\) −77.6841 289.921i −0.220068 0.821306i −0.984321 0.176389i \(-0.943558\pi\)
0.764252 0.644917i \(-0.223108\pi\)
\(354\) 38.9878 + 6.64103i 0.110135 + 0.0187600i
\(355\) −76.5886 + 140.363i −0.215742 + 0.395390i
\(356\) 212.265 0.596251
\(357\) −184.387 + 48.6368i −0.516491 + 0.136238i
\(358\) 78.2474 78.2474i 0.218568 0.218568i
\(359\) −52.1344 90.2994i −0.145221 0.251530i 0.784234 0.620465i \(-0.213056\pi\)
−0.929455 + 0.368934i \(0.879723\pi\)
\(360\) −127.110 6.55555i −0.353084 0.0182099i
\(361\) −210.700 + 364.943i −0.583657 + 1.01092i
\(362\) 34.4361 128.517i 0.0951273 0.355020i
\(363\) −207.212 95.1610i −0.570831 0.262152i
\(364\) −50.9354 + 135.824i −0.139932 + 0.373142i
\(365\) −321.356 77.8562i −0.880428 0.213305i
\(366\) 290.138 349.886i 0.792726 0.955972i
\(367\) −39.8751 148.816i −0.108652 0.405493i 0.890082 0.455800i \(-0.150647\pi\)
−0.998734 + 0.0503067i \(0.983980\pi\)
\(368\) −127.279 + 34.1042i −0.345866 + 0.0926745i
\(369\) −158.789 + 452.581i −0.430321 + 1.22651i
\(370\) 228.907 139.622i 0.618666 0.377356i
\(371\) 535.837 + 200.945i 1.44430 + 0.541630i
\(372\) 197.761 + 90.8208i 0.531615 + 0.244142i
\(373\) −18.8574 5.05282i −0.0505560 0.0135464i 0.233452 0.972368i \(-0.424998\pi\)
−0.284008 + 0.958822i \(0.591664\pi\)
\(374\) 156.100 + 90.1244i 0.417380 + 0.240974i
\(375\) −238.412 289.456i −0.635764 0.771883i
\(376\) 43.7566 25.2629i 0.116374 0.0671885i
\(377\) −33.6065 33.6065i −0.0891419 0.0891419i
\(378\) 151.611 220.127i 0.401088 0.582348i
\(379\) 71.4414i 0.188500i 0.995549 + 0.0942499i \(0.0300453\pi\)
−0.995549 + 0.0942499i \(0.969955\pi\)
\(380\) −133.978 + 245.540i −0.352573 + 0.646159i
\(381\) 328.307 + 55.9225i 0.861699 + 0.146778i
\(382\) 197.985 53.0498i 0.518284 0.138874i
\(383\) −245.607 65.8101i −0.641271 0.171828i −0.0764917 0.997070i \(-0.524372\pi\)
−0.564779 + 0.825242i \(0.691039\pi\)
\(384\) 11.7939 + 31.8262i 0.0307132 + 0.0828806i
\(385\) 35.7689 489.952i 0.0929061 1.27260i
\(386\) 317.757i 0.823204i
\(387\) −91.5934 190.602i −0.236676 0.492512i
\(388\) 162.894 43.6472i 0.419829 0.112493i
\(389\) −52.9324 + 91.6816i −0.136073 + 0.235685i −0.926007 0.377507i \(-0.876782\pi\)
0.789934 + 0.613192i \(0.210115\pi\)
\(390\) 131.402 + 176.197i 0.336928 + 0.451787i
\(391\) 299.137i 0.765055i
\(392\) 61.0012 124.446i 0.155615 0.317465i
\(393\) −19.4294 8.92287i −0.0494387 0.0227045i
\(394\) −377.592 + 218.003i −0.958355 + 0.553306i
\(395\) 270.846 6.53016i 0.685686 0.0165321i
\(396\) −248.280 + 46.7628i −0.626971 + 0.118088i
\(397\) 255.776 + 68.5350i 0.644273 + 0.172632i 0.566138 0.824310i \(-0.308437\pi\)
0.0781346 + 0.996943i \(0.475104\pi\)
\(398\) −171.130 + 171.130i −0.429976 + 0.429976i
\(399\) −291.715 509.844i −0.731114 1.27781i
\(400\) −45.7683 + 88.9115i −0.114421 + 0.222279i
\(401\) 455.660 263.075i 1.13631 0.656048i 0.190795 0.981630i \(-0.438893\pi\)
0.945514 + 0.325582i \(0.105560\pi\)
\(402\) −324.332 + 229.923i −0.806796 + 0.571947i
\(403\) −97.2659 363.001i −0.241355 0.900748i
\(404\) 209.228 120.798i 0.517892 0.299005i
\(405\) −156.384 373.589i −0.386134 0.922443i
\(406\) 28.8483 + 35.0663i 0.0710550 + 0.0863703i
\(407\) 376.341 376.341i 0.924670 0.924670i
\(408\) 76.7184 7.16187i 0.188035 0.0175536i
\(409\) −156.655 + 271.335i −0.383020 + 0.663410i −0.991492 0.130165i \(-0.958449\pi\)
0.608473 + 0.793575i \(0.291783\pi\)
\(410\) 272.805 + 259.960i 0.665379 + 0.634049i
\(411\) −308.327 255.676i −0.750188 0.622083i
\(412\) 181.704 181.704i 0.441029 0.441029i
\(413\) 27.0014 + 59.4046i 0.0653786 + 0.143837i
\(414\) −273.229 318.034i −0.659974 0.768198i
\(415\) −257.151 + 75.5918i −0.619642 + 0.182149i
\(416\) 29.3066 50.7605i 0.0704485 0.122020i
\(417\) −433.140 + 307.058i −1.03870 + 0.736349i
\(418\) −143.703 + 536.307i −0.343787 + 1.28303i
\(419\) 85.6100i 0.204320i 0.994768 + 0.102160i \(0.0325753\pi\)
−0.994768 + 0.102160i \(0.967425\pi\)
\(420\) −108.653 179.707i −0.258698 0.427873i
\(421\) −159.411 −0.378647 −0.189324 0.981915i \(-0.560630\pi\)
−0.189324 + 0.981915i \(0.560630\pi\)
\(422\) 186.056 + 49.8536i 0.440891 + 0.118137i
\(423\) 132.760 + 90.6768i 0.313855 + 0.214366i
\(424\) −200.255 115.617i −0.472299 0.272682i
\(425\) 168.075 + 152.602i 0.395470 + 0.359064i
\(426\) 47.1457 + 127.224i 0.110671 + 0.298649i
\(427\) 746.417 + 72.6161i 1.74805 + 0.170061i
\(428\) 137.733 + 137.733i 0.321805 + 0.321805i
\(429\) 335.848 + 278.497i 0.782862 + 0.649177i
\(430\) −166.096 + 4.00462i −0.386271 + 0.00931307i
\(431\) −497.020 286.955i −1.15318 0.665788i −0.203519 0.979071i \(-0.565238\pi\)
−0.949660 + 0.313283i \(0.898571\pi\)
\(432\) −75.0234 + 77.6884i −0.173665 + 0.179834i
\(433\) 442.590 + 442.590i 1.02215 + 1.02215i 0.999749 + 0.0223976i \(0.00712997\pi\)
0.0223976 + 0.999749i \(0.492870\pi\)
\(434\) 58.9108 + 354.186i 0.135739 + 0.816097i
\(435\) 68.3314 8.04451i 0.157084 0.0184931i
\(436\) 3.39838 + 5.88617i 0.00779446 + 0.0135004i
\(437\) −890.041 + 238.486i −2.03671 + 0.545734i
\(438\) −228.888 + 162.261i −0.522576 + 0.370460i
\(439\) 291.416 + 504.748i 0.663818 + 1.14977i 0.979604 + 0.200936i \(0.0643984\pi\)
−0.315786 + 0.948830i \(0.602268\pi\)
\(440\) −46.7386 + 192.916i −0.106224 + 0.438446i
\(441\) 440.987 + 3.43820i 0.999970 + 0.00779637i
\(442\) −94.0888 94.0888i −0.212871 0.212871i
\(443\) 184.866 689.927i 0.417304 1.55740i −0.362873 0.931839i \(-0.618204\pi\)
0.780176 0.625560i \(-0.215129\pi\)
\(444\) 38.2035 224.283i 0.0860439 0.505143i
\(445\) 530.509 12.7907i 1.19215 0.0287431i
\(446\) 253.892 + 439.754i 0.569264 + 0.985995i
\(447\) 146.009 + 67.0538i 0.326641 + 0.150009i
\(448\) −32.5644 + 45.5583i −0.0726884 + 0.101693i
\(449\) −858.570 −1.91218 −0.956092 0.293067i \(-0.905324\pi\)
−0.956092 + 0.293067i \(0.905324\pi\)
\(450\) −318.078 8.72469i −0.706841 0.0193882i
\(451\) 647.788 + 374.000i 1.43634 + 0.829269i
\(452\) −21.7810 81.2877i −0.0481880 0.179840i
\(453\) 22.7259 + 243.441i 0.0501676 + 0.537398i
\(454\) −26.5300 −0.0584360
\(455\) −119.117 + 342.530i −0.261796 + 0.752813i
\(456\) 82.4728 + 222.556i 0.180861 + 0.488061i
\(457\) −83.5129 + 311.674i −0.182742 + 0.682001i 0.812361 + 0.583155i \(0.198182\pi\)
−0.995103 + 0.0988461i \(0.968485\pi\)
\(458\) 114.573 + 427.591i 0.250158 + 0.933604i
\(459\) 126.275 + 210.159i 0.275109 + 0.457863i
\(460\) −316.049 + 92.9053i −0.687063 + 0.201968i
\(461\) 77.0717 0.167184 0.0835919 0.996500i \(-0.473361\pi\)
0.0835919 + 0.996500i \(0.473361\pi\)
\(462\) −293.602 295.900i −0.635503 0.640477i
\(463\) 482.802 482.802i 1.04277 1.04277i 0.0437260 0.999044i \(-0.486077\pi\)
0.999044 0.0437260i \(-0.0139228\pi\)
\(464\) −9.17377 15.8894i −0.0197711 0.0342445i
\(465\) 499.731 + 215.069i 1.07469 + 0.462515i
\(466\) 159.353 276.008i 0.341960 0.592292i
\(467\) 195.115 728.178i 0.417805 1.55927i −0.361347 0.932432i \(-0.617683\pi\)
0.779151 0.626836i \(-0.215650\pi\)
\(468\) 185.973 + 14.0927i 0.397378 + 0.0301126i
\(469\) −614.177 230.323i −1.30955 0.491095i
\(470\) 107.837 65.7755i 0.229441 0.139948i
\(471\) −139.907 116.016i −0.297043 0.246319i
\(472\) −6.82409 25.4679i −0.0144578 0.0539573i
\(473\) −318.555 + 85.3566i −0.673478 + 0.180458i
\(474\) 146.742 176.960i 0.309582 0.373334i
\(475\) −320.051 + 621.745i −0.673792 + 1.30894i
\(476\) 80.7672 + 98.1759i 0.169679 + 0.206252i
\(477\) 55.5969 733.680i 0.116555 1.53811i
\(478\) −476.900 127.785i −0.997700 0.267333i
\(479\) 582.226 + 336.148i 1.21550 + 0.701771i 0.963953 0.266073i \(-0.0857264\pi\)
0.251550 + 0.967844i \(0.419060\pi\)
\(480\) 31.3939 + 78.8316i 0.0654039 + 0.164233i
\(481\) −340.257 + 196.448i −0.707396 + 0.408415i
\(482\) 195.995 + 195.995i 0.406628 + 0.406628i
\(483\) 181.651 667.510i 0.376088 1.38201i
\(484\) 152.012i 0.314075i
\(485\) 404.485 118.902i 0.833991 0.245159i
\(486\) −326.210 108.097i −0.671214 0.222421i
\(487\) 143.279 38.3915i 0.294207 0.0788326i −0.108696 0.994075i \(-0.534668\pi\)
0.402904 + 0.915242i \(0.368001\pi\)
\(488\) −292.697 78.4278i −0.599788 0.160713i
\(489\) −510.500 + 189.176i −1.04397 + 0.386864i
\(490\) 144.960 314.701i 0.295836 0.642247i
\(491\) 450.687i 0.917895i −0.888463 0.458948i \(-0.848227\pi\)
0.888463 0.458948i \(-0.151773\pi\)
\(492\) 318.368 29.7205i 0.647089 0.0604075i
\(493\) −40.2327 + 10.7803i −0.0816080 + 0.0218668i
\(494\) 204.937 354.961i 0.414852 0.718544i
\(495\) −617.703 + 131.834i −1.24788 + 0.266331i
\(496\) 145.079i 0.292498i
\(497\) −130.175 + 182.118i −0.261922 + 0.366435i
\(498\) −94.9166 + 206.679i −0.190596 + 0.415019i
\(499\) 209.835 121.149i 0.420512 0.242783i −0.274784 0.961506i \(-0.588606\pi\)
0.695296 + 0.718723i \(0.255273\pi\)
\(500\) −109.030 + 224.972i −0.218060 + 0.449944i
\(501\) 167.202 + 28.4805i 0.333736 + 0.0568472i
\(502\) −445.002 119.238i −0.886459 0.237526i
\(503\) −229.981 + 229.981i −0.457218 + 0.457218i −0.897741 0.440523i \(-0.854793\pi\)
0.440523 + 0.897741i \(0.354793\pi\)
\(504\) −175.543 30.6059i −0.348299 0.0607259i
\(505\) 515.640 314.515i 1.02107 0.622802i
\(506\) −566.288 + 326.946i −1.11915 + 0.646139i
\(507\) 106.946 + 150.859i 0.210938 + 0.297553i
\(508\) −57.4641 214.459i −0.113118 0.422163i
\(509\) 286.808 165.589i 0.563474 0.325322i −0.191064 0.981577i \(-0.561194\pi\)
0.754539 + 0.656255i \(0.227861\pi\)
\(510\) 191.309 22.5224i 0.375115 0.0441615i
\(511\) −433.438 162.544i −0.848216 0.318090i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) −524.628 + 543.264i −1.02267 + 1.05899i
\(514\) −160.772 + 278.465i −0.312786 + 0.541761i
\(515\) 443.179 465.078i 0.860542 0.903063i
\(516\) −89.9895 + 108.521i −0.174398 + 0.210312i
\(517\) 177.293 177.293i 0.342927 0.342927i
\(518\) 341.734 155.329i 0.659718 0.299864i
\(519\) 32.8421 12.1704i 0.0632797 0.0234496i
\(520\) 70.1865 128.630i 0.134974 0.247366i
\(521\) 116.117 201.121i 0.222874 0.386029i −0.732805 0.680438i \(-0.761789\pi\)
0.955680 + 0.294409i \(0.0951228\pi\)
\(522\) 32.9277 48.2097i 0.0630799 0.0923557i
\(523\) 79.8784 298.110i 0.152731 0.570001i −0.846558 0.532297i \(-0.821329\pi\)
0.999289 0.0377037i \(-0.0120043\pi\)
\(524\) 14.2536i 0.0272015i
\(525\) −282.383 442.589i −0.537873 0.843026i
\(526\) 718.947 1.36682
\(527\) −318.131 85.2429i −0.603664 0.161751i
\(528\) 97.4087 + 137.406i 0.184486 + 0.260239i
\(529\) −481.670 278.092i −0.910530 0.525695i
\(530\) −507.459 276.892i −0.957469 0.522438i
\(531\) 63.6371 54.6719i 0.119844 0.102960i
\(532\) −227.718 + 318.583i −0.428041 + 0.598840i
\(533\) −390.452 390.452i −0.732555 0.732555i
\(534\) 287.425 346.614i 0.538249 0.649090i
\(535\) 352.531 + 335.932i 0.658936 + 0.627910i
\(536\) 229.533 + 132.521i 0.428233 + 0.247240i
\(537\) −21.8189 233.726i −0.0406312 0.435244i
\(538\) −151.468 151.468i −0.281539 0.281539i
\(539\) 132.564 674.862i 0.245945 1.25206i
\(540\) −182.823 + 198.685i −0.338561 + 0.367936i
\(541\) −409.572 709.400i −0.757065 1.31128i −0.944341 0.328968i \(-0.893299\pi\)
0.187275 0.982307i \(-0.440034\pi\)
\(542\) −238.320 + 63.8576i −0.439704 + 0.117818i
\(543\) −163.230 230.255i −0.300608 0.424042i
\(544\) −25.6840 44.4860i −0.0472132 0.0817757i
\(545\) 8.84818 + 14.5064i 0.0162352 + 0.0266172i
\(546\) 152.820 + 267.090i 0.279889 + 0.489177i
\(547\) 9.65732 + 9.65732i 0.0176551 + 0.0176551i 0.715879 0.698224i \(-0.246026\pi\)
−0.698224 + 0.715879i \(0.746026\pi\)
\(548\) −69.1124 + 257.931i −0.126117 + 0.470677i
\(549\) −178.468 947.549i −0.325078 1.72595i
\(550\) −105.188 + 484.967i −0.191250 + 0.881758i
\(551\) −64.1509 111.113i −0.116426 0.201656i
\(552\) −116.656 + 254.017i −0.211334 + 0.460176i
\(553\) 377.512 + 36.7268i 0.682662 + 0.0664137i
\(554\) 244.231 0.440850
\(555\) 81.9661 562.848i 0.147687 1.01414i
\(556\) 306.537 + 176.979i 0.551325 + 0.318308i
\(557\) 197.326 + 736.431i 0.354266 + 1.32214i 0.881406 + 0.472360i \(0.156598\pi\)
−0.527140 + 0.849779i \(0.676736\pi\)
\(558\) 416.088 199.950i 0.745678 0.358334i
\(559\) 243.457 0.435522
\(560\) −78.6421 + 115.825i −0.140432 + 0.206830i
\(561\) 358.539 132.864i 0.639107 0.236835i
\(562\) 142.041 530.105i 0.252742 0.943247i
\(563\) −151.152 564.109i −0.268477 1.00197i −0.960088 0.279699i \(-0.909765\pi\)
0.691611 0.722270i \(-0.256901\pi\)
\(564\) 17.9976 105.659i 0.0319106 0.187339i
\(565\) −59.3349 201.848i −0.105018 0.357253i
\(566\) −397.392 −0.702106
\(567\) −154.158 545.641i −0.271884 0.962330i
\(568\) 63.9596 63.9596i 0.112605 0.112605i
\(569\) −182.005 315.242i −0.319868 0.554028i 0.660592 0.750745i \(-0.270305\pi\)
−0.980460 + 0.196717i \(0.936972\pi\)
\(570\) 219.533 + 551.258i 0.385145 + 0.967119i
\(571\) 5.98571 10.3676i 0.0104829 0.0181568i −0.860736 0.509051i \(-0.829996\pi\)
0.871219 + 0.490894i \(0.163330\pi\)
\(572\) 75.2812 280.953i 0.131610 0.491177i
\(573\) 181.461 395.129i 0.316686 0.689579i
\(574\) 335.170 + 407.413i 0.583919 + 0.709779i
\(575\) −784.295 + 251.240i −1.36399 + 0.436940i
\(576\) 67.9397 + 23.8367i 0.117951 + 0.0413832i
\(577\) 25.4762 + 95.0785i 0.0441529 + 0.164781i 0.984482 0.175485i \(-0.0561495\pi\)
−0.940329 + 0.340266i \(0.889483\pi\)
\(578\) 282.141 75.5995i 0.488133 0.130795i
\(579\) 518.874 + 430.269i 0.896156 + 0.743124i
\(580\) −23.8852 39.1593i −0.0411814 0.0675160i
\(581\) −370.159 + 61.5675i −0.637107 + 0.105968i
\(582\) 149.299 325.096i 0.256527 0.558583i
\(583\) −1108.39 296.991i −1.90118 0.509419i
\(584\) 161.986 + 93.5228i 0.277374 + 0.160142i
\(585\) 465.646 + 24.0151i 0.795976 + 0.0410515i
\(586\) 371.180 214.301i 0.633412 0.365701i
\(587\) 360.927 + 360.927i 0.614867 + 0.614867i 0.944210 0.329343i \(-0.106827\pi\)
−0.329343 + 0.944210i \(0.606827\pi\)
\(588\) −120.611 268.121i −0.205121 0.455988i
\(589\) 1014.52i 1.72244i
\(590\) −18.5899 63.2400i −0.0315083 0.107186i
\(591\) −155.308 + 911.775i −0.262788 + 1.54277i
\(592\) −146.508 + 39.2566i −0.247479 + 0.0663118i
\(593\) 360.719 + 96.6544i 0.608295 + 0.162992i 0.549801 0.835295i \(-0.314703\pi\)
0.0584941 + 0.998288i \(0.481370\pi\)
\(594\) −259.832 + 468.745i −0.437428 + 0.789133i
\(595\) 207.775 + 240.502i 0.349202 + 0.404204i
\(596\) 107.113i 0.179720i
\(597\) 47.7189 + 511.169i 0.0799312 + 0.856229i
\(598\) 466.263 124.935i 0.779704 0.208921i
\(599\) 425.287 736.618i 0.709994 1.22975i −0.254864 0.966977i \(-0.582031\pi\)
0.964859 0.262770i \(-0.0846359\pi\)
\(600\) 83.2121 + 195.130i 0.138687 + 0.325217i
\(601\) 742.810i 1.23596i −0.786195 0.617979i \(-0.787952\pi\)
0.786195 0.617979i \(-0.212048\pi\)
\(602\) −231.509 22.5227i −0.384567 0.0374131i
\(603\) −63.7253 + 840.946i −0.105681 + 1.39460i
\(604\) 141.162 81.5000i 0.233712 0.134934i
\(605\) 9.15996 + 379.920i 0.0151404 + 0.627967i
\(606\) 86.0581 505.226i 0.142010 0.833706i
\(607\) −294.444 78.8960i −0.485081 0.129977i 0.00798677 0.999968i \(-0.497458\pi\)
−0.493067 + 0.869991i \(0.664124\pi\)
\(608\) 111.886 111.886i 0.184022 0.184022i
\(609\) 96.3239 + 0.375494i 0.158167 + 0.000616575i
\(610\) −736.255 178.375i −1.20698 0.292418i
\(611\) −160.295 + 92.5461i −0.262348 + 0.151467i
\(612\) 92.1883 134.974i 0.150635 0.220545i
\(613\) 67.8715 + 253.300i 0.110720 + 0.413214i 0.998931 0.0462222i \(-0.0147182\pi\)
−0.888211 + 0.459436i \(0.848052\pi\)
\(614\) −136.621 + 78.8782i −0.222510 + 0.128466i
\(615\) 793.898 93.4639i 1.29089 0.151974i
\(616\) −97.5785 + 260.201i −0.158407 + 0.422405i
\(617\) 43.4324 43.4324i 0.0703929 0.0703929i −0.671034 0.741427i \(-0.734149\pi\)
0.741427 + 0.671034i \(0.234149\pi\)
\(618\) −50.6674 542.753i −0.0819861 0.878240i
\(619\) 194.486 336.859i 0.314194 0.544199i −0.665072 0.746779i \(-0.731599\pi\)
0.979266 + 0.202580i \(0.0649326\pi\)
\(620\) −8.74217 362.592i −0.0141003 0.584826i
\(621\) −889.303 + 15.5192i −1.43205 + 0.0249907i
\(622\) −321.256 + 321.256i −0.516489 + 0.516489i
\(623\) 739.437 + 71.9371i 1.18690 + 0.115469i
\(624\) −43.2047 116.590i −0.0692384 0.186842i
\(625\) −258.939 + 568.837i −0.414303 + 0.910139i
\(626\) 301.487 522.190i 0.481608 0.834169i
\(627\) 681.165 + 960.860i 1.08639 + 1.53247i
\(628\) −31.3606 + 117.039i −0.0499373 + 0.186369i
\(629\) 344.329i 0.547424i
\(630\) −440.574 65.9145i −0.699323 0.104626i
\(631\) −989.008 −1.56737 −0.783683 0.621160i \(-0.786662\pi\)
−0.783683 + 0.621160i \(0.786662\pi\)
\(632\) −148.036 39.6661i −0.234234 0.0627629i
\(633\) 333.343 236.311i 0.526608 0.373319i
\(634\) 116.441 + 67.2273i 0.183661 + 0.106037i
\(635\) −156.541 532.529i −0.246522 0.838628i
\(636\) −459.957 + 170.447i −0.723202 + 0.267998i
\(637\) −223.467 + 455.887i −0.350812 + 0.715678i
\(638\) −64.3810 64.3810i −0.100911 0.100911i
\(639\) 271.588 + 95.2869i 0.425020 + 0.149119i
\(640\) 39.0242 40.9525i 0.0609754 0.0639883i
\(641\) −586.991 338.899i −0.915743 0.528704i −0.0334683 0.999440i \(-0.510655\pi\)
−0.882274 + 0.470736i \(0.843989\pi\)
\(642\) 411.409 38.4061i 0.640824 0.0598226i
\(643\) 451.858 + 451.858i 0.702734 + 0.702734i 0.964996 0.262263i \(-0.0844688\pi\)
−0.262263 + 0.964996i \(0.584469\pi\)
\(644\) −454.940 + 75.6689i −0.706429 + 0.117498i
\(645\) −218.369 + 276.646i −0.338557 + 0.428909i
\(646\) −179.604 311.084i −0.278025 0.481554i
\(647\) −105.031 + 28.1430i −0.162336 + 0.0434977i −0.339071 0.940761i \(-0.610113\pi\)
0.176736 + 0.984258i \(0.443446\pi\)
\(648\) 25.2717 + 227.705i 0.0389995 + 0.351396i
\(649\) −65.4204 113.312i −0.100802 0.174594i
\(650\) 167.664 325.712i 0.257945 0.501095i
\(651\) 658.131 + 383.401i 1.01095 + 0.588941i
\(652\) 256.644 + 256.644i 0.393626 + 0.393626i
\(653\) −232.790 + 868.783i −0.356493 + 1.33045i 0.522103 + 0.852882i \(0.325148\pi\)
−0.878596 + 0.477566i \(0.841519\pi\)
\(654\) 14.2134 + 2.42105i 0.0217330 + 0.00370191i
\(655\) 0.858892 + 35.6236i 0.00131129 + 0.0543871i
\(656\) −106.584 184.609i −0.162476 0.281416i
\(657\) −44.9724 + 593.474i −0.0684511 + 0.903308i
\(658\) 160.990 73.1754i 0.244666 0.111209i
\(659\) 326.028 0.494732 0.247366 0.968922i \(-0.420435\pi\)
0.247366 + 0.968922i \(0.420435\pi\)
\(660\) 251.731 + 337.546i 0.381410 + 0.511433i
\(661\) −21.0467 12.1513i −0.0318407 0.0183832i 0.483995 0.875071i \(-0.339185\pi\)
−0.515836 + 0.856687i \(0.672519\pi\)
\(662\) 222.552 + 830.576i 0.336182 + 1.25465i
\(663\) −281.044 + 26.2362i −0.423898 + 0.0395720i
\(664\) 151.622 0.228346
\(665\) −549.933 + 809.947i −0.826966 + 1.21797i
\(666\) −314.508 366.082i −0.472234 0.549673i
\(667\) 39.1081 145.953i 0.0586328 0.218820i
\(668\) −29.2656 109.221i −0.0438107 0.163504i
\(669\) 1061.88 + 180.876i 1.58726 + 0.270367i
\(670\) 581.650 + 317.374i 0.868135 + 0.473693i
\(671\) −1503.73 −2.24102
\(672\) 30.2986 + 114.865i 0.0450872 + 0.170930i
\(673\) −534.423 + 534.423i −0.794091 + 0.794091i −0.982156 0.188066i \(-0.939778\pi\)
0.188066 + 0.982156i \(0.439778\pi\)
\(674\) −153.881 266.530i −0.228310 0.395445i
\(675\) −444.952 + 507.586i −0.659188 + 0.751979i
\(676\) 61.6404 106.764i 0.0911841 0.157935i
\(677\) −332.972 + 1242.67i −0.491835 + 1.83555i 0.0552479 + 0.998473i \(0.482405\pi\)
−0.547082 + 0.837079i \(0.684262\pi\)
\(678\) −162.230 74.5036i −0.239278 0.109887i
\(679\) 582.241 96.8424i 0.857497 0.142625i
\(680\) −66.8720 109.635i −0.0983411 0.161228i
\(681\) −35.9238 + 43.3215i −0.0527515 + 0.0636146i
\(682\) −186.335 695.413i −0.273219 1.01967i
\(683\) −59.6482 + 15.9827i −0.0873326 + 0.0234007i −0.302221 0.953238i \(-0.597728\pi\)
0.214888 + 0.976639i \(0.431061\pi\)
\(684\) 475.093 + 166.687i 0.694580 + 0.243694i
\(685\) −157.188 + 648.804i −0.229472 + 0.947160i
\(686\) 254.676 412.842i 0.371248 0.601810i
\(687\) 853.366 + 391.905i 1.24216 + 0.570458i
\(688\) 90.7831 + 24.3253i 0.131952 + 0.0353565i
\(689\) 733.599 + 423.543i 1.06473 + 0.614722i
\(690\) −276.249 + 641.888i −0.400361 + 0.930272i
\(691\) −567.484 + 327.637i −0.821250 + 0.474149i −0.850847 0.525413i \(-0.823911\pi\)
0.0295974 + 0.999562i \(0.490577\pi\)
\(692\) −16.5108 16.5108i −0.0238595 0.0238595i
\(693\) −880.746 + 78.7580i −1.27092 + 0.113648i
\(694\) 116.329i 0.167621i
\(695\) 776.784 + 423.848i 1.11767 + 0.609853i
\(696\) −38.3684 6.53551i −0.0551270 0.00939010i
\(697\) −467.438 + 125.250i −0.670642 + 0.179698i
\(698\) −381.842 102.314i −0.547051 0.146582i
\(699\) −234.924 633.951i −0.336086 0.906940i
\(700\) −189.569 + 294.217i −0.270812 + 0.420310i
\(701\) 637.912i 0.910003i 0.890491 + 0.455001i \(0.150361\pi\)
−0.890491 + 0.455001i \(0.849639\pi\)
\(702\) 274.835 284.598i 0.391503 0.405410i
\(703\) −1024.51 + 274.516i −1.45734 + 0.390492i
\(704\) 56.1435 97.2435i 0.0797493 0.138130i
\(705\) 38.6141 265.156i 0.0547717 0.376108i
\(706\) 424.474i 0.601238i
\(707\) 769.797 349.899i 1.08882 0.494906i
\(708\) −50.8276 23.3424i −0.0717904 0.0329694i
\(709\) −166.213 + 95.9630i −0.234433 + 0.135350i −0.612615 0.790381i \(-0.709882\pi\)
0.378183 + 0.925731i \(0.376549\pi\)
\(710\) 155.999 163.707i 0.219716 0.230573i
\(711\) −90.2629 479.238i −0.126952 0.674034i
\(712\) −289.960 77.6945i −0.407247 0.109121i
\(713\) 844.853 844.853i 1.18493 1.18493i
\(714\) 269.680 + 1.05128i 0.377703 + 0.00147238i
\(715\) 171.219 706.715i 0.239467 0.988413i
\(716\) −135.528 + 78.2474i −0.189286 + 0.109284i
\(717\) −854.427 + 605.713i −1.19167 + 0.844788i
\(718\) 38.1650 + 142.434i 0.0531546 + 0.198376i
\(719\) −935.091 + 539.875i −1.30054 + 0.750870i −0.980497 0.196532i \(-0.937032\pi\)
−0.320047 + 0.947402i \(0.603699\pi\)
\(720\) 171.236 + 55.4806i 0.237828 + 0.0770564i
\(721\) 694.556 571.396i 0.963323 0.792505i
\(722\) 421.400 421.400i 0.583657 0.583657i
\(723\) 585.439 54.6523i 0.809736 0.0755910i
\(724\) −94.0811 + 162.953i −0.129946 + 0.225074i
\(725\) −62.0554 96.4305i −0.0855937 0.133008i
\(726\) 248.225 + 205.837i 0.341908 + 0.283522i
\(727\) 838.098 838.098i 1.15282 1.15282i 0.166831 0.985985i \(-0.446646\pi\)
0.985985 0.166831i \(-0.0533535\pi\)
\(728\) 119.294 166.895i 0.163865 0.229251i
\(729\) −618.230 + 386.306i −0.848052 + 0.529912i
\(730\) 410.483 + 223.978i 0.562306 + 0.306819i
\(731\) 106.681 184.778i 0.145939 0.252774i
\(732\) −524.403 + 371.755i −0.716397 + 0.507862i
\(733\) −162.576 + 606.740i −0.221795 + 0.827749i 0.761869 + 0.647732i \(0.224282\pi\)
−0.983663 + 0.180018i \(0.942385\pi\)
\(734\) 217.882i 0.296842i
\(735\) −317.597 662.840i −0.432104 0.901824i
\(736\) 186.349 0.253191
\(737\) 1270.43 + 340.412i 1.72379 + 0.461889i
\(738\) 382.565 560.116i 0.518381 0.758965i
\(739\) 601.795 + 347.447i 0.814337 + 0.470158i 0.848460 0.529260i \(-0.177530\pi\)
−0.0341227 + 0.999418i \(0.510864\pi\)
\(740\) −363.797 + 106.941i −0.491618 + 0.144515i
\(741\) −302.124 815.294i −0.407725 1.10026i
\(742\) −658.416 470.626i −0.887353 0.634266i
\(743\) 715.171 + 715.171i 0.962545 + 0.962545i 0.999323 0.0367782i \(-0.0117095\pi\)
−0.0367782 + 0.999323i \(0.511709\pi\)
\(744\) −236.904 196.449i −0.318419 0.264044i
\(745\) −6.45443 267.705i −0.00866366 0.359336i
\(746\) 23.9102 + 13.8046i 0.0320512 + 0.0185048i
\(747\) 208.968 + 434.853i 0.279743 + 0.582133i
\(748\) −180.249 180.249i −0.240974 0.240974i
\(749\) 433.121 + 526.477i 0.578266 + 0.702906i
\(750\) 219.728 + 482.669i 0.292971 + 0.643559i
\(751\) 551.076 + 954.492i 0.733790 + 1.27096i 0.955252 + 0.295793i \(0.0955837\pi\)
−0.221462 + 0.975169i \(0.571083\pi\)
\(752\) −69.0195 + 18.4937i −0.0917812 + 0.0245927i
\(753\) −797.278 + 565.199i −1.05880 + 0.750596i
\(754\) 33.6065 + 58.2082i 0.0445710 + 0.0771992i
\(755\) 347.892 212.197i 0.460784 0.281055i
\(756\) −287.677 + 245.206i −0.380525 + 0.324347i
\(757\) 125.274 + 125.274i 0.165487 + 0.165487i 0.784993 0.619505i \(-0.212667\pi\)
−0.619505 + 0.784993i \(0.712667\pi\)
\(758\) 26.1494 97.5908i 0.0344979 0.128748i
\(759\) −232.921 + 1367.42i −0.306878 + 1.80161i
\(760\) 272.891 286.375i 0.359067